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Abstract

A Dirichlet boundary value problem for a delay parabolic differential equation is studied on a rectangular domain in the x − t

plane. The second-order space derivative is multiplied by a small singular perturbation parameter, which gives rise to parabolic
boundary layers on the two lateral sides of the rectangle. A numerical method comprising a standard finite difference operator
(centred in space, implicit in time) on a rectangular piecewise uniform fitted mesh of Nx ×Nt elements condensing in the boundary
layers is proved to be robust with respect to the small parameter, or parameter-uniform, in the sense that its numerical solutions
converge in the maximum norm to the exact solution uniformly well for all values of the parameter in the half-open interval (0, 1].
More specifically, it is shown that the errors are bounded in the maximum norm by C(N−2

x ln2 Nx + N−1
t ), where C is a constant

independent not only of Nx and Nt but also of the small parameter. Numerical results are presented, which validate numerically
this theoretical result and show that a numerical method consisting of the standard finite difference operator on a uniform mesh of
Nx × Nt elements is not parameter-robust.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Singularly perturbed delay partial differential equations (DPDEs) provide more realistic models for phenomena
in many areas of science (such as population dynamics) that display time-lag or after-effect than do conventional
instantaneous singularly perturbed partial differential equations (PDEs).

Singularly perturbed PDEs relate an unknown function to its derivatives evaluated at the same instance. In contrast,
singularly perturbed DPDEs model physical problems for which the evolution does not only depend on the present state
of the system but also on the past history. Singularly perturbed PDEs have been studied extensively by many authors
(see [1–8,10,14,15,17] and the references therein) and developed thoroughly over the last two decades. However, the
theory and numerical solution of singularly perturbed DPDEs are still at the initial stage.
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The solutions of these singularly perturbed DPDEs and their dynamics are fundamentally different from those of
singularly perturbed PDEs without time delay:

• The solution of singularly perturbed DPDEs is determined by an initial function �b(x, t) if t − � < 0 rather than by
a simple initial value �b(x, 0) as happens in the case of singularly perturbed PDEs.

• The solutions of the equation may behave quite differently from the solution of the “approximating” singularly
perturbed PDE obtained by replacing u�(x, t − �) with the first terms of the Taylor series. Small lags can have large
effects.

• Even if the function �b(x, t) in (1; see below) is sufficiently differentiable, in general the solution u�(x, t) may have
various derivative discontinuities along the integration interval in the time direction. This results from the fact that
the initial function does not satisfy the DPDE. With every time step �, however these discontinuities are smoothed
out more and more.

DPDEs arise from many biological, chemical, and physical systems which are characterised by both spatial and
temporal variables and exhibit various spatio-temporal patterns. Examples occur in population ecology (to describe the
interaction of spatial diffusion and time delays), generic repression (taking into account time delays from processes of
transcription and translation as well as spatial diffusion of reactants in the models), and modelling size-dependent cell
growth and division. A characteristic example from numerical control is the equation

�u�

�t
= �

�2u�

�x2 + �(g(u�(x, t − �)))
�u�

�x
+ c[f (u�(x, t − �)) − u�(x, t)],

which models a furnace used to process metal sheets. Here, u� is the temperature distribution in a metal sheet, moving
at a velocity � and heated by a source specified by the function f; both � and f are dynamically adapted by a controlling
device monitoring the current temperature distribution. The finite speed of the controller, however, introduces a fixed
delay of length �. An example from population dynamics is the so-called Britton-model,

�u�

�t
= ��u� + u�(1 − g ∗ u�)

with

g ∗ u� =
∫ t

t−�

∫
�

g(x − y, t − s)u�(y, s) dy ds.

Here, u�(x, t) denotes a population density, which evolves through random migration (modelled by the diffusion term)
and reproduction (modelled by the nonlinear reaction term). The latter involves a convolution operator with a kernel
g(x, t), which models the distributed age-structure dependence of the evolution and its dependence on the population
levels in the neighbourhood.

Boundary layers occur in the solution of singularly perturbed problems when the singular perturbation parameter,
which multiplies terms involving the highest derivatives in the differential equation, tend to zero. These boundary layers
are located in neighbourhoods of the boundary of the domain, where the solution has a very steep gradient. Away from
any corner of the domain a boundary layer of either regular or parabolic type may occur. A boundary layer is said to
be parabolic if the characteristics of the reduced equation (for � = 0) are parallel to the boundary, and regular if these
characteristics are not parallel to the boundary. In the vicinity of a corner, a boundary layer is said to be of corner type.

A description of the contents of the paper follows. The problem is formulated in Section 2. The corresponding reduced
problem is defined and the parabolic boundary layers are described. The maximum principle for the differential operator
is stated and it is shown that this leads immediately to its �-uniform stability. Sufficient compatibility conditions on
the initial and boundary data to guarantee the existence, uniqueness and appropriate regularity of the solutions to the
problem are then presented. In Section 3, both classical and new sharper �-uniform bounds in the maximum norm for
the derivatives of the solution are discussed. The latter are obtained by means of a new decomposition of the solution,
which leads to a deceptively simple proof of the required results. The fitted mesh finite difference method is constructed
in Section 4 and is proved to be an �-uniform method in Section 5. In Section 6 numerical results are presented, which
validate the theoretical results. It is also shown that a classical numerical method on a uniform mesh is not �-uniform
for the problem under consideration. The paper ends with Section 7 that summarise the main conclusions.
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2. The one-dimensional time dependent problem with a delay term

