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We classify the irreducible modules for the fixed point vertex operator subalge-
bra of the vertex operator algebra associated to the Heisenberg algebra with
central charge 1 under the —1 automorphism.  © 1999 Academic Press

1. INTRODUCTION

Let §) be a finite dimensional complex vector space of dimension d with
a nondegenerate symmetric bilinear form and let §) = § ® C[¢,¢7 '] + Cc
be the corresponding affine algebra. Then the free bosonic Fock space
M(1) = S(h ® t1C[+1]) is a vertex operator algebra of central charge d
(cf. [FLMD. If d = 1 the automorphism group of M(1) is Z, generated by
0 (see Section 2.3). Then M(1) has only two proper subalgebras, namely,
M(1)* and the vertex operator subalgebra generated by the Virasoro
algebra [DG]. In this paper we determine Zhu’s algebra 4A(M(1)*) and
classify the irreducible modules for M(1)*. The classification result says
that any irreducible M(1)* module is isomorphic to either a submodule of
a M(1) module or a submodule of a 6-twisted M(1) module.

The vertex operator algebra M(1)* is closely related to W algebra. It
was shown in [DG] that M(1)* is generated by the Virasoro element o
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and a highest weight vector J of weight 4 (see Section 2). Thus M(1)* can
be regarded as the vertex operator algebra associated to the W algebra
W(2,4) with central charge 1 (cf. [BFKNRV]). So this paper also gives a
classification of irreducible modules for the W algebra W(2,4) which can
be lifted to modules for M(1)™*.

The result in this paper is fundamental in the classification of irre-
ducible modules for the vertex operator algebras 1, [DN]. Let L be a
positive definite even lattice of rank 1. The corresponding vertex operator
algebra 1, is a tensor product of M(1) with the group algebra C[L]. The
structure and representation theory of 1 including the fusion rules are
well understood (see [B, FLM, D, DL, DLM1]). Then 6 can be extended to
an automorphism of 1V, of order 2. Moreover, the fixed point vertex
operator subalgebra V;" contains M(1)* as a subalgebra and V" is a
completely reducible M(1)™ module. The result of the present paper has
been used in [DN] to determine Zhu'’s algebra A(};") and to classify the
irreducible modules for V.

It should be pointed out that conformal field theory associated to M(1)*
is an orbifold theory (cf. [DVVV]) for the nonrational vertex operator
algebra M(1). Let V' be a rational vertex operator algebra and let G be a
finite group of automorphisms of V. The orbifold theory conjectures that
any irreducible module of the fixed point vertex operator subalgebra V¢ is
isomorphic to a submodule of a g-twisted module for some g € G. Our
result in this paper suggests that it may be true even when V' is not
rational.

One important tool in the representation theory of vertex operator
algebra is Zhu's algebra [Z]. In [Z] it was shown that for any vertex
operator algebra V, there is an associative algebra A(})") associated to 7/
such that there is a one to one correspondence between the irreducible
admissible 7 modules and irreducible A(}) modules (see Section 2.2 for
more detail). The main idea in the present paper is to determine Zhu’s
algebra A(M(1)*), which turns out to be a commutative algebra over C
with two variables.

We should mention an important role played by a generalized PBW-type
theorem in this paper. The classical PBW theorem gives a basis for the
universal enveloping algebra of a Lie algebra and a nice spanning set for
modules. For an arbitrary vertex operator algebra 17, the component
operators of the fixed generators of IV in general do not form a Lie
algebra, so one cannot use the classical PBW theorem to get a good
spanning set in terms of the component operators of the generators. As
mentioned before, M(1)* is generated by » and J. Although the compo-
nent operators of w and J do not form a Lie algebra because as the
commutators involve quadratic or higher products, we manage to obtain a
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kind of PBW-type result which is good enough to give nice spanning sets
for M(1)* and A(M(1)*). The same idea and technique have been
developed further in [DN] to yield nice spanning sets for ;" and A(V}").
A PBW:-type generating property for general vertex operator algebras was
given in [KL] recently.

The structure of this paper is as follows. In Section 2 we recall the
definition of admissible twisted modules for a vertex operator algebra, the
notion of Zhu’s algebra and related results, and the construction of vertex
operator algebra M(1)*. In Section 3 we give the commutator relations for
the component operators of w and J, and we produce a kind of general-
ized PBW theorem. This enables us to get spanning sets for M(1)* and
A(M(1)*). Section 4 shows how to evaluate the generators of A(M(1)*)
on the top levels of the known irreducible modules for M(1)* to yield the
relations which are good enough to determine the algebra structure of
A(M(1)"). We then use A(M(1)*) to classify the irreducible modules for
M@Q)".

