# On the Spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)^{1}$ 

Xianling Fan ${ }^{2}$ and Dun Zhao
metadata, citation and similar papers at core.ac.uk

Submitted by William F. Ames

Received May 25, 1999


#### Abstract

In this paper we present some basic results on the generalized Lebesgue spaces $L^{p(x)}(\Omega)$ and generalized Lebesgue-Sobolev spaces $W^{m, p(x)}(\Omega)$. These results provide the necessary framework for the study of variational problems and elliptic equations with non-standard $p(x)$-growth conditions. © 2001 Academic Press

Key Words: generalized Lebesgue space; Nemytsky operator; imbedding; density.


The study of variational problems with nonstandard growth conditions is a new topic developed in recent years [2-8, 20]. $p(x)$-growth conditions can be regarded as a very important class of nonstandard growth conditions. In this paper we present some basic theory of the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$. Most of the results are similar to those for Lebesgue spaces $L^{p}(\Omega)$ and Sobolev spaces $W^{m, p}(\Omega)$, but the Sobolev-like imbedding theorem and result on density are new; they show the essential difference between $W^{m, p(x)}(\Omega)$ and $W^{m, p}(\Omega)$. These results provide the required framework for the study of problems with $p(x)$-growth conditions.

Throughout this paper, for simplicity, we take Lebesgue measure in $\mathbf{R}^{n}$, and denote by meas $\Omega$ the measure of $\Omega \subset \mathbf{R}^{n}$; all functions appearing in this paper are assumed to be real.

[^0]
## 1. THE SPACE $L^{p(x)}(\Omega)$

Let $\Omega \subset R^{n}$ be a measurable subset and meas $\Omega>0$. We write

$$
E=\{u: u \text { is a measurable function in } \Omega\} .
$$

Elements in $E$ that are equal to each other almost everywhere are considered as one element.

Let $p \in E$. In the following discussion we always assume that $u \in E$ and write

$$
\begin{gather*}
\varphi(x, s)=s^{p(x)}, \quad \forall x \in \Omega, s \geq 0,  \tag{1}\\
\rho(u)=\rho_{p(x)}(u)=\int_{\Omega} \varphi(x,|u|) d x=\int_{\Omega}|u(x)|^{p(x)} d x,  \tag{2}\\
L^{p(x)}(\Omega)=\left\{u \in E: \lim _{\lambda \rightarrow 0^{+}} \rho(\lambda u)=0\right\},  \tag{3}\\
L_{0}^{p(x)}(\Omega)=\{u \in E: \rho(u)<\infty\},  \tag{4}\\
L_{1}^{p(x)}(\Omega)=\{u \in E: \forall \lambda>0, \rho(\lambda u)<\infty\}, \tag{5}
\end{gather*}
$$

and

$$
\begin{equation*}
L_{+}^{\infty}(\Omega)=\left\{u \in L^{\infty}(\Omega): \operatorname{ess} \inf _{\Omega} u \geq 1\right\} . \tag{6}
\end{equation*}
$$

It is easy to see that the function $\varphi$ defined above belongs to the class $\Phi$, which is defined in [18, p. 33], i.e., $\varphi$ satisfies the following two conditions:

1) For all $x \in \Omega, \varphi(x, \cdot):[0, \infty) \rightarrow \mathbf{R}$ is a non-decreasing continuous function with $\varphi(x, 0)=0$ and $\varphi(x, s)>0$ whenever $s>0 ; \varphi(x, s) \rightarrow \infty$ when $s \rightarrow \infty$.
2) For every $s \geq 0, \varphi(\cdot, s) \in E$.

Obviously, $\varphi$ is convex in $s$.
In view of the definition in [18, p. 1], $\rho$ is a convex modular over $E$, i.e., $\rho: E \rightarrow[0, \infty]$ verifies the following properties (a)-(c):
(a) $\rho(u)=0 \Leftrightarrow u=0$;
(b) $\rho(-u)=\rho(u)$;
(c) $\rho(\alpha u+\beta v) \leq \alpha \rho(u)+\beta \rho(v), \forall u, v \in E, \forall \alpha, \beta \geq 0, \alpha+\beta=1$, and thus by [18], $L^{p(x)}(\Omega)$ is a Nakano space, which is a special kind of Musielak-Orlicz space. $L_{0}^{p(x)}(\Omega)$ is a kind of generalized Orlicz class. It is easy to see that $L^{p(x)}(\Omega)$ is a linear subspace of $E$, and $L_{0}^{p(x)}(\Omega)$ is a convex subset of $L^{p(x)}(\Omega)$. In general we have

$$
L_{1}^{p(x)}(\Omega) \subset L_{0}^{p(x)}(\Omega) \subset L^{p(x)}(\Omega) .
$$

By the properties of $\varphi(x, s)$ we also have

$$
L^{p(x)}(\Omega)=\{u \in E: \exists \lambda>0, \rho(\lambda u)<\infty\}
$$

THEOREM 1.1. The following two conditions are equivalent:

1) $p \in L_{+}^{\infty}(\Omega)$.
2) $L_{1}^{p(x)}(\Omega)=L^{p(x)}(\Omega)$.

Proof. 1) $\Rightarrow 2$ ) is obvious.
$2) \Rightarrow 1$ ). If 1) is not true, then we can take a sequence $\left\{I_{m}\right\}$ of disjoint subsets of $\Omega$ with positive measure such that

$$
p(x)>m \quad \text { for } x \in I_{m}
$$

Choosing an increasing sequence $\left\{u_{m}\right\} \subset(0, \infty)$ such that $u_{m} \rightarrow \infty$ as $m \rightarrow$ $\infty$, we can find $k_{m}$ satisfying the inequality

$$
\int_{I_{m}} u_{k_{m}}^{p(x)} d x \geq \frac{1}{2^{m}}
$$

By the absolute continuity of integral, we can shrink $I_{m}$ to $\Omega_{m}$ such that

$$
\int_{\Omega_{m}} u_{k_{m}}^{p(x)} d x=\frac{1}{2^{m}}
$$

Denote by $\chi_{\Omega_{m}}(x)$ the characteristic function of $\Omega_{m}$, i.e.,

$$
\chi_{\Omega_{m}}(x)= \begin{cases}1, & \text { if } x \in \Omega_{m} \\ 0, & \text { if } x \notin \Omega_{m}\end{cases}
$$

if we write

$$
u_{0}(x)=\sum_{m=1}^{\infty} u_{k_{m}} \chi_{\Omega_{m}}(x)
$$

then we have

$$
\begin{aligned}
\int_{\Omega}\left|u_{0}(x)\right|^{p(x)} d x & =\sum_{n=1}^{\infty} \int_{\Omega_{n}} u_{k_{n}}^{p(x)} d x=\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1 \\
\int_{\Omega}\left|2 u_{0}(x)\right|^{p(x)} d x & =\sum_{n=1}^{\infty} \int_{\Omega_{n}} 2^{p(x)} u_{k_{n}}^{p(x)} d x>\sum_{n=1}^{\infty} 2^{n} \int_{\Omega_{n}} u_{k_{n}}^{p(x)} d x=\infty
\end{aligned}
$$

thus we have $u_{0} \in L^{p(x)}(\Omega)$, but $u_{0} \notin L_{1}^{p(x)}(\Omega)$. This contradicts condition (2), and we complete the proof.

From now on we only consider the case where $p \in L_{+}^{\infty}(\Omega)$, i.e.,

$$
\begin{equation*}
1 \leq p^{-}=: \text {ess } \inf _{x \in \Omega} p(x) \leq \text { ess } \sup _{x \in \Omega} p(x)=: p^{-}<\infty . \tag{7}
\end{equation*}
$$

For simplicity we write $E_{\rho}=L^{p(x)}(\Omega)=L_{0}^{p(x)}(\Omega)=L_{1}^{p(x)}(\Omega)$, and we call $L^{p(x)}(\Omega)$ generalized Lebesgue spaces. By [18, p. 7], we can introduce the norm $\|u\|_{L^{p(x)}(\Omega)}$ on $E_{\rho}\left(\right.$ denoted by $\left.\|u\|_{\rho}\right)$ as

$$
\|u\|_{\rho}=\inf \left\{\lambda>0: \rho\left(\frac{u}{\lambda}\right) \leq 1\right\}
$$

and $\left(E_{\rho},\|u\|_{\rho}\right)$ becomes a Banach space.
It is not hard to see that under condition (7), $\rho$ satisfies
(d) $\rho(u+v) \leq 2^{p^{+}}(\rho(u)+\rho(v)) ; \forall u, v \in E_{\rho}$.
(e) For $u \in E_{\rho}$, if $\lambda>1$, we have

$$
\rho(u) \leq \lambda \rho(u) \leq \lambda^{p^{-}} \rho(u) \leq \rho(\lambda u) \leq \lambda^{p^{+}} \rho(u),
$$

and if $0<\lambda<1$, we have

$$
\lambda^{p^{+}} \rho(u) \leq \rho(\lambda u) \leq \lambda^{p^{-}} \rho(u) \leq \lambda \rho(u) \leq \rho(u) .
$$

(f) For every fixed $u \in E_{\rho} \backslash\{0\}, \rho(\lambda u)$ is a continuous convex even function in $\lambda$, and it increases strictly when $\lambda \in[0, \infty)$

By property (f) and the definition of $\|\cdot\|_{\rho}$, we have
Theorem 1.2. Let $u \in E_{\rho} \backslash\{0\}$; then $\|u\|_{\rho}=a$ if and only if $\rho\left(\frac{u}{a}\right)=1$.
The norm $\|u\|_{\rho}$ is in close relation with the modular $\rho(u)$. We have
Theorem 1.3. Let $u \in E_{\rho}$; then

1) $\|u\|_{\rho}<1(=1 ;>1) \Leftrightarrow \rho(u)<1(=1 ;>1)$;
2) If $\|u\|_{\rho}>1$, then $\|u\|_{\rho^{-}}^{p^{-}} \leq \rho(u) \leq\|u\|_{\rho}^{p^{+}}$;
3) If $\|u\|_{\rho}<1$, then $\|u\|_{\rho}^{p^{+}} \leq \rho(u) \leq\|u\|_{\rho}^{p^{-}}$.