Let � = (0, 1), D = (0, 1) × (0, T ], and � = �l ∪ �b ∪ �r, where �l and �r are the left and right sides of the
rectangular D corresponding to x = 0 and 1, respectively, and �b = [0, 1] × [−�, 0]. The problem considered is the
following singularly perturbed delay parabolic equation with Dirichlet boundary conditions on �:

L�u�(x, t)m ≡
(

�u�
�t

− � �2u�

�x2 + au�

)
(x, t) = −b(x, t)u�(x, t − �) + f (x, t), (x, t) ∈ D,

u�(x, t) = �l(t), (x, t) ∈ �l, u�(x, t) = �r(t), (x, t) ∈ �r,
(1)

u�(x, t) = �b(x, t), (x, t) ∈ �b,

where 0 < ��1 and � > 0 (note that T = k� for some integer k > 1) are given constants, a(x, t), b(x, t), f (x, t),
(x, t) ∈ D̄, and �l(t), �b(x, t) and �r(t), (x, t) ∈ �, are sufficiently smooth and bounded functions that satisfy

a(x, t)�0, b(x, t)���0, (x, t) ∈ D̄.

The reduced problem corresponding to (1) is

�u0(x, t)

�t
+ a(x, t)u0(x, t) = −b(x, t)u0(x, t − �) + f (x, t), (x, t) ∈ D,

u0(x, t) = �b(x, t), (x, t) ∈ �b. (2)

Then it is clear that the solution of (1) has boundary layers on �l and �r. The characteristics of (2) are the vertical lines
x = constant, which implies that any boundary layers arising in the solution are of parabolic type.

For a nonlinear example, one may consider Hutchinson’s equation

�u�(x, t)

�t
= �

�2u�(x, t)

�x2 + 	u�(x, t)[1 − u�(x, t − �)], (3)

which arises in population dynamics as a rough model for the evolution of a population in mathematical ecology with
density u�(x, t). In many practical applications, the parameter � is usually small. Murray [13] describes the derivation
of the diffusion equation for an assemblage of particles, for example, cells, bacteria, chemicals, animals and so on. The
diffusion process is based on a density and random walk of the particles. The diffusion coefficient or diffusivity � of
the particles is a measure of how efficiently the particles disperse from a high to a low density. For example, in blood,
hemoglobin molecules have a diffusion coefficient of the order of 10−7 cm2/ sec, while that for oxygen in blood is
of the order of 10−5 cm2/ sec, see [13]. Other typical biological values for � of the order of 10−9–10−11 cm2/ sec are
studied in [12]. The parameter 	 represents the growth rate of the population. A set of examples illustrating the wide
range of existing DPDE models can be found in [18].

The differential operator L� in (1) satisfies the following minimum principle.
Minimum principle. Assume that a ∈ C0(D̄) and let 
 ∈ C2(D)∩C0(D̄). Suppose that 
�0 on �. Then L�
�0

in D implies that 
�0 in D̄.
The stability of L� and an �-uniform bound for the solution of (1) in the maximum norm are established by the

following theorem.

Theorem 1. Let � be any function in the domain of definition of the differential operator L� in (1). Then

‖�‖�(1 + �T ) max{‖L��‖, ‖�‖�},
and any solution u� of (1) has the �-uniform upper bound

‖u�‖�(1 + �T ) max{‖f ‖, ‖�‖�},
where the constant � = maxD̄{0, 1 − a}�1.
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Here � on � means the notation

� =
{�l on �l,

�r on �r,

�b on �b.

For equations of the type (1), where the delay values t − � are bounded away from t by a positive constant, we will
verify the existence of the solution by methods of steps.

Suppose that the solution is known, say

u�(x, t) = �b(x, t), (x, t) ∈ �b.

Then u�(x, t − �) is a known function of (x, t) ∈ [0, 1] × [0, �] and (1) becomes a classical PDE, which can be treated
by known existence theories (see [9]). Then we know u�(x, t), (x, t) ∈ [0, 1] × [0, �] and can compute the solution
for (x, t) ∈ [0, 1] × [�, 2�] and so on. Then this method of steps yields the existence and uniqueness results for all
(x, t) ∈ D̄. The existence and uniqueness of a solution of (1) can be established under the assumption that the data are
Hölder continuous and also satisfy appropriate compatibility conditions at the corner points (0, 0), (1, 0), (0, −�) and
(1, −�). Then the required compatibility conditions are

�b(0, 0) = �l(0), �b(1, 0) = �r(0), (4)

and

d�l(0)

dt
− �

�2�b(0, 0)

�x2 + a(0, 0)�b(0, 0) = −b(0, 0)�b(0, −�) + f (0, 0),

d�r(0)

dt
− �

�2�b(1, 0)

�x2 + a(1, 0)�b(1, 0) = −b(1, 0)�b(1, −�) + f (1, 0). (5)

Note that �l(t), �b(x, t) and �r(t) are assumed to be smooth for (5) to make sense, namely, �l ∈ C1([0, T ]), �b ∈
C(2,1)(�b), �r ∈ C1([0, T ]).

The following classical theorem gives sufficient conditions for the existence of a unique solution (see [9]).

Theorem 2. Let a, b, f ∈ C�(D̄), �l ∈ C1+�/2([0, T ]), �b ∈ C(2+�,1+�/2)(�b), �r ∈ C1+�/2([0, T ]), and assume
that the compatibility conditions (4) and (5) are fulfilled. Then (1) has a unique solution u� and u� ∈ C(2+�,1+�/2)(D̄).