2. PRELIMINARIES

This section is divided into three parts. In the first part we recall various
notions of (twisted) modules for a vertex operator algebra V' (cf. [DLM2)).
Zhu's algebra [18] and related results are explained in the second part. In
the last part we review the vertex operator algebra M(1) and its (twisted)
modules (cf. [FLMD.

2.1. Modules

Let V' be a vertex operator algebra (cf. [B, FLM]) and let g be an
automorphism of 1 of finite order T. Denote the decomposition of 1 into
eigenspaces with respect to the action of g as V= & _, ., V" where
Vi={veV|gp=e?""/Tp},

An admissible g-twisted IV module (cf. [DLM2, Z])

i n
M= Y M|—
is an (1/T)Z-graded vector space with the top level M(0) # 0 equipped

with a linear map

V — (End M){z},

v Yy (v,z)= Y v,z" Y (v, € End M),
ne@
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which satisfies the following conditions: foral0 <r < T -1, u € V', v €
V.weM,

YM(u’Z) = Z unzinily
ner/T+7Z

uw =0 forns 0,
Y, (1,z) =1,

2724

20_16(212_22)YM(u,zl)YM(U,zz) —zgla( )YM(U,ZZ)YM(M,Zl)

0 40

-r/T

4 %1~ %0 21 — 2o

=221( - ) 8( . )YM(Y(L[,ZO)U,ZZ), (2.1)
2 2

where 6(z) = L, .,z" (elementary properties of the § function can be

found in [FLM]) and all binomial expressions (here and below) are to be
expanded in nonnegative integral powers of the second variable;

u,M(n) c M(wt(u) —m — 1+ n)
if u is homogeneous. If g =1, this reduces to the definition of an
admissible 1V module.

A g-twisted V module is an admissible g-twisted V¥ module M which
carries a C grading induced by the spectrum of L(0). That is, we have

M= 1]M,,
AeC

where M, = {w € M|L(0)w = Aw}. Moreover, we require that dim M, is
finite and for fixed A, M, , ., = 0 for all small enough integers n. Again,
if g =1, we get an ordinary V module.

2.2. Zhu's Algebra

Let us recall that a vertex operator algebra V' is Z-graded:
V=11V, veV,, n=wtv).
nelZ

Each v € V, is called a homogeneous vector of weight n. To define Zhu's
algebra A()") we need two products = and o on V. For u € IV homoge-
neous and v € V,

o

Y(u,z)U) - (Wt(l_u))uilv, (2.2)

i=0

wt(u)
uxv = Resz( ( )

(WtE”) )u,._zu (2.3)

i=0

(1+Z)Wt(u) I~
uev =Res,| ————Y(u,z)v| = )
z -z
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and we extend both (2.2) and (2.3) to linear products on V. Define O(V) to
be the linear span of all ucv for u,v € V. Set AV) =V/0W). For
u € V we denote by o(u) the weight zero component operator of u on any
admissible module. Then o(u) = u,,_, if u is homogeneous. The follow-
ing theorem is essentially due to Zhu [Z].

THEOREM 2.1. (i) The product * induces an associative algebra structure
on A(V) with the identity 1 + O(V'). Moreover, o + O(V) is a central
element of A(V).

(i) The map u — o(u) gives a representation of A(V') on M(0) for any
admissible V module M. Moreover, if any admissible V module is completely
reducible, then A(V') is a finite dimensional semisimple algebra.

(iii) The map M — M(0) gives a bijection between the set of equiva-
lence classes of simple admissible V modules and the set of equivalence classes
of simple A(V') modules.

For convenience we write [u] = u + O(V) € A(V). We define u ~ v
for u,v € V if [u] =[v]. This induces a relation on End} such that
frg€EndV, f~gifandonlyif fu ~gu forall u € V.

The following proposition is useful later (cf. [W, Z]).

ProposITION 2.2. (i) Assume that u € V is homogenous, v € V, and
n > 0. Then

o]

(1 + Z)Wt(u)

Res.| =, Y(u,z)y) Z(Wt(”)) u,_, e o).

z

(i) If u and v are homogeneous elements of V, then

(1 + Z)Wt(b‘)*l

u*U~ReSZ( Y(U,z)u).