Proof. From (f) and Theorem 1.2 we can obtain 1). We only prove 2) below, as the proof of 3 ) is similar. Assume that $\|u\|_{\rho}=a>1$, by Theorem $1.2, \rho\left(\frac{u}{a}\right)=1$. Notice that $\frac{1}{a}<1$, by (e). We have

$$
\frac{1}{a^{p^{+}}} \rho(u) \leq \rho\left(\frac{u}{a}\right)=1 \leq \frac{1}{a^{p^{-}}} \rho(u),
$$

so we obtain 2).

Theorem 1.4. Let $u, u_{k} \in E_{\rho}, k=1,2, \ldots$. Then the following statements are equivalent to each other:

1) $\lim _{k \rightarrow \infty}\left\|u_{k}-u\right\|_{\rho}=0$;
2) $\lim _{k \rightarrow \infty} \rho\left(u_{k}-u\right)=0$;
3) $u_{k}$ converges to $u$ in $\Omega$ in measure and $\lim _{k \rightarrow \infty} \rho\left(u_{k}\right)=\rho(u)$.

Proof. The equivalence of 1) and 2) can be obtained from Theorem 1.6 in [18] and the property e) of $\rho$ stated above. Now we prove the equivalence of 2) and 3).

If 2) holds, i.e.,

$$
\lim _{k \rightarrow \infty} \int_{\Omega}\left|u_{k}-u\right|^{p(x)} d x=0
$$

then it is easy to see that $u_{k}$ converges to $u$ in $\Omega$ in measure; thus $\left|u_{k}\right|^{p(x)}$ converges to $|u|^{p(x)}$ in measure. Using the inequality

$$
\left|u_{k}\right|^{p(x)} \leq 2^{p^{+}-1}\left(\left|u_{k}-u\right|^{p(x)}+|u|^{p(x)}\right)
$$

and using the Vitali convergence theorem of integral we deduce that $\rho\left(u_{k}\right) \rightarrow \rho(u)$, so 3 ) holds.

On the other hand, if 3) holds, we can deduce that $\left|u_{k}-u\right|^{p(x)}$ converges to 0 in $\Omega$ in measure. By the inequality

$$
\left|u_{k}-u\right|^{p(x)} \leq 2^{p^{+}-1}\left(\left|u_{k}\right|^{p(x)}+|u|^{p(x)}\right)
$$

and condition $\rho\left(u_{k}\right) \rightarrow \rho(u)$, we get $\lim _{k \rightarrow \infty} \rho\left(u_{k}-u\right)=0$.
For arbitrary $u \in L^{p(x)}(\Omega)$, let

$$
u_{n}(x)= \begin{cases}u(x), & \text { if }|u(x)| \leq n \\ 0, & \text { if }|u(x)|>n\end{cases}
$$

It is easy to see that

$$
\lim _{n \rightarrow \infty} \rho\left(u_{n}(x)-u(x)\right)=0
$$

so by Theorem 1.4 we get
Theorem 1.5. The set of all bounded measurable functions over $\Omega$ is dense in $\left(L^{p(x)}(\Omega),\|\cdot\|_{\rho}\right)$.

For every fixed $s \geq 0$, under condition (7), the function $\varphi(\cdot, s)$ is local integral in $\Omega$; thus by Theorem 7.7 and 7.10 in [18], we get

Theorem 1.6. The space $\left(L^{p(x)}(\Omega),\|\cdot\|_{\rho}\right)$ is separable.
By Theorem 7.6 in [18] we have
Theorem 1.7. The set $S$ consisting of all simple integral functions over $\Omega$ is dense in the space $\left(L^{p(x)}(\Omega),\|\cdot\|_{\rho}\right)$.

When $\Omega \subset \mathbf{R}^{n}$ is an open subset, for every element in $S$, we can approximate it in the means of norm $\|\cdot\|_{\rho}$ by the elements in $C_{0}^{\infty}(\Omega)$ through the standard method of mollifiers, so we have
Theorem 1.8. If $\Omega \subset \mathbf{R}^{n}$ is an open subset, then $C_{0}^{\infty}(\Omega)$ is dense in the space $\left(L^{p(x)}(\Omega),\|\cdot\|_{\rho}\right)$.

We now discuss the uniform convexity of $L^{p(x)}(\Omega)$.
First we give the following conclusion:
Lemma 1.9. Let $p(x)>1$ be bounded. Then $\varphi(x, s)=s^{p(x)}$ is strongly convex with respect to $s$; i.e., for arbitrary $a \in(0,1)$, there is $\delta(a) \in(0,1)$ such that for all $s \geq 0$ and $b \in[0, a]$, the inequality

$$
\begin{equation*}
\varphi\left(x, \frac{1+b}{2} s\right) \leq(1-\delta(a)) \frac{\varphi(a, s)+\varphi(x, b s)}{2} \tag{8}
\end{equation*}
$$

holds.
Proof. We rewrite (8) as

$$
\left(\frac{1+b}{2}\right)^{p(x)} \leq(1-\delta(a)) \frac{1+b^{p(x)}}{2}
$$

It is easy to see that for almost all $x \in \Omega$ and $b \in[0,1)$, we always have $\left(\frac{1-b}{2}\right)^{p(x)}<\left(1+b^{p(x)}\right) / 2$. Let

$$
\theta_{x}(t)=\left(\frac{1+t}{2}\right)^{p(x)} / \frac{1+t^{p(x)}}{2} .
$$

It is not hard to prove that for almost all $x \in \Omega, \theta(t)$ increases strictly in $[0,1)$. We only need to prove that the inequality $\theta_{x}(a) \leq 1-\delta(a)$ holds. If this is not so, then we can find a sequence $\left\{x_{n}\right\}$ of points in $\Omega$ such that $\lim _{n \rightarrow \infty} \theta_{x_{n}}(a)=1$; thus we can choose a convergence subsequence $p\left(x_{n_{j}}\right)$ of $p\left(x_{n}\right)$ that still verifies $\lim _{n \rightarrow \infty} \theta_{x_{n_{i j}}}(a)=1$. Setting $p^{*}=\lim _{n_{j \rightarrow \infty}} p\left(x_{n_{j}}\right)$ $\in\left[p^{-}, p^{+}\right]$, we get $\left.\left(\frac{1+a}{2}\right)\right)^{p^{*}}=\left(1+a^{n_{j}}\right) / 2$, which is a contradiction. Thus we must have $\sup _{x \in \Omega} \theta(a)<1$; i.e., there is $\delta(a) \in(0,1)$ such that for almost all $x \in \Omega$, we have $\theta(a) \leq 1-\delta(a)$. This completes the proof.

By Lemma 1.8 and Theorem 11.6 in [18], we can get immediately
Theorem 1.10. If $p^{-}>1, p^{+}<\infty$, then $L^{p(x)}(\Omega)$ is uniform convex and thus is reflexive.

Now we give an imbedding result.
Theorem 1.11. Let meas $\Omega<\infty, p_{1}(x), p_{2}(x) \in E$, and let condition (7) be satisfied. Then the necessary and sufficient condition for $L^{p_{2}(x)}(\Omega) \subset$ $L^{p_{1}(x)}(\Omega)$ is that for almost all $x \in \Omega$ we have $p_{1}(x) \leq p_{2}(x)$, and in this case, the imbedding is continuous.