3. Bounds on the solution and its derivatives

The error estimate for the fitted mesh finite difference method, which will be described below, is proved under the
assumption that the solution of (1) is more regular than is guaranteed by the result in Theorem 2. To obtain this greater
regularity, stronger compatibility conditions are imposed at the corners.

For sufficiently small t, t ��, the function u�(x, t) is a solution of an initial-boundary value problem for the parabolic
equation

L�u�(x, t) = F(x, t), (x, t) ∈ D, t ��,

u�(x, t) = �l(t), (x, t) ∈ �l, u�(x, t) = �r(t), (x, t) ∈ �r, (6)

u�(x, t) = �(x), (x, t) ∈ �0, t ��.

Here �0 = [0, 1] × {t = 0}, F(x, t) = f (x, t) − b(x, t)�b(x, t − �), (x, t) ∈ D, �(x) = �b(x, 0), x ∈ [0, 1].
Assume that, for the data of problem (6), compatibility conditions are fulfilled [9], which ensure the required

smoothness of u� in a neighbourhood of the set S∗ = {(0, 0) ∪ (1, 0)}

u� ∈ C�,�/2(D), (7)
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where D is an -neighbourhood of the set S∗,  is a sufficiently small number, � is a parameter that ensures the required
smoothness of the solution. The existence of a smooth solution for the problem is now established in the following
theorem:

Theorem 3. Let the data a, b, f ∈ C(2+�,1+�/2)(D̄), �l ∈ C2+�/2([0, T ]), �b ∈ C(4+�,2+�/2)(�b), �r ∈ C2+�/2

([0, T ]), � ∈ (0, 1), and assume that the condition (7), where � = 4, is fulfilled. Then (1) has a unique solution u� and
u� ∈ C(4+�,2+�/2)(D̄). Furthermore, the derivatives of the solution u� satisfy, for all non-negative integers i, j such
that 0� i + 2j �4,∥∥∥∥�i+j u�

�xi�tj

∥∥∥∥
D̄

�C�−i/2,

where the constant C is independent of �.

Proof. The proof of the first part is given in Ladyzhenskaya et al. [9, Chapter IV, p. 320]. The bounds on the derivatives
are obtained as follows. By transforming the variable x to the stretched variable x̃=x/

√
� the problem (1) is transformed

to the problem(
�ũ

�t
− �2ũ

�x̃2 + ãũ

)
(x̃, t) = −b̃(x̃, t)ũ(x̃, t − �) + f̃ (x̃, t), (x̃, t) ∈ D̃�,

ũ(x̃, t) = �l,�(t), (x̃, t) ∈ �̃l,�, ũ(x̃, t) = �r,�(t), (x̃, t) ∈ �̃r,�, (8)

ũ(x̃, t) = �b,�(x̃, t), (x̃, t) ∈ �̃b,�,

where D̃� = (0, 1/
√

�) × (0, T ] and �̃� is its boundary analogous to �. The differential equation in (8) is independent
of �. Applying the estimate (10.5) from [9, p. 352] gives, for all non-negative integers i, j such that 0� i + 2j �4, and
all Ñ in D̃�,∥∥∥∥ �i+j ũ

�x̃i�tj

∥∥∥∥
Ñ

�C(1 + ‖ũ‖
Ñ2

).

Here the constant C is independent of Ñ where, for any 	 > 0, Ñ	 is a neighbourhood of diameter 	 in D̃�. Returning
to the original variable x yields∥∥∥∥�i+j u�

�xi�tj

∥∥∥∥
D̄

�C�−i/2(1 + ‖u�‖D̄).

The proof is completed by using the bound on u� in Theorem 1. �

The bounds on the derivatives of the solution given in Theorem 3 were derived from classical results. It turns out,
however, that they are not adequate for the proof of the �-uniform error estimate. Stronger bounds on these derivatives
are now obtained by a method originally given in [16]. The key step is to decompose the solution u� into its smooth
and singular components.

Let u� be the solution of (1) and write

u� = �� + w�, (9)

where �� and w� are smooth and singular components of u� defined in the following way. The smooth component is
further decomposed into the sum

�� = �0 + ��1,

where �0, �1 are defined by

��0

�t
+ a�0 = −b�0(x, t − �) + f, (x, t) ∈ D,
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�0(x, t) = �b(x, t), (x, t) ∈ �b,

L��1 = −b�1(x, t − �) + �2�0

�x2 , (x, t) ∈ D,

�1(x, t) = 0, (x, t) ∈ �.

The function �0 is the solution of the reduced problem. Furthermore �� satisfies

L��� = −b��(x, t − �) + f, (x, t) ∈ D, �� = �b(x, t), (x, t) ∈ �b,

��(0, t) = �0(0, t), (x, t) ∈ �l, ��(1, t) = �0(1, t), (x, t) ∈ �r.

With �� thus defined, it follows that w� is determined and that it satisfies

L�w� = −bw�(x, t − �), (x, t) ∈ D, w�(x, t) = 0, (x, t) ∈ �b,

w�(0, t) = �l(t) − �0(0, t), (x, t) ∈ �l, w�(1, t) = �r(t) − �0(1, t), (x, t) ∈ �r.