(iii) Foranyn > 1,
L(—n) ~ (=D)"{(n = H)(L(-2) + L(-1)) + L(0)}, (24)
where L(n) are the Virasoro operators given by Y(w,z) = ¥, o, L(n)z™" 2

2.3. Vertex Operator Algebras M(1) and M(1)*

Finally we discuss the construction of vertex operator algebra M(1) and
its (twisted) modules (cf. [FLM]). We also define the vertex operator
subalgebra M(1)*.
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Let §) be a finite-dimensional vector space with a nondegenerate sym-
metric bilinear form {-,-) and let § = § ® C[z,~'] ® Cc be the corre-
sponding affine Lie algebra. Let A € §) and consider the induced §
module

M(1, 1) = U(h) Buyeciiece C = S(h ® t71C[¢71])  (linearly),

where §) ® ¢tCl[¢] acts trivially on C, § acts as {«a, A) for a € [j, and ¢ acts
as 1. For a« € ) and n € Z, we write a(n) for the operator a ® " and put

a(z) = ) a(n)z™" L
nez
Among M(1, 1), A € b, M(1) = M(1,0) is of special interest because it
has a natural vertex operator algebra structure as explained below. For
ay, ..., €0, ny,...,n, €Z (n;>0), and v = a(—ny) - aq(—ny) €
M(1), we define a vertex operator corresponding to v by

Y(v,2) = 890" Day(2) 9" Vay(z) -+ " Py (2) 8,

o l(d"
gm = | —
z n!'\dz

and a normal ordering procedure indicated by open colons signifies that all
the factors in the expression above are to be reordered if necessary so that
all the operators a(n) (a € §), n < 0) are placed to the left of all the
operators a(n) (n > 0) before the expression is evaluated. We extend Y to
all v € V by linearity. Let { 8,..., B,} be an orthonormal basis of §. Set
1=1and o= ;X% ,B.(—1)2 The following theorem is well known (cf.
[FLM).

THEOREM 2.3. The space M(1) = (M(1),Y, 1, w) is a simple vertex opera-
tor algebra and M(1, ) for A € 1) gives a complete list of inequivalent
irreducible modules for M(1).

where

We define an automorphism 6 of M(1) by

0(ax(ny) -+ a(m)) = (=1 ay(ny) = a(ny).

Then 6 invariants M(1)* of M(1) form a simple vertex operator subalge-
bra and the —1 eigenspace M(1)~ is an irreducible M(1)* module (see
[DM2, Theorem 2]). Clearly M(1) = M(1)" & M(1)".

Following [DM1], we define 6 M(1, A) = (6 M(1, A),Y,), where
6o M(1, ) =M(1, ) as vector spaces and Y,(v,z) = Y(6v,z). Then
0o M(1, ) is also an irreducible M(1) module isomorphic to M(1, — A).
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The following proposition is a direct consequence of Theorem 6.1 of
[DM2].

PropPosITION 2.4. If A # 0, then M(1, A\) and M(1, — ) are isomorphic
and irreducible M(1)* modules.

Next we turn our attention to the ¢-twisted M(1) modules (cf. [FLM]).
The twisted affine algebra is defined tobe H[—1]1 =%, ., ® t¥?"" @ Cc
and its canonical irreducible module is

M(1)(0) = U(B[_l]) Guye /2o Co) C= S(b ® fl/zC[fl])v

where ) ® t1/2C[¢] acts trivially on C and ¢ acts like 1. As before, there is
an action of 9 on M(1X6) by 6(a,(n) - a,(n,)) = (—Dra,(n,) -
a,(n,), where a; € ), n; € 2 + 7Z,and a(n) = a ® t". We denote the +1
eigenspace of M(1)(#) under 6 by M(1)(0)*.

Let v = a(—ny) -+ a(—n,) € M(1). We define

Wy(v,z) = 8" Pay(2) 9" Pay(z) -+ 9" Hay(2) 8,
where the right side is an operator on M(1)(#), namely,

a(z)= Y a(n)z "

neil/2+7

and the normal ordering notation is as before. Furthermore, we extend
this to all v € M(1) by linearity. Define constants c,,, € Q for m,n > 0
by the formula

1/2 1/2

1+x)" "+ 1 +y)

2

Z cmnxmyn = _Iog

m,n>0

Set
d

A, = > ZcmnBi(m)ﬂi(n)Zimin'

m,n>0i=1
Now we define twisted vertex operators Y,(v, z) for v € M(1) as
Yy(0,2) = Wy(ebv, 2).
Then we have

THEOREM 2.5. (i) (M(1X(0),Y,) is the unique irreducible 6-twisted M(1)
module.

(i) MQ)6)* are irreducible M(1)* modules.
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Part (i) is a result of Chapter 9 of [15] and part (ii) follows Theorem 5.5
of [DLi].

In the paper, we mainly consider the case that § is one dimensional.
From now on we always assume that ) = Ch with the normalized inner
product (A, h) = 1.