Proof. Let $p_{1}(x) \leq p_{2}(x)$. Then

$$
\theta_{x}(t)=\left(\frac{1+t}{2}\right)^{p(x)} / \frac{1+t^{p(x)}}{2}
$$

and we deduce that $L^{p_{2}(x)}(\Omega) \subset L^{p_{1}(x)}(\Omega)$. From Theorem 8.5 in [18] we know that the imbedding is continuous. On the other hand, if $L^{p_{2}(x)}(\Omega) \subset$ $L^{p_{1}(x)}(\Omega)$, from Theorem 8.5 in [18], there exists a positive constant $K$ and a non-negative integrable function $f(x)$ over $\Omega$ such that

$$
s^{p_{1}(x)} \leq K s^{p_{2}(x)}+f(x), \quad \forall s \geq 0, x \in \Omega .
$$

If $p_{1}(x) \leq p_{2}(x)$ is not true, then there exists a subset $A$ of $\Omega$ with positive measure such that $p_{1}(x)>p_{2}(x)$ for $x \in A$. By the non-negative integrability of $f(x)$, we can find a subset $B \subset A$ such that for some positive constant $M, f(x) \leq M$ whenever $x \in B$, and at the same time the inequality $s^{p_{1}(x)} \leq K s^{p_{2}(x)}+f(x)$ holds; i.e., for arbitrary $s \geq 0$, when $x \in B$, there holds

$$
s^{p_{1}(x)-p_{2}(x)} \leq K+M s^{-p_{2}(x)} .
$$

Let $s \rightarrow \infty$. We get a contradiction, and this ends the proof.
The norm $\|\cdot\|_{\rho}$ of $L^{p(x)}(\Omega)$ defined before is usually called the Luxembury norm. We can introduce another norm $\|\|\cdot\|\|_{\rho}$ as

$$
\begin{equation*}
\|\|\cdot\|\|_{\rho}=\inf _{\lambda>0} \lambda\left(1+\rho\left(\frac{u}{\lambda}\right)\right) . \tag{9}
\end{equation*}
$$

This is called the Amemiya norm. The above two norms are equivalent; they satisfy

$$
\|u\|_{\rho} \leq\|u\|_{\rho} \leq 2\|u\|_{\rho}, \quad \forall u \in L^{p(x)}(\Omega)
$$

A simple calculation shows that if $p(x)=p$ is a constant and we write

$$
\|u\|_{L^{p(\Omega)}}=\left(\int_{\Omega}|u(x)|^{p} d x\right)^{1 / p},
$$

then we have

$$
\|u\|_{\rho}=\|u\|_{L^{p}(\Omega)}, \quad\| \| u\left\|_{\rho}=2\right\| u \|_{L^{p}(\Omega)}
$$

If $p^{-}>1$, we can also introduce the so-called Orlicz norm as

$$
\|u\|_{\rho}^{\prime}=\|u\|_{L^{p(x)}(\Omega)}^{\prime}=\sup _{\rho_{q(x)}(v) \leq 1}\left|\int_{\Omega} u(x) v(x) d x\right|
$$

and we have

$$
\|u\|_{\rho} \leq\|u\|_{\rho}^{\prime} \leq 2\|u\|_{\rho}, \quad \forall u \in L^{p(x)}(\Omega)
$$

so $\|u\|_{\rho}^{\prime}$ is equivalent to $\|u\|_{\rho}$ and $\|\|u\|\|_{\rho}$. For the norm $\|u\|_{\rho}$, we have the Hölder inequality [18, p. 87]

$$
\begin{aligned}
&\left|\int_{\Omega} u(x) v(x) d x\right| \leq\|u\|_{\rho_{p(x)}}\|v\|_{\rho_{q(x)}}^{\prime}, \quad \forall u(x) \in L^{p(x)}(\Omega) \\
& v(x) \in L^{q(x)}(\Omega)
\end{aligned}
$$

and therefore we have

$$
\begin{array}{r}
\left|\int_{\Omega} u(x) v(x) d x\right| \leq 2\|u\|_{\rho_{p(x)}}\|v\|_{\rho_{q(x)}}, \quad \forall u(x) \in L^{p(x)}(\Omega) \\
v(x) \in L^{q(x)}(\Omega)
\end{array}
$$

where $\frac{1}{p(x)}+\frac{1}{q(x)}=1$.
DEFINITION 1.12. Let $u \in L^{p(x)}(\Omega)$, let $D \subset \Omega$ be a measurable subset, and let $\chi_{D}$ be the characteristic function of $E$. If

$$
\lim _{\text {meas } D \rightarrow 0}\left\|u(x) \chi_{D}(x)\right\|_{\rho}=0
$$

then we say that $u$ is absolutely continuous with respect to norm $\|\cdot\|_{\rho}$.
THEOREM 1.13. $u \in L^{p(x)}(\Omega)$ is absolutely continuous with respect to norm $\|\cdot\|_{\rho}$.

Proof. As

$$
L^{p(x)}(\Omega)=\{u \in E: \forall \lambda>0, \rho(\lambda u)<\infty\}
$$

for arbitrary $\varepsilon>0$, we have $\rho\left(\frac{u}{\varepsilon}\right)<\infty$. Let

$$
u_{n}(x)= \begin{cases}u(x), & \text { if }|u(x)| \leq n \\ 0, & \text { if }|u(x)|>n\end{cases}
$$

Then by Theorem 1.5, we can take $N$ such that

$$
\left\|u-u_{N}\right\|_{\rho} \leq \frac{\varepsilon}{2} .
$$

Because $u_{N}(x)$ is bounded, we can find $\delta>0$ such that when meas $D<\delta$, we have

$$
\left\|u_{N}(x) \chi_{D}(x)\right\|_{\rho}<\frac{\varepsilon}{2}
$$

and thus we get

$$
\left\|u(x) \chi_{D}(x)\right\|_{\rho} \leq\left\|\left(u-u_{N}(x)\right) \chi_{D}(x)\right\|_{\rho}+\left\|u_{N}(x) \chi_{D}(x)\right\|_{\rho}<\varepsilon .
$$

Let $\alpha \in E$ and $0<a \leq \alpha(x) \leq b<\infty$, where $a$ and $b$ are positive constants. Setting $\varphi_{\alpha}: \Omega \times \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$as

$$
\varphi_{\alpha}(x, s)=\alpha(x) \varphi(x, s)=\alpha(x) s^{p(x)},
$$

similar to the definition of $\rho$ and $E_{\rho}$, let

$$
\rho_{\alpha}(u)=\int_{\Omega} \varphi_{\alpha}(x,|u(x)|) d x,
$$

and

$$
E_{\rho_{\alpha}}=\left\{u \in E: \lim _{\lambda \rightarrow 0^{+}} \rho_{\alpha}(\lambda u)=0\right\} .
$$

By

$$
a \varphi(x, s) \leq \varphi_{\alpha}(x, s) \leq b \varphi(x, s),
$$

and

$$
a \rho(u) \leq \rho_{\alpha}(u) \leq b \rho(u),
$$

we have $E_{\rho_{\alpha}}=E_{\rho}=L^{p(x)}(\Omega)$. If we define the norm $\|\cdot\|_{\rho_{\alpha}}$ of $E_{\rho}$ as before,

$$
\begin{equation*}
\|u\|_{\rho_{\alpha}}=\inf \left\{\lambda>0: \rho_{\alpha}\left(\frac{u}{\lambda}\right) \leq 1\right\}, \tag{10}
\end{equation*}
$$

it is easy to see that $\|\cdot\|_{\rho_{\alpha}}$ and $\|\cdot\|_{\rho}$ are equivalent norms on $E_{\rho}$.
Let us begin to discuss the conjugate space of $L^{p(x)}(\Omega)$, i.e., the space $\left(L^{p(x)}(\Omega)\right)^{*}$ consisting of all continuous linear functionals over $L^{p(x)}(\Omega)$.

We suppose that $p(x)$ satisfies condition 7 and $p^{-}>1$. By the definition in [18, p. 33] $\varphi(x, s)=s^{p(x)}$ belongs to the class $\Phi$, and for $x \in \Omega, \varphi$ is
convex in $s$ and satisfies

$$
\begin{aligned}
& (0): \lim _{s \rightarrow 0^{+}} \frac{\varphi(x, s)}{s}=0 \\
& (\infty): \lim _{s \rightarrow \infty} \frac{\varphi(x, s)}{s}=\infty
\end{aligned}
$$

Let $\varphi_{p}(x, s)=\frac{1}{p(x)} s^{p(x)}$. Then $\varphi_{p}$ also belongs to the class $\Phi$. Writing

$$
\begin{aligned}
\rho_{p}(u) & =\int_{\Omega} \varphi_{p}(x,|u(x)|) d x \\
\|u\|_{\rho_{p}} & =\inf \left\{\lambda>0: \rho_{p}\left(\frac{u}{\lambda}\right) \leq 1\right\}
\end{aligned}
$$

$\|u\|_{\rho_{p}}$ is an equivalent norm on $L^{p(x)}(\Omega)$. Obviously, the Young's conjugative function of $\varphi_{p}$ is

$$
\varphi_{p}^{*}(x, s)=\frac{1}{q(x)} s^{q(x)}
$$

where $q(x)$ is the conjugative function of $p(x)$, i.e., $\frac{1}{p(x)}+\frac{1}{q(x)}=1$. It is obvious that $\left(\varphi_{p}^{*}\right)^{*}=\varphi_{p}$, and $q^{-}, q^{+}$are conjugative numbers of $p^{+}, p^{-}$ respectively. In particular, we have $q^{-}>1$ and $q^{+}<\infty$. Writing

$$
\begin{aligned}
\rho_{p}^{*}(v)= & \int_{\Omega} \frac{1}{q(x)}|v(x)|^{q(x)} d x=\int_{\Omega} \varphi_{p}^{*}(x,|v(x)|) d x \\
& E_{\rho_{p}}^{*}=\left\{v \in E: \lim _{\lambda \rightarrow 0^{+}} \rho_{p}^{*}(\lambda v)=0\right\}
\end{aligned}
$$

we have

$$
E_{\rho_{p}}^{*}=L^{q(x)}(\Omega)=L_{0}^{q(x)}(\Omega)=\left\{v \in E: \int_{\Omega}|v(x)|^{q(x)} d x<\infty\right\}
$$

By Corollary 13.14 and Theorem 13.17 in [18] we have
THEOREM 1.14. $\left(L^{p(x)}(\Omega)\right)^{*}=L^{q(x)}(\Omega)$, i.e.,
$\left.1^{\circ}\right)$ For every $v \in L^{q(x)}(\Omega)$, $f$ defined by

$$
\begin{equation*}
f(u)=\int_{\Omega} u(x) v(x) d x, \quad \forall u \in L^{p(x)}(\Omega) \tag{11}
\end{equation*}
$$

is a continuous linear functional over $L^{p(x)}(\Omega)$.
$2^{\circ}$ ) For every continuous linear functional $f$ on $L^{p(x)}(\Omega)$, there is a unique element $v \in L^{q(x)}(\Omega)$ such that $f$ is exactly defined by (11)

From Theorem 1.14 we can also deduce that when $p^{-}>1, p^{+}<\infty$, the space $L^{p(x)}(\Omega)$ is reflexive.