It is also convenient to write

w� = wl + wr,

where wl and wr are defined by

L�wl = −bwl(x, t − �), (x, t) ∈ D,

wl(0, t) = �l(t) − �0(0, t), (x, t) ∈ �l, wl = 0, (x, t) ∈ �b ∪ �r,

L�wr = −bwr(x, t − �), (x, t) ∈ D,

wr(1, t) = �r(t) − �0(1, t), (x, t) ∈ �r, wr = 0, (x, t) ∈ �l ∪ �b.

It is clear that wl and wr correspond, respectively, to the boundary layers on �l and �r.
For simplicity, we assume that the following condition holds

�i

�xi
�(x) = 0, i� l,

�i+j

�xi�tj
F (x, t) = 0, i + 2j � l − 2, (x, t) ∈ S∗. (10)

The required non-classical bounds on �� and w�, and their derivatives, are established in the following theorem:

Theorem 4. Assume that a, b, f ∈ C(4+�,2+�/2)(D), �l ∈ C3+�/2([0, T ]), �r ∈ C3+�/2([0, T ]), �b ∈ C(6+�,3+�/2)

(�b), � ∈ (0, 1), and let the conditions (7) and (10), where � = l = 6, be satisfied. Then, for integers i, j such that
0� i + 2j �4, we have the estimates∥∥∥∥ �i+j ��

�xi�tj

∥∥∥∥
D

�C(1 + �1−i/2), (11)

∣∣∣∣�i+jwl(x, t)

�xi�tj

∣∣∣∣ �C�−i/2e−x/
√

�, (12)

∣∣∣∣�i+jwr(x, t)

�xi�tj

∣∣∣∣ �C�−i/2e−(1−x)/
√

�, (x, t) ∈ D, (13)

where C is independent of �.

Proof. See [9, Chapter 4] for the existence and regularity results. The bounds on the functions and their derivatives are
proved as follows.
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The reduced solution �0 is the solution of a first-order differential equation and a classical argument leads to the
estimate∥∥∥∥�i+j �0

�xi�tj

∥∥∥∥
D̄

�C. (14)

Furthermore, the function �1 is the solution of a problem of the form to which Theorem 3 applies. It follows that∥∥∥∥�i+j �1

�xi�tj

∥∥∥∥
D̄

�C�−i/2. (15)

Since

�i+j ��

�xi�tj
= �i+j �0

�xi�tj
+ �

�i+j �1

�xi�tj
,

the required estimates of the smooth component �� and its derivatives follow by using (14) and (15).
The required bounds on wl and wr and their derivatives can be obtained analogously. The proof is, therefore, only

given for wl and its derivatives. To bound wl, define


±(x, t) = Ce−x/
√

�e�t ± wl(x, t).

Then, if C is chosen sufficiently large and ��0,


±(x, 0) = Ce−x/
√

� �0,


±(0, t) = Ce�t ± (�l(t) − �0(0, t))�0,


±(1, t) = Ce−1/
√

�e�t �0,

and

L�

±(x, t) = C(a − 1 + �)e−x/

√
�e�t �0

if � is chosen as in Theorem 1 to be � = maxD̄{0, 1 − a}. It follows from the maximum principle that for all (x, t) ∈ D̄

|wl(x, t)|�Ce−x/
√

�e�t �Ce−x/
√

�

as required.
The bounds on the derivatives of wl are obtained as follows. First, a transformation is made from x to the stretched

variable x̃ = x/
√

�. Using the variables (x̃, t) the parameter � does not enter into the differential equation and so the
appropriate results in [9, Section 4.10] are applicable to its solution w̃l. Note that the domain of the stretched variable x̃

is clearly (0, 1/
√

�). The argument divides into two cases corresponding to the position of x̃. For each neighbourhood
Ñ in (2, 1/

√
�) × (0, T ], from [9, Section 4.10] we have∥∥∥∥�i+j w̃l

�x̃i�tj

∥∥∥∥
Ñ

�C‖w̃l‖Ñ2
,

and the required bound follows by transforming back to the variable x and using the bound just obtained on wl.
Likewise, for each neighbourhood Ñ in (0, 2] × (0, T ], from [9, Section 4.10] we have∥∥∥∥�i+j w̃l

�x̃i�tj

∥∥∥∥
Ñ

�C(1 + ‖w̃l‖Ñ2
),

and the required bound follows by again transforming back to the variable x, using the bound on wl and noting that
e−x/

√
� �e−2 = C for x̃�2. This completes the proof. �
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4. Numerical method

In this section, problem (1) is discretised using a fitted numerical method composed of a standard finite difference
operator on a fitted piecewise uniform mesh. The finite difference operator has a centred difference quotient in space
and a backward difference quotient in time. The fitted piecewise uniform mesh is constructed by dividing �̄ into three
subintervals

�̄ = �̄l ∪ �̄c ∪ �̄r,

where �l = (0, �), �c = (�, 1 − �), �r = (1 − �, 1), and the fitting factor � is chosen to satisfy

� = min{ 1
4 , 2

√
� ln Nx}, (16)

where Nx denotes the number of mesh elements used in the x-direction. The multi-index notation N = (Nx, Nt ) is also
used, where Nt is the number of mesh elements in the t-direction.