Remark 2.6. 1t is easy to see in this case that the automorphism group
of M(1) is generated by 6. It was pointed out in [DG] that M(1)" is the
only proper vertex operator subalgebra of M(1) which differs from the
vertex operator subalgebra generated by w.

For later use we need to know the first few coefficients of z in A,. Note
that

1o (L+x)"+ (L +y)?
2
11 3 1 3
= — X — oyt =2 —xy 4+ —
2T TRt T eV T Y
5 1 1 5
32 2 3
96" 3277 2V T 9’
35 5 9 5 35
+—x'+ —=xy + —=x%y? + — 0+ ——y +
104" T 2567 Y T E12* Y T 256 T 10247
Thus

A, = —3h(0)h(1)z7* + (5h(0)A(2) + Hh(1)*)z?2
+(—wh(0)h(3) — 1sh(1)h(2))z*
+(5h(0)h(4) + Fsh(D)h(3) + Hh(2)")z 7 + . (25)

3. A SPANNING SET OF A(M(1)™)

In this section we use a result in [DG] to yield a spanning set of M(1)*
and then use it to produce a spanning set of A(M(1)*). We also list known
irreducible modules for M(1)* and the actions of L(0) and o(J) on the
top levels of these modules, where J is a singular vector of M(1)* of
weight 4 defined in Section 3.1.
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3.1. Some Commutator Relations

Recall that Y(w, z) = ¥, . ,L(n)z"" "2, where the component operators
L(n) together with 1 spanned a Virasoro algebra of central charge 1 on
M(). It is well known that M(1) is a unitary representation for the
Virasoro algebra and M(1)*, as the submodule for the Virasoro algebra, is
a direct sum of irreducible modules

M) = @ L(1,4m?) (3.1)

melz.,

where L(1,4m?) is an irreducible highest weight Virasoro module with
highest weight 4m? and central charge 1 (see [DG, Theorem 2.7(1)].
Let

J=h(-1)"1 - 2h(=3)h(—1)1 + 3n(-2)’1, (3.2)

which is a singular vector of weight 4 for the Virasoro algebra. Then the
field

J(2) = sh(2)"s — 392h(z)h(2) 2 + 28(a,h(2)) 8
is a primary field. We have commutation relations
[L(m),J(2)] =z"(z0. + 4(m + 1))J(z) (m € Z),
which follow from the Jacobi identity (2.1) and which are equivalent to

[L(m),],] = (3(m + 1) —n)J, (m,neZ), (33)

+m

where J(z) =X, ., ,z7" 1.
Next we compute the commutator [J,,, J,] for m,n € Z. Again by the
Jacobi identity (2.1) we know

o

[Jm’ Jn] = Z (’/;'/l)(‘]i‘])m+n7i'
i=0
Since the weight of J is 4, we see that wt(J;J) = 7 — i < 7. Then it follows
from the decomposition (3.1) that for any i € Z ,, we have J,J € L(1,0)
@ L(1,4) and then all these are expressed as linear combinations of

L(=my) - L(=my)l,  L(—ny) - L(—n)J,

where m; >m, > -+ >m, >2, ny>n,> - >n,>1 and s, <3
Note that for any vertex operator algebra V, u,v € V and m,n € Z,
(u,,0), is a linear combination of operators u,v, and v,u, for s,t € Z.
Using (3.3) we obtain the following lemma
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LEMMA 3.1. For any m,n € Z, commutators [J,,J,] are expressed as
linear combinations of

L(py) - L(py),  L(q) - L(q)7;,

where py,..., Py q1,---,q,, ¥ € Z and s,t < 3.

3.2. A Spanning Set for M(1)™*
We first note the following theorem.

THEOREM 3.2 [DG, Theorem 2.7(2)].  As a vertex operator algebra, M(1)*
is generated by the Virasoro element w and any singular vector of weight
greater than 0. In particular, M(1)* is generated by » and J.

From this theorem we see that M(1)" is spanned by

{ufn1 ufnkllui =w,J,m, € Z},

which are not necessarily linearly independent. We say that an expression
uy, -+ up, 1 haslength ¢ with respect to J, which we write #,(u}, -+ uj, 1)
= ¢, if {ilu’ = J} has cardinality ¢. Note that w; = L(i — 1). An induction
on Z,(uy, - uy, 1) using (3.3) and Lemma 3.1 shows that u;, -+ uy, 1isa
linear combination of vectors of type

{L(my)L(my) -+ L(m)J, J, -1, 1lmy, n, € Z}.

Thus M(1)" is spanned by those vectors.
Using the commutator relations (3.3) and the fact that L(m)1 =0,
m > —1, we get the following lemma.