We know that for Banach space $(X,\|\cdot\|)$, the norm $\|\cdot\|^{\prime}$ on its conjugate space $X^{*}$ is usually defined by the formulation

$$
\begin{equation*}
\left\|x^{*}\right\|^{\prime}=\sup \left\{\left\langle x^{*}, x\right\rangle:\|x\| \leq 1\right\}, \tag{12}
\end{equation*}
$$

where $x^{*} \in X^{*},\left\langle x^{*}, x\right\rangle=x^{*}(x)$, and the inequality

$$
\begin{equation*}
\left|\left\langle x^{*}, x\right\rangle\right| \leq\left\|x^{*}\right\|^{\prime},\|x\|, \quad \forall x \in X, x^{*} \in X^{*} \tag{13}
\end{equation*}
$$

holds.
It is obvious that the norm $\|\cdot\|^{\prime}$ on $X^{*}$ depends on the norm $\|\cdot\|$ on $X$.
Now we take $X=L^{p(x)}(\Omega)$, then $X^{*}=L^{q(x)}(\Omega)$. For $v \in X^{*}$ and $u \in X$,

$$
\begin{equation*}
\langle u, v\rangle=\int_{\Omega} u(x) v(x) d x . \tag{14}
\end{equation*}
$$

If we use the norm $\|\cdot\|_{\rho_{p}}$ on $X$, then according to Theorem 13.11 in [18], we have

$$
\begin{equation*}
\|v\|_{\rho_{p}^{*}} \leq\|v\|_{\rho_{p}^{*}}^{\prime}, \quad \forall v \in X^{*} . \tag{15}
\end{equation*}
$$

An interesting question we are concerned with is the relation between the prime norm $\|\cdot\|_{L^{q(x)}(\Omega)}$ of $X^{*}$ and the norm $\|\cdot\|_{\rho}^{\prime}$ of $X^{*}$ when $X$ is equipped with norm $\|\cdot\|_{\rho}$. It is well known that when $p(x)$ is a constant $p \in(1, \infty)$, the two norms defined above are exactly the same. Here we give

Theorem 1.15. Under the above assumptions, for arbitrary $v \in L^{q(x)}(\Omega)$, we have

$$
\begin{equation*}
\|v\|_{L^{q(x)}(\Omega)} \leq\|v\|_{\rho}^{\prime} \leq\left(\frac{1}{p^{-}}+\frac{1}{q^{-}}\right)\|v\|_{L^{q(x)}(\Omega)} . \tag{16}
\end{equation*}
$$

Proof. For $v \in L^{q(x)}(\Omega), \quad u \in L^{p(x)}(\Omega)$, setting $\|v\|_{L^{q(x)}(\Omega)}=a$, $\|u\|_{L^{p(x)}(\Omega)}=b \leq 1$,

$$
\begin{aligned}
\int_{\Omega} \frac{u(x)}{b} \cdot \frac{v(x)}{a} d x & \leq \int_{\Omega} \frac{1}{p(x)}\left|\frac{u(x)}{b}\right|^{p(x)} d x+\int_{\Omega} \frac{1}{q(x)}\left|\frac{v(x)}{a}\right|^{q(x)} d x \\
& \leq \frac{1}{p^{-}} \int_{\Omega}\left|\frac{u(x)}{b}\right|^{p(x)} d x+\frac{1}{q^{-}} \int_{\Omega}\left|\frac{v(x)}{a}\right|^{q(x)} d x \\
& =\frac{1}{p^{-}}+\frac{1}{q^{-}}
\end{aligned}
$$

So we get

$$
\int_{\Omega} u(x) v(x) d x \leq\left(\frac{1}{p^{-}}+\frac{1}{q^{-}}\right) a b \leq\left(\frac{1}{p^{-}}+\frac{1}{q^{-}}\right) a
$$

and then

$$
\|v\|_{\rho}^{\prime} \leq\left(\frac{1}{p^{-}}+\frac{1}{q^{-}}\right)\|v\|_{L^{q(x)}(\Omega)}
$$

On the other hand, for $v \in L^{q(x)}(\Omega)$ with $\|v\|_{L^{q(x)}(\Omega)}=a$,

$$
u(x)=\left|\frac{v(x)}{a}\right|^{q(x)-1} \operatorname{sgn} v(x)
$$

Then

$$
|u(x)|^{p(x)}=\left|\frac{v(x)}{a}\right|^{q(x)}
$$

thus $u(x) \in L^{p(x)}(\Omega)$ and $\|u\|_{L^{p(x)}(\Omega)}=1$. So

$$
\int_{\Omega} u(x) v(x) d x=\int_{\Omega} a\left|\frac{v(x)}{a}\right|^{q(x)} d x=a=\|v\|_{L^{q(x)}(\Omega)}
$$

This equality means that $\|v\|_{\rho}^{\prime} \geq\|v\|_{L^{q(x)}(\Omega)}$. The proof is completed.
This theorem can be regarded as a generalization of conclusion (15).
The importance of Nemytsky operators from $L^{p_{1}}(\Omega)$ to $L^{p_{2}}(\Omega)$ is well known. Here we give the basic properties of Nemytsky operators from $L^{p_{1}(x)}(\Omega)$ to $L^{p_{2}(x)}(\Omega)$.

Let $p_{1}, p_{2} \in L_{+}^{\infty}(\Omega)$. We denote by $\rho_{1}, \rho_{2}$ the modular corresponding to $p_{1}$ and $p_{2}$, respectively. Let $g(x, u)(x \in \Omega, u \in \mathbf{R})$ be a Caracheodory function, and $G$ is the Nemytsky operator defined by $g$, i.e., $(G u)(x)=$ $g(x, u(x))$. We have

THEOREM 1.16. If $G$ maps $L^{p_{1}(x)}(\Omega)$ into $L^{p_{2}(x)}(\Omega)$, then $G$ is continuous and bounded, and there is a constant $b \geq 0$ and a non-negative function $a \in L^{p_{2}(x)}(\Omega)$ such that for $x \in \Omega$ and $u \in \mathbf{R}$, the following inequality holds:

$$
\begin{equation*}
g(x, u) \leq a(x)+b|u|^{p_{1}(x) / p_{2}(x)} \tag{17}
\end{equation*}
$$

On the other hand, if $g$ satisfies (17), then $G$ maps $L^{p_{1}(x)}(\Omega)$ into $L^{p_{2}(x)}(\Omega)$, and thus $G$ is continuous and bounded.

First we give
LEMMA 1.17. If the operator $G$ maps a ball $B_{r}(0) \subset L^{p_{1}(x)}(\Omega)$ into $L^{p_{2}(x)}(\Omega)$, then $G$ maps all of $L^{p_{1}(x)}(\Omega)$ into $L^{p_{2}(x)}(\Omega)$. Here, we denote by $B_{r}(0)$ the ball with radius $r$ and center at the origin 0.