A piecewise uniform mesh �Nx
� on � with Nx mesh elements (Nx �4) is obtained by placing a uniform mesh with

Nx/4 mesh elements on both �l and �r and a uniform mesh with Nx/2 mesh elements on �c. Uniform meshes with
step-size �t , �Nt and �m� with Nt and m� mesh elements are used on [0, T ] and [−�, 0), respectively. The fitted
piecewise uniform meshes DN

� on D and �N
b,� on �b are then defined as the tensor products

DN
� = �Nx

� × �Nt , �N
b,� = �Nx

� × �m�

and the boundary points �N
� of DN

� are �N
� = D̄N

� ∩�. We put �N
l,� =�N

� ∩�l and �N
r,� =�N

� ∩�r. Note that, whenever

� = 1
4 the mesh is uniform and on the other hand when � = 2

√
� ln Nx the mesh is condensing near the edges �l and

�r.
The resulting fitted mesh finite difference method for (1) is then

LN
� U� ≡ D−

t U� − �2
xU� + aU � = −bU �(xi, tj−m�) + f, (xi, tj ) ∈ DN

� ,

U�(x0, tj ) = �l(tj ), (x0, tj ) ∈ �N
l,�, U�(xNx , tj ) = �r(tj ), (xNx , tj ) ∈ �N

r,�,
(17)

U�(xi, tj ) = �b(xi, tj ), (xi, tj ) ∈ �N
b,�,

where the step length �t satisfies the constraint � = m��t , where m� is a positive integer, tj = j�t , j � − m�, and for
any mesh function Vi,j = V (xi, tj )

2
xVi,j = (D+

x − D−
x )Vi,j

(xi+1 − xi−1)/2

with

D+
x Vi,j = Vi+1,j − Vi,j

xi+1 − xi

, D−
x Vi,j = Vi,j − Vi−1,j

xi − xi−1

and an analogous definition of D−
t .

The finite difference operator LN
� in (17)

LN
� = D−

t − �2
x + aI ,

satisfies the following well-known discrete minimum principle on D̄N
� .

Discrete minimum principle. Assume that � satisfies ��0 on �N
� . Then LN

� ��0 on DN
� implies that ��0 at

each point of D̄N
� .

An immediate consequence of the discrete minimum principle is the following �-uniform stability property of the
operator LN

� .

Lemma 1. If Z is any mesh function in the domain of definition of the finite difference operator LN
� in (17). Then

‖Z‖�(1 + �T ) max{‖LN
� Z‖, ‖Z‖�N

�
}.
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5. Convergence of the numerical method

The �-uniform error estimate for the numerical solution is contained in the following theorem.

Theorem 5. Let the estimates (11)–(13) be fulfilled for the components defined in (9). Then the fitted mesh finite
difference method (17) consisting of the standard finite difference operator LN

� and the fitted piecewise uniform mesh
DN

� ∪�N
b,�, condensing in neighbourhoods of the edges �l and �r, is �-uniform for problem (1) provided that the fitting

factor � is chosen according to the formula (16) above. Moreover, the solution u� of (1) and the numerical solution U�
of (17) satisfy the following �-uniform error estimate for all Nx �4:

sup
0<��1

‖U� − u�‖D̄N
�

�C((N−1
x ln Nx)

2 + N−1
t ),

where C is a constant independent of Nx, Nt and �.

Proof. We start by noting that on the first interval [0, �], the right-hand side of (1) becomes f (x, t)−b(x, t)�b(x, t−�),
being independent of �, and hence the result in [11] is applicable to the difference scheme and we thus obtain

sup
0<��1

‖U� − u�‖D̄N
�,�

�C((N−1
x ln Nx)

2 + N−1
� ), (18)

where D̄N
�,� = �Nx

� × �N�
1 (�N�

1 is the uniform mesh with N� = m� mesh elements used on [0, �)) and C is independent
of Nx, N� and �.

The solution U�(xi, tj ) found on D̄N
�,� is denoted by U�,�(xi, tj ), (xi, tj ) ∈ D̄N

�,�.
On the second interval [�, 2�], and also for t �2�, it is not possible to apply immediately the result of [11] due to the

fact that the delay term u�(x, t − �) depends on �. For this reason, we examine the detailed proof of the estimate for
the difference between the numerical solution U� and the solution u� itself over the interval [�, 2�].

Consider the following singularly perturbed delay parabolic equation:

L�u�(x, t) ≡
(

�u�

�t
− �

�2u�

�x2 + au�

)
(x, t) = −b(x, t)u�(x, t − �) + f (x, t),

(x, t) ∈ D2 = (0, 1) × (�, 2�], u�(x, �) = u�(x, tm�), x ∈ �, (19)

u�(0, t) = �l(t), t ∈ [�, 2�], u�(1, t) = �r(t), t ∈ [�, 2�].
We determine the numerical solution U� of (19) at (xi, tj ) ∈ D̄N

�,2�=�Nx
� ×�N�

2 (�N�
2 is the uniform mesh with N�=m�

mesh elements used on [�, 2�)) by

LN
� U� ≡ D−

t U� − �2
xU� + aU � = −bU �(xi, tj−m�) + f, (xi, tj ) ∈ DN

�,2�,

U�(0, tj ) = �l(tj ), tj ∈ �N�
2 , U�(1, tj ) = �r(tj ), tj ∈ �N�

2 , (20)

U�(xi, tj ) = U�,�(xi, tj ), (xi, tj ) ∈ DN
�,�.