LEMMA 3.3.  Let W be the subspace of M(1)" spanned by J, ...J, 1 with
n; € Z. Then W is invariant under the action of L(m), m > —1.

PROPOSITION 3.4. The vertex operator algebra M(1)* is spanned by the
vectors

L(—my) - L(—=m)J_, = J

—ny —n,l’
where my >m, > - >m,>2andn, >n, > -+ =n, > 1.

Proof. We have already shown that M(1)* is spanned by

L(—my) - L(—m\)J_, - J_,1

-m -

where m,, n, € Z. Using the PBW theorem for the Virasoro algebra, we
can assume that m, > -+ > m,. By Lemma 3.3 we can further assume
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that m, > m, > --- > m, > 2. We proceed by induction on the length
with respect to J that v =L(-my) - L(-m)J_, - J_,1 can be
spanned by the indicated vectors in the proposition.

If the length is O, it is clear. Suppose that it is true for all monomials v
such that #,(v) < t. Since J,1 =0 for kK > 0, we can assume n, > 1. If
n, > -+ >n,, we are done. Otherwise there exists n, such that n,,, >

- >n,, but n, <n,,, There are two cases n, < 0 and n, > 0 which are
dealt with separately. If n, <0, then J_, 1 = 0 and
L(-my) - L(-my)J_, ~-J_,1

—ny -n

= Z L(_ml) L(_ms)'lfnl j:n

j=a+1

a

where f:nn means that we omit the term J_, . However, by Lemma 3.1,
[J J,,,/] are linear combinations of operators of type

—n,

L(py) - L(py),  L(q) - L(q,)J,.

By substituting these into the above and using commutation relation (3.3)
again, the right-hand side is a linear combination of monomials whose
lengths with respect to J are less than or equal to ¢+ — 1. Thus by induction
hypothesis, this is expressed as linear combinations of expected monomi-
als.

If n, > 0, then either n, < n, or there exists b with ¢+ > b > a so that
n, >n, > n,,,. Then we have either
L(-my)- L(-my)J_, ~-J_,1

-m —n

- i L(—my) - L(—ms)J_n1 f_n .. []_n ,J_n/] e J o1

a

j=a+1

+ L(=my) = L(=m)J_, T, T ,J 1
or
L(_ml) L(_ms)‘]—nl J—nll

b
= X L(-my) - L(=m)J_, T,

j=a+1

+ L(=my) - L(-m)J_, = J_, = J T ,J e J 1.

—ny g Np™ —Ng” —Npyq -y
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From the discussion of case n, < 0 it is enough to show that either

L(—my) - L(=m)J_, ~J_, = J_,J 1

-m g

or

TR TR TNpyg —n

L(_ml) L(_ms)‘,—nl f—nu

can be expressed as linear combinations of desired vectors. This follows
from an induction on a. |

3.3. A Spanning Set for A(M(1)™)

For short we set

V¥ =Tk o wp

for v € M(1)*. Recalling [v] = v + O(M(1)™") for v € M(1)*, we will also
use a similar notation [v]°. Then it is easy to see that [v*'] = [0 ]*".

THEOREM 3.5. Zhu's algebra A(M(1)*) is spanned by &% =
{lol** *[JT*]s,t > O}

Proof. By Proposition 3.4, it is enough to show that for any monomial

v = L(_ml) L(_m.\‘)‘]—nl J—n,ll
where m; >m, > - >m; >2, ny,>n,> - >n,>1, and [v] is a
linear combination of .. We prove by induction on /,(v) that [v] is
spanned by vectors [w]*” «[J}*? in . such that ¢ < ¢ and weights of its
homogeneous components are less than or equal to the weight of v.

In the case that /,(v) =0, then v = L(—m,)--- L(—m,)1, which is
spanned by {[w]*’|s = 0} (cf. [FZ]). Now let ¢ > 0 and assume that the
statement is true for all v with #,(v) < ¢. We will prove by induction on
the weight of v that [v] is a linear combination of .. Clearly, the smallest
weight is ¢ wt(J) and the corresponding v has the form

Then by (2.2),

t
T —p = Y s i, I, 1
n,e{-1,0,1,2,3)
(np#(-1,..., -1
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Since each term appearing in the right-hand side involves J, for some
nonnegative n;, we can write the right-hand side as a linear combination of
spanning vectors in Proposition 3.4 whose lengths are strictly less than .
Thus by induction hypothesis, the image of the right-hand side in A(M(1)*)
is spanned by . and so is [v].