Proof. We may assume that $g(x, 0)=0$. Otherwise we can consider $g(x, s)-g(x, 0)$ instead. Let $u \in L^{p_{1}(x)}(\Omega)$. By the absolute continuity of the norm $\|\cdot\|_{\rho}$, we can divide $\Omega$ into the union of disjoint subsets $\Omega_{i}(i \in I)$ such that

$$
\left\|u(x) \chi_{\Omega_{i}}(x)\right\|_{\rho}<r
$$

where $\chi_{\Omega_{i}}(x)$ is the characteristic function of $\Omega_{i}$. Therefore we have

$$
u(x)=\sum_{i \in I} u(x) \chi_{\Omega_{i}}(x)
$$

Writing $u_{i}(x)=u(x) \chi_{\Omega_{i}}(x)$, then $u_{i} \in B_{r}(0) \subset L^{p_{1}(x)}(\Omega)$ and

$$
G u=\sum_{i} G u_{i}
$$

By the assumption, $G u_{i} \in L^{p_{2}(x)}(\Omega)$, and thus we obtain $G u \in L^{p_{2}(x)}(\Omega)$. -

Proof of Theorem 1.16. We need only prove $G$ that is continuous at 0 when $g(x, 0)=0$. If this is not true, we can find a sequence $\left\{u_{n}(x)\right\} \subset$ $L^{p_{1}(x)}(\Omega)(n=1,2, \ldots)$ satisfies

$$
\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{\rho_{1}}=0
$$

but

$$
\left\|G u_{n}\right\|_{\rho_{2}}>\varepsilon_{0},
$$

where $\varepsilon_{0}$ is some positive constant. Without loss of generality we can suppose that $\left\|u_{n}\right\|_{\rho_{1}} \leq 1$; thus by Theorem 1.3 we have

$$
\begin{equation*}
\rho_{1}\left(u_{n}\right) \leq\left\|u_{n}\right\|_{\rho_{1}} . \tag{18}
\end{equation*}
$$

and therefore

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left|u_{n}\right|^{p_{1}(x)} d x=0
$$

For $v \in L^{1}(\Omega)$, we now define

$$
\begin{equation*}
(H v)(x)=h(x, v(x))=\left|G\left(\operatorname{sgn} v(x)|v(x)|^{1 / p_{1}(x)}\right)\right|^{p_{2}(x)} \tag{19}
\end{equation*}
$$

where $h: \Omega \times \mathbf{R} \rightarrow \mathbf{R}$, defined by $h(x, s)=\left|G\left(\operatorname{sgn} s|s|^{1 / p_{1}(x)}\right)\right|^{p_{2}(x)}$. Then $H$ maps $L^{1}(\Omega)$ into $L^{1}(\Omega)$, and thus $H$ is continuous at 0 ([19]). Writing

$$
\begin{equation*}
v_{n}(x)=\operatorname{sgn} u_{n}(x)\left|u_{n}(x)\right|^{p_{1}(x)}, \tag{20}
\end{equation*}
$$

then

$$
\lim _{n \rightarrow \infty}\left\|v_{n}\right\|_{L^{1}(\Omega)}=0,
$$

and thus

$$
\lim _{n \rightarrow \infty}\left\|H v_{n}\right\|_{L^{1}(\Omega)}=0
$$

We get

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{\Omega}\left|H v_{n}\right| d x & =\lim _{n \rightarrow \infty} \int_{\Omega}\left|G\left(\operatorname{sgn} u_{n}(x)\left|u_{n}(x)\right|\right)\right|^{p_{2}(x)} d x \\
& =\lim _{n \rightarrow \infty} \int_{\Omega}\left|G u_{n}\right|^{p_{2}(x)} d x \\
& =0
\end{aligned}
$$

By Theorem 1.4, in $L^{p(x)}(\Omega), u_{n}(n=1,2, \ldots)$ coverage to $u$ in modular iff $u_{n}$ coverage to $u$ in norm, we have

$$
\lim _{n \rightarrow \infty}\left\|G u_{n}\right\|_{\rho_{2}}=0
$$

This contradicts $\left\|G u_{n}\right\|_{\rho_{2}}>\varepsilon_{0}$, and we have proved the continuity of $G$.
Let $A$ be a bounded set in $L^{p_{1}(x)}(\Omega)$, i.e., for arbitrary $u(x) \in A,\|u\|_{\rho_{1}}$ is uniform bounded, so by Theorem 1.3, $A$ is bounded in modular. For $v(x) \in L^{1}(\Omega)$ let $H$ be defined as above; then $H: L^{1}(\Omega) \rightarrow L^{1}(\Omega)$ and thus $H$ is bounded. For $u(x) \in A$, sgn $u(x)|u(x)|^{p_{1}(x)} \in L^{1}(\Omega)$ and $\left\|\operatorname{sgn} u(x)|u(x)|^{p_{1}(x)}\right\|_{L^{1}(\Omega)}=\rho_{1}(u)$ is uniformly bounded. There is a constant $K>0$ such that

$$
\left\|H\left(\operatorname{sgn} u(x)|u(x)|^{p_{1}(x)}\right)\right\|_{L^{1}(\Omega)} \leq K,
$$

i.e., we have

$$
\begin{equation*}
\int_{\Omega}|G u|^{p_{2}(x)} d x \leq K . \tag{21}
\end{equation*}
$$

Inequality (21) shows that $G(A)$ is bounded in modular. Again from (21) we know that $G(A)$ is bounded in norm.
Now if (17) holds, we let $u(x) \in L^{p_{1}(x)}(\Omega)$. It is obvious that $a(x)+$ $b|u|^{p_{1}(x) / p_{2}(x)} \in L^{p_{2}(x)}(\Omega)$. Therefore

$$
\int_{\Omega}|G u(x)|^{p_{2}(x)} d x \leq\left.\left.\int_{\Omega}|a(x)+b| u(x)\right|^{p_{1}(x) / p_{2}(x)}\right|^{p_{2}(x)} d x<\infty,
$$

and thus $G$ maps $L^{p_{1}(x)}(\Omega)$ into $L^{p_{2}(x)}(\Omega)$.

On the other hand, if $G$ maps $L^{p_{1}(x)}(\Omega)$ into $L^{p_{2}(x)}(\Omega)$, for $v \in L^{1}(\Omega)$, as $H: L^{1}(\Omega) \rightarrow L^{1}(\Omega)$, we can assert that there is a constant $b_{1} \geq 0$ and function $a_{1} \geq 0, a_{1} \in L^{1}(\Omega)$ such that

$$
|(H v)(x)|\left|\leq a_{1}(x)+b_{1}\right| v(x) \mid,
$$

for $u \in L^{p_{1}(x)}(\Omega)$. Let $v(x)=\operatorname{sgn} u(x)|u(x)|^{p_{1}(x)}$; then $v \in L^{1}(\Omega)$ and thus

$$
|(H v)(x)|=|(G u)(x)|^{p_{2}(x)} \leq a_{1}(x)+b_{1}|u(x)|^{p_{1}(x)}
$$

as $p_{2}(x) \geq 1$. From (17) we can deduce that

$$
\begin{aligned}
|(G u)(x)| & \leq\left(a_{1}(x)+b_{1}|u|^{p_{1}(x)}\right)^{1 / p_{2}(x)} \\
& \leq a_{1}(x)^{1 / p_{2}(x)}+b_{1}^{1 / p_{2}(x)}|u|^{p_{1}(x) / p_{2}(x)} \\
& \leq a(x)+b|u|^{p_{1}(x) / p_{2}(x)}
\end{aligned}
$$

where $a(x)=a_{1}(x)^{1 / p_{2}(x)} \geq 0, a(x) \in L^{p_{2}(x)}(\Omega)$, and $b=b_{1}^{1 / p_{2}(x)}$. We conclude the proof.
As an application, we give an example.
Example. Let $\Omega$ be a measurable set in $R^{n}$ and $\operatorname{meas}(\Omega)<\infty$, $f: \Omega \times \mathbf{R} \rightarrow \mathbf{R}$ is a Caratheodory function satisfying the condition

$$
f(x, u) \leq a(x)+b|u|^{p(x)}
$$

where $p(x) \in L_{+}^{\infty}(\Omega), a(x) \in L^{1}(\Omega), a(x) \geq 0, b \geq 0$ is a constant. Then the functional

$$
J(u)=\int_{\Omega} f(x, u(x)) d x
$$

defined on $L^{p(x)}(\Omega)$ is continuous and $J$ is uniformly bounded on a bounded set in $L^{p(x)}(\Omega)$.

## 2. THE SPACE $W^{m, p(x)}(\Omega)$

In this section we will give some basic results on the generalized Lebesgue-Sobolev space $W^{m, p(x)}(\Omega)$, where $\Omega$ is a bounded domain of $\mathbf{R}^{n}$ and $m$ is a positive integer, $p \in L_{+}^{\infty}(\Omega) . W^{m, p(x)}(\Omega)$ is defined as

$$
W^{m, p(x)}(\Omega)=\left\{u \in L^{p(x)}(\Omega): D^{\alpha} u \in L^{p(x)}(\Omega),|\alpha| \leq m\right\} .
$$

$W^{m, p(x)}(\Omega)$ is a special class of so-called generalized Orlicz-Sobolev spaces. Some elementary conceptions and results of the general case can be found in Hudzik's papers [9-17]. From [11] we know that $W^{m, p(x)}(\Omega)$ can be equipped with the norm $\|u\|_{W^{m, p(x)}(\Omega)}$ as Banach spaces, where

$$
\|u\|_{W^{m, p(x)}(\Omega)}=\sum_{|\alpha| \leq m}\left\|D^{\alpha} u\right\|_{L^{p(x)}(\Omega)} .
$$

According to [17] and Theorem 1.10 in Section 1, we already have
Theorem 2.1. $W^{m, p(x)}(\Omega)$ is separable and reflexive.
An immediate consequence of Theorem 1.7 is
Theorem 2.2. Assume that $p_{1}(x), p_{2}(x) \in L_{+}^{\infty}(\Omega)$. If $p_{1}(x) \leq p_{2}(x)$, then $W^{m, p_{2}(x)}(\Omega)$ can be imbedded into $W^{m, p_{1}(x)}(\Omega)$ continuously.