The solution u� of (19) is decomposed into smooth and singular components u� = y� + z�. The smooth component is
further decomposed into the sum y� = y0 + �y1, where y0 and y1 are defined by

�y0

�t
+ ay0 = −by0(x, t − �) + f, (x, t) ∈ D2,

y0(x, t) = u�(x, t), (x, t) ∈ � × [0, �],

L�y1 = −by1(x, t − �) + �2y0

�x2 , (x, t) ∈ D2,

y1(x, t) = 0, (x, t) ∈ � × [0, �], y1(0, t) = y1(1, t) = 0, t ∈ [�, 2�].
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The function y0 is the solution of the reduced problem. Furthermore, y� satisfies

L�y� = −by�(x, t − �) + f, (x, t) ∈ D2, y� = u�(x, t), (x, t) ∈ � × [0, �],
y�(0, t) = y0(0, t), y�(1, t) = y0(1, t), t ∈ [�, 2�].

With y� thus defined, it follows that z� is determined and that it satisfies

L�z� = −bz�(x, t − �), (x, t) ∈ D2, z�(x, t) = 0, (x, t) ∈ � × [0, �],
z�(0, t) = �l(t) − y0(0, t), z�(1, t) = �r(t) − y0(1, t), t ∈ [�, 2�].

It is also convenient to write

z� = zl + zr,

where zl and zr are defined by

L�zl = −bzl(x, t − �), (x, t) ∈ D2, zl(x, t) = 0, (x, t) ∈ � × [0, �],
zl(0, t) = �l(t) − y0(0, t), zl(1, t) = 0, t ∈ [�, 2�],
L�zr = −bzr(x, t − �), (x, t) ∈ D2, zr(x, t) = 0, (x, t) ∈ � × [0, �],
zr(1, t) = �r(t) − y0(1, t), zr(0, t) = 0, t ∈ [�, 2�].

The required non-classical bounds on y� and z�, and their derivatives, are contained in Theorem 4.
The solution U� of (20) is decomposed into smooth and singular components in an analogous manner to the decom-

position of the solution u� of (19). Thus

U� = Y� + Z�,

where Y� is the solution of the inhomogeneous problem

LN
� Y� = −bY �(xi, tj−m�) + f, (xi, tj ) ∈ DN

�,2�, Y� = U�,�, (xi, tj ) ∈ DN
�,�,

Y�(0, tj ) = y�(0, tj ), Y�(1, tj ) = y�(1, tj ), tj ∈ �N�
2

and, therefore, Z� must satisfy

LN
� Z� = −bZ�(xi, tj−m�), (xi, tj ) ∈ DN

�,2�, Z�(xi, tj ) = 0, (xi, tj ) ∈ DN
�,�,

Z�(0, tj ) = �l(tj ) − y�(0, tj ), Z�(1, tj ) = �r(tj ) − y�(1, tj ), tj ∈ �N�
2 .

The error can then be written in the form

U� − u� = (Y� − y�) + (Z� − z�),

and so the smooth and singular components of the error can be estimated separately.
The smooth component of the error is estimated as follows by a classical argument. From the differential and

difference equations it is easy to see that

LN
� (Y� − y�) = − bY �(xi, tj−m�) + f − LN

� y�

= b(y�(xi, tj−m�) − Y�(xi, tj−m�)) + (L� − LN
� )y�

= b(u�(xi, tj−m�) − U�,�(xi, tj−m�)) + (L� − LN
� )y�

and so

LN
� (Y� − y�) = b(u�(xi, tj−m�) − U�,�(xi, tj−m�)) − �

(
�2

�x2 − 2
x

)
y� +

(
�

�t
− D−

t

)
y�.
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It follows from (18) and classical estimates (see, for example [10, p. 21]) that, at each point (xi, tj ) in DN
�,2�,

|LN
� (Y� − y�)(xi, tj )|�C((N−1

x ln Nx)
2 + N−1

� )

+

⎧⎪⎪⎨
⎪⎪⎩

�

3
(xi+1 − xi−1)

∥∥∥∥�3y�

�x3

∥∥∥∥ + 1

2
(tj − tj−1)

∥∥∥∥�2y�

�t2

∥∥∥∥ if xi = � or xi = 1 − �,

�

12
(xi − xi−1)

2
∥∥∥∥�4y�

�x4

∥∥∥∥ + 1

2
(tj − tj−1)

∥∥∥∥�2y�

�t2

∥∥∥∥ otherwise.

Using the estimates of the derivatives of y� in Theorem 4, and since xi − xi−1 �2N−1
x , xi+1 − xi−1 �4N−1

x and
tj − tj−1 �N−1

� , we obtain

|LN
� (Y� − y�)(xi, tj )|�C((N−1

x ln Nx)
2 + N−1

� ) +
{

C[√�N−1
x + N−1

� ] if xi = � or xi = 1 − �,

C(N−2
x + N−1

� ) otherwise.

The proof of the estimate for the smooth component of the error is completed as in [11] by introducing barrier functions
and applying the discrete minimum principle, and it follows that

|Y� − y�|�C(N−2
x ln Nx + N−1

� ). (21)

To estimate the singular component of the error, in an analogous way to that for z�, the singular component Z� is written
in the form

Z� = Zl + Zr,

where Zl and Zr are defined by

LN
� Zl = −bZl(xi, tj−m�), (xi, tj ) ∈ DN

�,2�, Zl(xi, tj ) = 0, (xi, tj ) ∈ DN
�,�,

Zl(0, tj ) = �l(tj ) − y0(0, tj ), Zl(1, tj ) = 0, tj ∈ �N�
2 ,

LN
� Zr = −bZr(xi, tj−m�), (xi, tj ) ∈ DN

�,2�, Zr(xi, tj ) = 0, (xi, tj ) ∈ DN
�,�,

Zr(0, tj ) = 0, Zr(1, tj ) = �r(tj ) − y0(1, tj ), tj ∈ �N�
2 .