Now consider general v = L(—m,)-- L(-m)J_, ---J_, 1. Without
loss of generality, we can assume that m, = m, = --- = m = 2, namely,

s

v=L(=2) L(=2)J_, ~J_,1

—ny -y

since if there exists m, such that m; > 3, then m, > 3 and by (2.4),

v~ (=1)"{(my = 1)(L(-2) + L(—1)) + L(O)}L(—m,) -
L(-m)J_, ~J_,1,

—n -y
which is a sum of three homogeneous vectors of weight strictly less than
wt(v). Then we see

v = o*' >x<(]_nll)>x<(J_n2 J—n,l) + v,
where wt(v’) < wt(v). Then again by using induction hypothesis about
weight, it is enough to show that the image of

b= w25, T ,0)

—n, ’
in A(M(1)") is spanned by .%. Since w is a central element in A(M(D)"),
we have

v=>_,xo*x(J_, - J_,1)

—n,

=J_(e* (], T 1))+,

—n,

where wt(v") < wt(v). If n; > 1, we can use the fact that J_, u is congru-
ent to a sum of vectors whose lengths are less than or equal to ¢ and whose
weights are smaller than wt(v) (cf. (2.3)) to show that [v] is spanned by .%.
If n,=1,then n,= - =n,=1and

v = w* = J*" + lower weight terms.

Again it is done by induction assumption. ||
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Remark 3.6. From the proof of Theorem 3.5, we see that v is spanned
by w** = J*" with 25 + 41 < wt(v).
3.4. List of Irreducible Modules
As mentioned in Section 2.3, M(1)" has irreducible modules
ML), M(1)" , M(1,A)(0# A€ Z), M(1)(0) , M(1)(6) .

Recall that M(1, A) and M(1)(6) are symmetric algebras on ) ® ¢t 1C[¢ 7]
and ) ® r~1/2C[t"1], respectively, as vectors spaces.

The following table gives the action of w and J on the top levels of
these modules.

M@)* M)~ M@ D), A eC* MA(O)T M@)6)~

M(0) C1 Ch(-11 C C Ch(—-1/2)
) 0 1 A%/2 1/16 9/16

J 0 -6 A= A%/2 3/128 —45/128

Here we give some explanations on how to get the table. The actions of
o and J on these spaces except M(1)(0)* are easily verified. From the
definition of Y,(u, z), we see

Yy(w,2) =1sh(z)?s + %272
Recall the expression of J from (3.2). Then by using (2.5), we get
AT =T+ 3n(—1)"1272 + Szt
and thus
Y,(J,2) =J(z) + 3sh(z)? 8272 + 5274,

where i(z) = X, ;5. ,h(n)z7" . The actions of w and J on the top
levels of M(1)(8)" and M(1)(#)~ are immediately derived.

4. CLASSIFICATION OF IRREDUCIBLE MODULES FOR M(1)*

In this section we explicitly determine the algebra structure of A(M(1)™")
and use this result to prove that the list of the irreducible modules in
Section 3.4 is complete.

4.1. The Structure of ACM(1)™)

It was proved in Section 3.3 that Zhu’s algebra A(M(D)*) as an
associative algebra is generated by [w] and [J]. Since [w] is a central
element, A(M(1)*) is a commutative associative algebra and must be
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isomorphic to a quotient of the polynomial algebra C[x, y] with variables x
and y modulo an ideal 1. We still need to determine the ideal explicitly.
For this purpose we will find relations between [w] and [J] in A(M(1)*).

For convenience we simply write u instead of [u] for u € M(1)* and wv
instead of u = v.

ProprosiTION 4.1. In A(M(1)"),

J?=p(w) +q(w)J,
where

1816 .4 212 .3 89

p(x)=?x _?x +1_0 2 314 .2 27

x? — 2y, qg(x) = — 2352 + By — 2
Equivalently,
(J + o — 40%)(70J + 908 w? — 515w + 27) = 0.

Proof. Recall that as a module for the Virasoro algebra, M(1)* has the
decomposition M(1)*= @, _, L(1,4m?). Since J is the singular vector
with weight 4, we see

J2=Y (?)J_lj € L(1,0) ® L(1,4).

i>0 l
Therefore, from Remark 3.6, we get

7% = p(w) +q(w)J, (4.0)

where p and g are polynomials of degrees less than or equal to 4 and 2,
respectively. Let

p(x) =ax* + Bx®+ yx?* + 6x+ € and q(x) =ax?+ bx + c.

To determine the coefficients of p(x) and g(x), we evaluate both sides
of (4.1) on modules listed in Section 3.4.