Now let us generalize the well-known Sobolev imbedding theorem of $W^{m, p}(\Omega)$ to $W^{m, p(x)}(\Omega)$. We have

Theorem 2.3. Let $p, q \in C(\bar{\Omega})$ and $p, q \in L_{+}^{\infty}(\Omega)$. Assume that

$$
m p(x)<n, \quad q(x)<\frac{n p(x)}{n-m p(x)}, \quad \forall x \in \bar{\Omega} .
$$

Then there is a continuous and compact imbedding $W^{m, p(x)}(\Omega) \rightarrow L^{q(x)}(\Omega)$.
Proof. For positive constant $r$ with $m r<n$, denote

$$
r^{*}=\frac{n r}{n-m r} .
$$

Under the assumptions it is easy to see that for arbitrary $x \in \bar{\Omega}$, we can find a neighborhood $U_{x}$ in $\bar{\Omega}$ such that

$$
q^{+}\left(U_{x}\right)<\left(p^{-}\left(U_{x}\right)\right)^{*},
$$

where $p^{-}\left(U_{x}\right)=\inf \left\{p(y): y \in U_{x}\right\}, q^{-}\left(U_{x}\right)=\sup \left\{q(y): y \in U_{x}\right\}$. Now $\left\{U_{x}\right\}_{x \in \bar{\Omega}}$ is an open covering of compact set $\bar{\Omega}$. Choosing a finite sub-covering $\left\{U_{i}: i=1,2, \ldots, s\right\}$ and denoting

$$
p_{i}^{-}=p^{-}\left(U_{i}\right), \quad q_{i}^{+}=q^{+}\left(U_{i}\right),
$$

it is obvious that if $u \in W^{m, p(x)}(\Omega)$ then $u \in W^{m, p(x)}\left(U_{i}\right)$, and thus from Theorem 2.2, $u \in W^{m, p_{i}^{-}}\left(U_{i}\right)$. Therefore by the well-known Sobolev imbedding theorem [1] we have continuous and compact imbedding,

$$
W^{m, p_{i}^{-}}\left(U_{i}\right) \rightarrow L^{q_{i}^{+}}\left(U_{i}\right) .
$$

According to Theorem 1.7, there is a continuous imbedding

$$
L^{q_{i}^{+}}\left(U_{i}\right) \rightarrow L^{q(x)}\left(U_{i}\right),
$$

so for every $U_{i}, i=1,2, \ldots, s$, we have $u \in L^{q(x)}\left(U_{i}\right)$ and therefore $u \in$ $L^{q(x)}(\Omega)$. We can now assert that $W^{m, p(x)}(\Omega) \subset L^{q(x)}(\Omega)$, and the imbedding is continuous and compact.
Remark 2.4. We do not known whether we have the imbedding

$$
W^{m, p(x)}(\Omega) \rightarrow L^{p^{*}(x)}(\Omega),
$$

but if the assumption on $p(x)$ is not satisfied, we cannot have it.
Example. Let $\Omega=\left\{x=\left(x_{1}, x_{2}\right): 0<x_{1}<1,0<x_{2}<1\right\} \subset \mathbf{R}^{2}, p(x)$ $=1+x_{2}, u(x)=\left(2+x_{2}\right)^{1 /\left(1+x_{2}\right)}$; then we have $u(x) \in W^{1, p(x)}(\Omega)$ and $p^{*}(x)=2\left(1-x_{2}\right) /\left(1-x_{2}\right)$. It is easy to test that $u \notin L^{p^{*}(x)}(\Omega)$.

Let us turn to the problem of density.
Definition 2.5. We define $W_{0}^{m, p(x)}(\Omega)$ as the closure of $C_{0}^{\infty}(\Omega)$ in $W^{m, p(x)}(\Omega)$ and $W^{m, p(x)}=W^{m, p(x)} \cap W_{0}^{m, 1}(\Omega)$.

It is well known that when $p(x)$ is a constant $p$ on $\Omega$, we have $W_{0}^{m, p}(\Omega)=\stackrel{\circ}{W}^{m, p}(\Omega)$, and in this case $C^{\infty}(\Omega)$ is dense in $W^{m, p}(\Omega)$. For the general function $p(x)$, from the definition we have $W_{0}^{m, p(x)}(\Omega) \subset$ $\stackrel{\circ}{W}^{m, p(x)}(\Omega)$, and $\stackrel{W}{W}^{m, p(x)}(\Omega)$ is a closed linear subspace of $W^{m, p(x)}(\Omega)$. In general, $\dot{W}^{m, p(x)}(\Omega) \neq W_{0}^{m, p(x)}(\Omega)$. Zhikov showed the following. Let $\Omega=\left\{x=\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}:|x|<1\right\}, 1<\alpha_{1}<2<\alpha_{2}$. If we define

$$
p(x)= \begin{cases}\alpha_{1}, & \text { if } x_{1} x_{2}>0 \\ \alpha_{2}, & \text { if } x_{1} x_{2}<0\end{cases}
$$

then

$$
\dot{W}^{1, p(x)}(\Omega) \neq W_{0}^{1, p(x)}(\Omega) .
$$

This example also shows that $C^{\infty}(\Omega)$ is not dense in $W^{1, p(x)}(\Omega)$.
The identity

$$
W_{0}^{m, p(x)}(\Omega)=\stackrel{\circ}{W}^{m, p(x)}(\Omega)
$$

means that $C_{0}^{\infty}(\Omega)$ is dense in $\left({ }^{\circ} m, p(x)(\Omega),\|\cdot\|_{W^{m, p(x)}(\Omega)}\right)$. As Musielak pointed out in [18], for Orlicz-Sobolev spaces, the problem of density is very complicated. But by the method of Fan [3, 4], we can get

Theorem 2.6. If $\Omega$ is a bounded open set in $\mathbf{R}^{n}$ with a Lipschitz boundary $p \in L_{+}^{\infty}(\Omega)$ and $p(x)$ satisfies condition $(F-Z)$ on $\bar{\Omega}$, i.e., there is
a constant $L>0$ such that

$$
\begin{equation*}
-|p(x)-p(y)| \log |x-y| \leq L, \quad \forall x, y \in \bar{\Omega} \tag{22}
\end{equation*}
$$

then

1) $C^{\infty}(\Omega)$ is dense in $W^{m, p(x)}(\Omega)$.
2) $\stackrel{\circ}{W}^{m, p(x)}(\Omega)=W_{0}^{m, p(x)}(\Omega)$.

Proof. Essentially the proof can be found in [3]; Zhikov improved the proof later. For completion we write it out here.

1) For simplicity we assume that the domain $\Omega$ is star-shaped (with respect to the origin). For the more general case, one can write the proof similarly according to [3]. Let $u \in W^{m, p(x)}(\Omega)$. We denote by $u_{\varepsilon} \in C^{\infty}(\bar{\Omega})$ the typical mollifier of $u$; i.e., $u_{\varepsilon}$ is defined as

$$
\begin{equation*}
u_{\varepsilon}=\varepsilon^{-n} \int_{\Omega} \rho\left(\frac{x-y}{\varepsilon}\right) u(y) d y \tag{23}
\end{equation*}
$$

It suffices to prove

$$
u_{\varepsilon} \rightarrow u \text { in } W^{1, p(x)}(\Omega), \quad \text { as } \varepsilon \rightarrow 0
$$

Denote $\sigma(\varepsilon)=1 / \log \frac{1}{\varepsilon}$. From (22) it follows that for $x \in \bar{\Omega}$,

$$
\left|u_{\varepsilon}(x)\right|^{p(x)-L \sigma(\varepsilon)} \leq \int_{|y-x| \leq \varepsilon}|u(y)|^{p(x)-L \sigma(\varepsilon)} \varepsilon^{-n} \rho\left(\frac{y-x}{\varepsilon}\right) d y
$$

Noticing that $p(x)-L \sigma(\varepsilon) \leq p(y)$, for every $s \in(0,1)$ we have

$$
\begin{align*}
\left|u_{\varepsilon}(x)\right|^{p(x)-L \sigma(\varepsilon)} \leq & \int_{|u(y)|<s}|u(y)|^{p(x)-L \sigma(\varepsilon)} \varepsilon^{-n} \rho\left(\frac{y-x}{\varepsilon}\right) d y \\
& +\int_{|u(y)| \geq \varepsilon}|u(y)|^{p(x)-L \sigma(\varepsilon)} \varepsilon^{-n} \rho\left(\frac{y-x}{\varepsilon}\right) d y \\
\leq & s+s^{-2 L \sigma(\varepsilon)} \int_{|y-x| \leq \varepsilon}|u(y)|^{p(y)} \varepsilon^{-n} \rho\left(\frac{y-x}{\varepsilon}\right) d y \tag{24}
\end{align*}
$$