The error can then be written in the form

Z� − z� = (Zl − zl) + (Zr − zr),

and the errors Zl − zl and Zr − zr, associated, respectively, with the boundary layers of �l and �r, can be estimated
separately.

Consider the error Zl − zl. From the differential and difference equations it is easy to see that

LN
� (Zl − zl) = (L� − LN

� )zl = −�

(
�2

�x2 − 2
x

)
zl +

(
�

�t
− D−

t

)
zl. (22)

A classical estimate gives the estimate for all (xi, tj ) ∈ DN
�,2�

|LN
� (Zl − zl)(xi, tj )|�C((N−1

x ln Nx)
2 + N−1

� ).

Using Lemma 1 then gives for all (xi, tj ) ∈ D̄N
�,2�

|(Zl − zl)(xi, tj )|�C((N−1
x ln Nx)

2 + N−1
� ). (23)

For more details we refer to [11]. Completely analogous arguments lead to the estimate for the error corresponding to
the boundary layer for all (xi, tj ) ∈ �r

|(Zr − zr)(xi, tj )|�C((N−1
x ln Nx)

2 + N−1
� ). (24)

Combining (21), (23) and (24) completes the proof on the second interval [�, 2�] and we can prove the theorem by
induction. �
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6. Numerical experiments

In this section, we show the results obtained for two examples.

Example 1.

�u�
�t

− � �2u�

�x2 = −2e−1u�(x, t − 1), (x, t) ∈ (0, 1) × (0, 2],

u�(x, t) = e−(t+x/
√

�), (x, t) ∈ [0, 1] × [−1, 0],
(25)

u�(0, t) = e−t , u�(1, t) = e−(t+1/
√

�), t ∈ (0, 2].

The exact solution of this problem is u�(x, t) = e − (t + x/
√

�). It is clear that there is a parabolic boundary layer in a
neighbourhood of �l, but because of the boundary values there is no boundary layer on �r.

In what follows, the problem is solved using numerical method (17) comprising standard finite difference operators
(centred in space, implicit in time) on either uniform meshes with Nx × Nt elements or fitted meshes with Nx × Nt

elements. The fitted meshes used in these computations are of the form described in Section 4, and so they condense
on both �l and �r. But because there is no boundary layer on �r, there is no need for the mesh to condense on �r.
This means that equally good numerical results could have been obtained for this problem using a mesh condensing
on �l alone and, therefore, requiring fewer mesh points. The reasons for not removing the mesh condensation on �r
was because the available code was written for the more general case and the optimal mesh was not investigated. In
the remainder of this section, it is assumed that Nx = Nt = N (note that m� = Nt/2 and �t = 1/m�).

The maximum errors E(�, N) = maxtj (maxxi
|u�(xi, tj ) − U�(xi, tj )|) and the convergence rates R(�, N) =

log2(E(�, N)/E(�, 2N)) in the numerical solutions using meshes with N = 64, 128, 256, 512, and 1024 and values of
� from 2−4 to 2−30 are presented in Table 1.

The last row of the table contains E(N) = max� E(�, N) occurring in the rows above it. Since these maxima occur
along a diagonal of the table, and do not decrease significantly as N increases, it is clear that there is a persistent
maximum error of about 2.7% no matter how large N is. This shows numerically that this numerical method is not
�-uniform. Another feature of this behaviour is that when a value of � is chosen that is below the diagonal, then the error
grows with increasing N until the diagonal is reached. This behaviour is not in accord with the properties expected of
a satisfactory numerical method.

On the other hand, the analogous results on the appropriate fitted meshes are presented in Table 2. In this table, the
maxima of the columns occur in the row corresponding to � = 2−12 and these maxima decrease rapidly as N increases.
This behaviour is in complete agreement with the theoretical result in Theorem 5. Note that with this �-uniform method,
when N = 64, the maximum error in that column is less than 0.5%, which cannot be achieved for any value of N using
a uniform mesh.

Example 2.

�u�

�t
− �

�2u�

�x2 + 1 + x2

2
u� = t3 − u�(x, t − 1), (x, t) ∈ (0, 1) × (0, 2],

u�(x, t) = 0, (x, t) ∈ [0, 1] × [−1, 0], u�(0, t) = u�(1, t) = 0, t ∈ (0, 2], (26)

for which the exact solution is unknown.