Since w =J = 0 on the top level of M(1)*, we have € = 0. On the top
level of M(D*, w=1and J= —6give a+ B+ y+86—6(a+b+c)
= 36. Furthermore, on the top levels of M(1, A) for A € C* we know
o= M)/2and J = \* — A\?/2. Comparing the coefficients of A’s tells us

a+ 4a =16, B+4b —a = -8, v+ 4c —b =1, 6—c=0.

Finally, we get two more equations by substituting » = 1/16, J = 3/128
on M(1)(0)" and w=9/16, J = —45,/128 on M(1)(6#)~. Solving this
linear system gives the desired result. i
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ProprosITION 4.2. In A(M(1)7"),
(w— l)(w — %)(w — 19—6)(./ + w— 4w2) = 0.

As a vertex operator algebra, M(1)* has the weight space decomposi-
tion M(1) + = &, _ , M(1),,. The list of dim M(1),, for m up to 10 is

m 0 1 2 3 4 5 6 7 8 9 10
dim M(D),} 1 0 1 1 3 3 6 7 12 14 22

To produce the second relation, we need the following lemma, whose
proof is given in the Appendix.

LEMMA 4.3. The vectors

L(-1)M(1),, L(-3)M(1);, h(-1)*:n(-1*, L(-2%
(4.2)

span M(1);,.

Now we can prove Proposition 4.2. First note that any weight 10 vector is
contained in L(1,0) ® L(1,4) and is a linear combination of vectors of
type L(—ny) - L(—ny), L(-m,) - L(—m)J, where n;, > -+ >n, >
2,my > -+ >m,>1YXn, =10, and ¥m, + 4 = 10. From the proof of
Theorem 3.5, images of this kind of vectors in A(M(1)*) can be expressed
as linear combinations of o’ (i = 0,1,...,5) and »'J (i =0,1,2,3).

By Proposition 2.2(i) and (i), L(-1M(1)g4, L(-3)M(1);, and
h(—1)*;h(—1)*1 are congruent to vectors whose homogeneous compo-
nents have weights less than 10. Note that o’ = L(—2)'1 + lower weight
terms. Then it follows from Remark 3.6 and Proposition 4.1 that
L(—DM@Qg , L(-3)M(1)7, and A(—1)* ;A(—1)*1 are congruent to vec-
tors spanned by o, (i =0,1,...,4) and »'J (i =0,1,2). Thus by Lemma
4.3 we see that M(1);; + O(M(1)") is spanned by ' (i =0,1,...,5) and
'J (i =0,1,2). As a result we have

0’ = P(w) + O(w)J,
where det P < 5 and deg Q < 2. Evaluating this equation on the top levels

of the modules listed in Section 3.4 gives the desired result.
Now we can state our first main theorem.

THEOREM 4.4. We have the algebra isomorphism

Clx, y1/<P, Q) =A(M(1) "),
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where
P = (y +x — 4x*)(70y + 908x* — 515x + 27),
0= (x—-1)(x—5)(x— %)y +x—4x%).
Proof. By Theorem 3.5, we have a surjective algebra homomorphism

¢:Clx,y] > A(M(1)"),

y —J.

Let K(x,y) € Ker ¢ and regard K(x, y) as a polynomial in variable y.
Note that P(x, y) has degree 2 in y. Using the division algorithm we can
write  K(x, y) = A(x, y)P(x, y) + R(x, y), where A(x, y), R(x,y) €
Clx, y] so that R(x,y) has degree 1 in y. We can express R(x,y) as
R(x,y) = B(x)(y + x — 4x?) + C(x). By Proposition 4.1, P(x, y) € Ker ¢.
So we have

B(w)(J+ o — 4w2) + C(w) = 0. (4.3)

Evaluating (4.3) on the top levels of modules M(1, A) yields C(A?/2) = 0,
since J + w — 4w? = 0 on the top level of M(1, A) for all A € C*. Thus
C(x) = 0 as a polynomial. Further evaluating (4.3) on the top levels of
M(1)~, M(1)X()* and noting that J + w — 4w? # 0, we get B(1) =
B(1/16) = B(9/16) = 0. This implies (x — 1)(x — 1/16)(x — 9,/16)| B(x).
Thus we reach

K(x,y) =A(x,y)P(x,y) + D(x)Q(x,y)

for some polynomial D(x). Since Q(x, y) lies in Ker ¢ already by Proposi-
tion 4.2, we conclude that Ker ¢ = {(P(x,y), O(x,y)). 1
4.2. Classification of Irreducible Modules for M(1)*

Finally we can use A(M(1)"), whose algebra structure was determined
in the previous section, to classify the irreducible modules for M(1)*.