From (24) it follows that

$$
\begin{aligned}
& \int_{\Omega}\left|u_{\varepsilon}(x)\right|^{p(x)-L \sigma(\varepsilon)} d x \\
& \quad \leq s|\Omega|+s^{-2 L \sigma(\varepsilon)} \int_{\Omega}\left(\int_{|y-x| \leq \varepsilon}|u(y)|^{p(y)} \varepsilon^{-n} \rho\left(\frac{y-x}{\varepsilon}\right) d y\right) d x \\
& \quad \leq s|\Omega|+s^{-2 L \sigma(\varepsilon)} \int_{\Omega}\left(\int_{\mathbf{R}^{n}}\left(\varepsilon^{-n} \rho\left(\frac{y-x}{\varepsilon}\right) d x\right)|u(y)| d y\right. \\
& \quad=s|\Omega|+s^{-2 L \sigma(\varepsilon)} \int_{\Omega} u(y)^{p(y)} d y
\end{aligned}
$$

Let $\varepsilon>0$ be given. Choosing $s \in(0,1)$ such that $s|\Omega|<\varepsilon$, then

$$
\int_{\Omega}\left|u_{\varepsilon}(x)\right|^{p(x)-L \sigma(\varepsilon)} d x \leq \varepsilon+s^{-2 L \sigma(\varepsilon)} \int_{\Omega}|u(x)|^{p(x)} d x .
$$

and hence

$$
\begin{equation*}
\varlimsup_{\varepsilon \rightarrow 0} \int_{\Omega}\left|u_{\varepsilon}(x)\right|^{p(x)-L \sigma(\varepsilon)} d x \leq \varepsilon+\int_{\Omega}|u(x)|^{p(x)} d x \tag{25}
\end{equation*}
$$

By the arbitrariness of $\varepsilon>0$ we obtain

$$
\begin{equation*}
\varlimsup_{\varepsilon \rightarrow 0} \int_{\Omega}\left|u_{\varepsilon}(x)\right|^{p(x)-L \sigma(\varepsilon)} d x \leq \int_{\Omega}|u(x)|^{p(x)} d x \tag{26}
\end{equation*}
$$

By (23), (26), and Fatou's lemma we have

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left|u_{\varepsilon}(x)\right|^{p(x)-L \sigma(\varepsilon)} d x=\int_{\Omega}|u(x)|^{p(x)} d x . \tag{27}
\end{equation*}
$$

By (23) and the Hölder inequality we can deduce that for $x \in \bar{\Omega}$,

$$
\begin{align*}
\left|u_{\varepsilon}(x)\right| & \leq \int_{|y-x|<\varepsilon}|u(y)| \varepsilon^{-n} \rho\left(\frac{y-x}{\varepsilon}\right) d y \\
& \leq\left(\int_{\Omega}|u(y)|^{p^{-}} d y\right)^{1 / p^{-}}\left(\int_{\mathbf{R}^{n}}\left|\varepsilon^{-n} \rho\left(\frac{y-x}{\varepsilon}\right)\right|^{p^{-\prime}} d y\right)^{1 / p^{-\prime}} \\
& \leq c_{1}\left(\int_{\mathbf{R}^{n}}\left|\varepsilon^{-n} \rho(z)\right|^{p^{-\prime}} \varepsilon^{n} d z\right)^{1 / p^{-^{-}}} \\
& =c_{1} \varepsilon^{-n\left(1-1 / p^{--}\right)}\left(\int_{\mathbf{R}^{n}}|\rho(z)|^{p^{-\prime}} d z\right)^{1 / p^{--}} \\
& =c_{1} c_{2} \varepsilon^{-n / p^{-}} \tag{28}
\end{align*}
$$

where $1 / p^{-}+1 / p^{-}=1, \quad c_{1}=\left(\int_{\Omega}|u(y)|^{p^{-}} d y\right)^{1 / p^{-}}, \quad$ and $c_{2}=$ $\left(\int_{\mathbf{R}^{n}}|\rho(z)|^{p^{\prime}} d z\right)^{1 / p^{p^{\prime}}}$.

From (28) it follows that for $x \in \Omega$,

$$
\left|u_{\varepsilon}(x)\right|^{L \sigma(\varepsilon)} \leq\left(c_{1} c_{2}\right)^{L \sigma(\varepsilon)} \varepsilon^{-\sigma(\varepsilon) L n\left(1 / p^{-}\right)}=\tau(\varepsilon) .
$$

It is easy to see that $\tau(\varepsilon) \rightarrow\left(\frac{1}{e}\right)^{n L / p^{-}} \leq 1$ as $\varepsilon \rightarrow 0$, and therefore

$$
\begin{align*}
\int_{\Omega}\left|u_{\varepsilon}(x)\right|^{p(x)} d x & =\int_{\Omega}\left|u_{\varepsilon}(x)\right|^{p(x)-L \sigma(\varepsilon)}\left|u_{\varepsilon}(x)\right|^{L \sigma(\varepsilon)} d x \\
& =\tau(\varepsilon) \int_{\Omega}\left|u_{\varepsilon}(x)\right|^{p(x)-L \sigma(\varepsilon)} d x \tag{29}
\end{align*}
$$

From (29) and (27) it follows that

$$
\begin{equation*}
\varlimsup_{\varepsilon \rightarrow 0} \int_{\Omega}\left|u_{\varepsilon}(x)\right|^{p(x)} d x \leq \int_{\Omega}|u(x)|^{p(x)} d x \tag{30}
\end{equation*}
$$

By (30), (23), and Fatou's lemma we obtain

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left|u_{\varepsilon}(x)\right|^{p(x)} d x=\int_{\Omega}|u(x)|^{p(x)} d x \tag{31}
\end{equation*}
$$

From (31) and (23) we get

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left|u_{\varepsilon}(x)-u(x)\right|^{p(x)} d x=0 \tag{32}
\end{equation*}
$$

From (23) it is easy to see that

$$
\begin{equation*}
D_{i} u_{\varepsilon}=\left(D_{i} u\right)_{\varepsilon}, \tag{33}
\end{equation*}
$$

where $D_{i}=\partial / \partial x_{i}, i=1,2, \ldots, n$.
Using arguments similar to those above, we can prove that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left|D_{i} u_{\varepsilon}(x)-D_{i} u(x)\right|^{p(x)} d x=0, \quad i=1,2, \ldots, n \tag{34}
\end{equation*}
$$

Thus we have proved that $C^{\infty}(\Omega)$ is dense in $W^{1, p(x)}(\Omega)$. Using induction for $m$, we can complete the proof.

The proof of 2 ) is similar to 1 ), and we omit it.
Theorem 2.7. Let $p(x) \in C(\bar{\Omega})$. Then we can take

$$
\|u\|_{m, p(x)}^{\prime}=\sum_{\alpha=m}\left\|\partial^{\alpha} u\right\|_{L^{p(x)}(\Omega)}
$$

as an equivalence norm in the space $\left(\dot{V}^{m, p(x)}(\Omega),\|\cdot\|_{W^{m}, p(x)}\right)$; i.e., there is a positive constant $C$ such that

$$
\left\|\partial^{\alpha} u\right\|_{L^{p(x)}(\Omega)} \leq C\|u\|_{m, p(x)}^{\prime}, \quad \forall 0 \leq|\alpha| \leq m, u \in \dot{W}^{m, p(x)}(\Omega) .
$$

Proof. For simplicity we only give the proof for $m=1$. It is easy to see that $\|D u\|_{L^{p(x)}(\Omega)}$ is equivalent to $\sum_{i=1}^{n}\left\|\left(\partial^{u} / \partial x_{i}\right)\right\|_{L^{p(x)}(\Omega)}$.

As $p^{+}<\infty$, we can find $p_{i}(x) \in C(\bar{\Omega})(i=1,2, \ldots, s)$ such that

$$
\begin{equation*}
p(x)=: p_{0}(x) \geq p_{1}(x) \geq p_{2}(x) \geq \cdots \geq p_{s}(x)=: 1 \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{i}(x)<p_{i-1}^{*}(x), \quad i=0,1, \ldots, s-1, \tag{36}
\end{equation*}
$$

where $p^{*}(x)=\frac{n p(x)}{n-p(x)}$. By Theorem 3.3 there are continuous imbeddings,

$$
W^{1, p_{i+1}(x)}(\Omega) \rightarrow L^{p_{i}(x)}(\Omega), \quad i=0,1, \ldots, s-1,
$$

so we can get, subsequently,

$$
\begin{aligned}
&\|u\|_{L^{p(x)}(\Omega)} \leq C_{0}\left(\|D u\|_{L^{p_{1}(x)}(\Omega)}+\|u\|_{L^{p_{1}(x)}(\Omega)}\right) \\
& \leq C_{0}^{\prime}\|D u\|_{L^{p^{(x)}(\Omega)}}+C_{0}\|u\|_{L^{p_{1}(x)}(\Omega)} \\
&\left.\|u\|_{L^{p_{1}(x)}(\Omega)} \leq C_{1}\|D u\|_{L^{p^{2}(x)}(\Omega)}+\|u\|_{L^{p_{2}(x)}(\Omega)}\right) \\
& \leq C_{1}^{\prime}\|D u\|_{L^{p(x)}(\Omega)}+C_{1}\|u\|_{L^{p_{2}(x)}(\Omega)} \\
&\|u\|_{L^{p_{s}-1}(x)}(\Omega) \quad \cdots C_{s-1}\left(\|D u\|_{L^{p_{s}(x)}(\Omega)}+\|u\|_{L^{p_{s}(x)}(\Omega)}\right) \\
& \leq C_{s-1}^{\prime}\|D u\|_{L^{p(x)}(\Omega)}+C_{s-1}\|u\|_{L^{p_{s}(x)}(\Omega)} \\
&\|u\|_{L^{p_{s}(x)}(\Omega)}=\|u\|_{L^{1}(\Omega)} \leq C_{s}\|D u\|_{L^{1}(\Omega)} \leq C_{s}^{\prime}\|D u\|_{L^{p(x)}(\Omega)} .
\end{aligned}
$$

The last equality above is represented by the fact $u \in W_{0}^{1,1}(\Omega)$. Combining these inequalities, we complete the proof.
Remark 2.8. In Theorem 2.6, replace $\dot{W}^{m, p(x)}(\Omega)$ by $W_{0}^{m, p(x)}(\Omega)$. The conclusion is obviously true.
Remark 2.9. Condition ( $\mathrm{F}-\mathrm{Z}$ ) is given by Fan and Zhikov [20]. It is easy to see that if $p(x) \in C^{0, \alpha}(\Omega)$ then $p(x)$ satisfies condition ( $\mathrm{F}-\mathrm{Z}$ ).