Fig. 1 shows an approximation of the solution for � = 2−20. Now, for each value of �, we estimate the maximum
errors by

eN,�t
� = max

tj

(
max

xi

|Ũ2N,�t/2(x2i , tj ) − UN,�t (xi, tj )|
)

,
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Table 1
Maximum errors and the convergence rates using classical uniform meshes

�\N 64 128 256 512 1024

2−4 2.035E −03 1.013E −03 5.054E −04 2.524E −04 1.261E−04
1.006 1.003 1.002 1.001

2−6 2.158E−03 1.045E−03 5.138E−04 2.547E−04 1.268E−04
1.046 1.025 1.013 1.006

2−8 2.628E−03 1.169E−03 5.449E−04 2.625E−04 1.287E−04
1.169 1.101 1.054 1.028

2−10 4.505E−03 1.652E−03 6.696E−04 2.938E−04 1.366E−04
1.447 1.303 1.188 1.105

2−12 1.144E−02 3.571E−03 1.161E−03 4.191E−04 1.680E−04
1.680 1.621 1.470 1.319

2−14 2.642E−02 1.067E−02 3.100E−03 9.141E−04 2.937E−04
1.309 1.783 1.762 1.638

2−16 2.611E−02 2.619E−02 1.027E−02 2.864E−03 7.905E−04
−.004 1.350 1.843 1.857

2−18 1.021E−02 2.630E−02 2.607E−02 1.008E−02 2.746E−03
−1.365 0.013 1.372 1.876

2−20 2.664E−03 1.032E−02 2.640E−02 2.601E−02 9.977E−03
−1.953 −1.355 0.021 1.383

2−22 6.697E−04 2.693E−03 1.037E−02 2.645E−02 2.598E−02
−2.008 −1.946 −1.351 0.026

2−24 1.677E−04 6.768E−04 2.707E−03 1.040E−02 2.648E−02
−2.013 −2.000 −1.942 −1.348

2−26 4.193E−05 1.694E−04 6.804E−04 2.714E−03 1.041E−02
−2.015 −2.006 −1.996 −1.940

2−28 1.048E−05 4.237E−05 1.703E−04 6.822E−04 2.718E−03
−2.015 −2.007 −2.002 −1.994

2−30 2.621E−06 1.059E−05 4.260E−05 1.708E−04 6.831E−04
−2.015 −2.007 −2.003 −2.000

E(N) 2.642E−02 2.630E−02 2.640E−02 2.645E−02 2.648E−02

Table 2
Maximum errors and the convergence rates using fitted piecewise uniform meshes

�\N 64 128 256 512 1024

2−4 2.035E − 03 1.013E − 03 5.054E − 04 2.524E − 04 1.261E − 04
1.006 1.003 1.002 1.001

2−6 2.158E − 03 1.045E − 03 5.138E − 04 2.547E − 04 1.268E − 04
1.046 1.025 1.013 1.006

2−8 2.628E − 03 1.169E − 03 5.449E − 04 2.625E − 04 1.287E − 04
1.169 1.101 1.054 1.028

2−10 4.505E − 03 1.652E − 03 6.696E − 04 2.938E − 04 1.366E − 04
1.447 1.303 1.188 1.105

2−12 4.718E − 03 1.959E − 03 8.212E − 04 3.536E − 04 1.576E − 04
1.268 1.254 1.216 1.166

2−14 4.718E − 03 1.959E − 03 8.212E − 04 3.536E − 04 1.576E − 04
1.268 1.254 1.216 1.166

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

2−30 4.718E − 03 1.959E − 03 8.212E − 04 3.536E − 04 1.576E − 04
1.268 1.254 1.216 1.166

E(N) 4.718E − 03 1.959E − 03 8.212E − 04 3.536E − 04 1.576E − 04
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Fig. 1. Numerical solution of (26) for � = 2−20 taking N = 32 and �t = 0.05.

Table 3
Maximum errors and the convergence rates for problem (26)

�\N�t N = 64, N = 128, N = 256, N = 512, N = 1024,
�t = 0.1 �t = 0.1/2 �t = 0.1/22 �t = 0.1/23 �t = 0.1/24

2−4 7.205E − 02 3.675E − 02 1.856E − 02 9.325E − 03 4.674E − 03
0.971 0.986 0.993 0.996

2−6 1.007E − 01 5.094E − 02 2.562E − 02 1.285E − 02 6.434E − 03
0.982 0.991 0.996 0.998

2−8 1.087E − 01 5.487E − 02 2.756E − 02 1.381E − 02 6.912E − 03
0.986 0.994 0.997 0.998

2−10 1.118E − 01 5.637E − 02 2.829E − 02 1.417E − 02 7.093E − 03
0.988 0.994 0.997 0.999

2−12 1.130E − 01 5.690E − 02 2.855E − 02 1.430E − 02 7.156E − 03
0.990 0.995 0.997 0.999

2−14 1.134E − 01 5.710E − 02 2.864E − 02 1.434E − 02 7.177E − 03
0.990 0.995 0.998 0.999

2−16 1.136E − 01 5.716E − 02 2.867E − 02 1.436E − 02 7.183E − 03
0.991 0.996 0.998 0.999

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

2−30 1.136E − 01 5.718E − 02 2.868E − 02 1.436E − 02 7.186E − 03
0.991 0.996 0.998 0.999

E(N) 1.136E − 01 5.718E − 02 2.868E − 02 1.436E − 02 7.186E − 03

where Ũ2N,�t/2(xi, tj ) is the numerical solution on a mesh containing the mesh points (xi, tj ) of DN
� and also the

midpoints xi+1/2 = (xi + xi+1)/2, tj+1/2 = (tj + tj+1)/2, i, j = 0, 1, . . . , N − 1. Table 3 displays the results obtained
using (17). From this table, we deduce the first order of �-uniform convergence.
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7. Conclusion

A singularly perturbed Dirichlet boundary value problem for a linear delay parabolic differential equation having
parabolic boundary layers was formulated. A fitted mesh finite difference method was constructed and was proved to
be an �-uniform method for this problem. Numerical results were presented, which numerically validate this theoretical
result and show that a method using the standard finite difference operator on a uniform mesh is not an �-uniform
method.
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