We now point out a difference between $W_{0}^{m, p(x)}(\Omega)$ and $W_{0}^{m, p}(\Omega)$. This difference shows that in $W_{0}^{m, p(x)}(\Omega)$, the variational problems become very complicated. Let

$$
\begin{equation*}
\lambda=\inf _{0 \neq u \in W_{0}^{1, p(x)}(\Omega)} \frac{\int_{\Omega}|D u|^{p(x)} d x}{\int_{\Omega}|u|^{p(x)} d x} . \tag{37}
\end{equation*}
$$

It is well known that when $p(x)$ is a constant $p, \lambda$ (defined above) is the first eigenvalue of p -Laplace operator $-\Delta_{p}=-\operatorname{div}\left(|D u|^{p-2} D u\right)$. It must be a positive number. But for general $p(x)$, this is not true; $\lambda$ may take 0 .

Example. Let $\Omega=(-2,2) \subset \mathbf{R}^{1}$. Define

$$
p(x)= \begin{cases}3 & \text { if } 0 \leq|x| \leq 1 ; \\ 4-|x| & \text { if } 1 \leq|x| \leq 2 .\end{cases}
$$

Then we have

$$
\lambda=\inf _{0 \neq u \in W_{0}^{1, p(x)}(\Omega)} \frac{\int_{\Omega}|D u|^{p(x)} d x}{\int_{\Omega}|u|^{p(x)} d x}=0 .
$$

Proof. Let

$$
u(x)= \begin{cases}1 & \text { if } 0 \leq|x| \leq 1 \\ 2-|x| & \text { if } 1 \leq|x| \leq 2\end{cases}
$$

Then $u(x) \in W_{0}^{1, p(x)}(\Omega)$. Let us prove that for $a>0$, there holds

$$
\begin{equation*}
\lim _{a \rightarrow \infty} \frac{\int_{\Omega}\left|a u^{\prime}(x)\right|^{p(x)} d x}{\int_{\Omega}|a u|^{p(x)} d x}=0 . \tag{38}
\end{equation*}
$$

In fact, we have

$$
\begin{aligned}
\int_{\Omega}\left|a u^{\prime}(x)\right|^{p(x)} d x & =2\left(\int_{0}^{1} 0 d x+\int_{1}^{2}(a \cdot 1)^{4-x} d x\right) \\
& =2 \int_{1}^{2} a^{4-x} d x=\frac{2 a^{2}}{\log a}(a-1)
\end{aligned}
$$

and

$$
\int_{\Omega}|a u|^{p(x)} d x \geq 2 \int_{0}^{1} a^{3} d x=2 a^{3} .
$$

The conclusion is dropped.
At last we present an elementary result of the difference quotients in $W^{1, p(x)}(\Omega)$.

Theorem 2.10. Let $\Omega^{\prime} \subset \subset \Omega, h<\operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right)$, if $u \in W^{1, p(x)}(\Omega)$, where $p(x) \in L_{+}^{\infty}(\Omega)$ satisfies condition $(F-Z)$. Then $\Delta_{h}^{i} u(x) \in L^{p(x)}\left(\Omega^{\prime}\right)$ and we have

1) $\int_{\Omega^{\prime}}\left|\Delta_{h}^{i} u(x)\right|^{p(x)} d x \leq \int_{\Omega}\left|D_{i} u(x)\right|^{p(x)} d x ;$
2) $\Delta_{h}^{i} u(x)$ converges strongly to $D_{i} u(x)$ in $L^{p(x)}\left(\Omega^{\prime}\right)$, where

$$
\Delta_{h}^{i} u(x)=\frac{1}{h}\left(u\left(x+h e_{i}\right)-u(x)\right)
$$

is the ith quotient of $u(x)$ ( $e_{i}$ denotes the unit vector of the $x_{i}$ axis), $D_{i} u(x)=\left(\partial / \partial x_{i}\right) u(x)$.

The proof of Theorem 2.10 is easy and we omit it.

## REFERENCES

1. R. A. Adam, "Sobolev Spaces," (Qixiao Ye et al., trans.), People's Education Publishing House, Beijing, 1983 [in Chinese].
2. X. L. Fan, Regularity of integrands $f(x, \xi)=|\xi|^{\mathrm{ga}(x)}$ with piecewise constant exponents $\alpha(x)$. J. Gansu Sci. 1 (1996), 1-3.
3. X. L. Fan, The regularity of Lagrangians $f(x, \xi)=|\xi|^{\alpha(x)}$ with Hölder exponents $\alpha(x)$, Acta Math. Sinica (N.S.) 12, No. 3 (1996), 254-261.
4. X. L. Fan, Regularity of nonstandard Lagrangians $f(x, \xi)$, Nonlinear Anal. 27 (1996), 669-678.
5. X. L. Fan, Regularity of Lagrangians with $\alpha(x)$-growth conditions, J. Lanzhou Univ. 33, No. 1 (1997), 1-7.
6. X. L. Fan and D. Zhao, Regularity of minimizers of variational integrals with continuous $p(x)$-growth conditions, Ann. Math. Sinica 17A, No. 5 (1996), 557-564.
7. X. L. Fan and D. Zhao, A class of De Giorgi type and Hölder continuity, Nonlinear Anal. 36 (1999), 295-318.
8. X. L. Fan and D. Zhao, The quasi-minimizer of integral functionals with $m(x)$ growth conditions, Nonlinear Anal. 39 (2000), 807-816.
9. H. Hudzik, A generalization of Sobolev space (I), Funct. Approx. 2 (1976), 67-73.
10. H. Hudzik, A generalization of Sobolev space (II), Funct. Approx. 3 (1976), 77-85.
11. H. Hudzik, On generalized Orlicz-Sobolev space, Funct. Approx. 4 (1977), 37-51.
12. H. Hudzik, On density of $C^{\infty}(\Omega)$ in Orlicz-Sobolev space $W_{M}^{k}(\Omega)$ for every open set $\Omega \subset \mathbf{R}^{n}$, Funct. Approx. 5 (1977), 113-128.
13. H. Hudzik, On problem of density of $C_{0}^{\infty}(\Omega)$ in generalized Orlicz-Sobolev space $W_{M}^{k}(\Omega)$ for every open set $\Omega \subset \mathbf{R}^{n}$, Comment. Math. 20 (1977), 65-78.
14. H. Hudzik, On continuity of the imbedding operation from $W_{M_{1}}^{k}(\Omega)$ into $W_{M_{2}}^{k}(\Omega)$, Funct. Approx. 6 (1978), 111-118.
15. H. Hudzik, On imbedding theorems of Orlicz-Sobolev space $W_{M}^{k}(\Omega)$ into $C^{m}(\Omega)$ for open, bounded, and starlike $\Omega \subset \mathbf{R}^{n}$, Comment. Math. 20 (1978), 341-363.
16. H. Hudzik, Density of $C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ in generalized Orlicz-Sobolev space $W_{M}^{k}\left(\mathbf{R}^{n}\right)$, Funct. Approx. 7 (1979), 15-21.
17. H. Hudzik, The problems of separability, duality, reflexivity and of comparison for generalized Orlicz-Sobolev space $W_{M}^{k}(\Omega)$, Comment. Math. 21 (1979), 315-324.
18. J. Musielak, "Orlicz Spaces and Modular Spaces," Lecture Notes in Mathematics, Vol. 1034, Springer-Verlag, Berlin, 1983.
19. M. M. Vainberg, "Variational Methods for the Study of Nonlinear Operators," HoldenDay, San Francisco/London/Amsterdam, 1964.
20. V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv. 29 (1987), 33-36.

[^0]:    ${ }^{1}$ This research was supported by the National Science Foundation of China (19971036) and the Natural Science Foundation of Gansu Province (ZS991-A25-005-Z).
    ${ }^{2}$ E-mail: fanxl@lzu.edu.cn.