THEOREM 4.5. The set
{M(1)*, M(1)(8)", M(1, 1) = M(1,—)), r € C*}

gives a complete list of inequivalent irreducible M(1)* modules. Moreover,
any irreducible admissible M(1)* module is an ordinary module.
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Proof. Let M = &@,_, M(n) be an irreducible admissible M(1)* mod-
ule with M(0) # 0. Then M(0) is an irreducible A(M(1)*) module. Since
A(M(1)™) is commutative, M(0) is one dimensional. So both @ and J act
as scalars « and 8 on M(0). From Theorem 4.4 we have

(B+ a— 4a?)(70B + 908a? — 515a + 27) = 0
and

(a— 1)(a— 1—16)(a — %)(,B+ a — 4a2) = 0.
If B+ a—4a?=0and a # 0, then M(0) is isomorphic to the top level
of M(1,vV2a) and M is isomorphic to M(1,vV2a). If B+ a —4a? =0
and « = 0, then M is isomorphic to M(1)*. Otherwise we have (a — 1)«
—1/16)a — 9/16) =0 and 708 + 908@? — 515a + 27 = 0. One can
easily verify that M is isomorphic to M(1)~, M(1)(6)*, and M(1)6)~
when o« =1,1/16,and 9/16. |

APPENDIX

Here we give the details of a proof of Lemma 4.3. First, we list bases of
MQ)F, M(D)4, and M(D);, which have dimensions 7, 14, and 22, respec-
tively.

A basis of M(1)7:

e, = h(—6)h(—1)1, e, = h(—=5)h(—2)1,
e; = h(—4)h(-3)1, e, = h(—4)h(—1)%1,
es = h(=3)h(—2)h(—1)"1,  e; = h(—2)°h(—1)1,
e; = h(—2)h(—1)°1.

A basis of M(1)g :

fi=h(—8)h(—1)1, fo = h(=T)h(=2)1,
fs=h(=6)h(=3)1, fo=h(=8)h(~1)°L,
fs =h(=5)h(=4)1, fs = h(=5)h(=2)h(—~1)1,
fr=h(=8h(=3)h(-1)1,  fy=h(—4)h(-2)*h(-1)1,
fo = h(=4)h(—=1)°1, fio = h(=3)*h(=2)h(~1)1,
fu = h(=3)h(-2)1, fi2 = h(=3)h(=2)h(~ 1)L,

fia = h(=2)°h(=1)"1, fie = h(=2)h(=1)"1.
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A basis of M(1)f:

& =h(=9)h(-1)1, g2 = h(=8)h(-2)1,

g =h(=T)h(-3)L, g, = h(=7)h(-1)1,

gs = h(=6)h(—4)1, g5 = h(—6)h(=2)h(~1)1,

g =h(=5)1, g5 = h(=5)h(=3)h(-1)1,

g8 =h(=5)h(=2)"h(=1)1, g, =h(=5)h(-1)",

g = h(—=4)°h(-1)1, 812 = h(—=4)h(—=3)h(=2)h(-1)1,

g1 =h(=4)h(-2)’L, 814 = h(=4)h(-2)h(-1)"1,

g5 = h(=3)°h(~1)1, 815 = h(=3)"h(-2)"L,

817 zh(_s)zh(_l)All 818 =h(—3)h(—2)2h(—1)31,

819 :h(_3)h(_1)71! 820 :h(_Z)Ah(_l)zll

821 :h(_z)zh(_l)sll 822 :h(_l)lol-

TABLE Al
81 82 83 84 8 8 87 8 89 8o 8u

L(-Df, 8 1. 0 0 0 0 0O 0O O 0 O
L(-Df, 0 7 2 0 0 0 0 0 0 0 0
L(=1f, 00 6 0 3 0 0 0 0 0 0
L(-Df, 00 0 6 0 3 0 0 0 0 0
L(=1fs 00 0 0 5 0 4 0 0 0 0
L(=Dfs 00 0 0 0 5 0 2 2 0 0
L(-1f; 00 0 0 0 0O 0 4 0 0 3
L(=1f, 00 0 0 0 0 0 0 4 0 0
L(=Df, 00 0 0 0 0O 0O 0 0 4 0
L(—=Dfp 0 0 0 0 0 0 0O 0 0 0 0
L(-Dfy 0 0 0 0 0 0 0 0 0 O 0
L(-Dfy, 0 0 0 0 0 0 0O 0 0 0 0
L(—Df3 0 0 0 0 0 0 0 0 0 O 0
L(=1fy, 00 0 0 0 00O 0 0 0 0
L(—3)e, 6 0 0 0 1 1 0 0 0 0 O
L(-3)e, 05 0 0 0 0 2 0 1 0 0
L(—23)e, 00 4 0 3 0 0 0 0 0 0
L(-3e, 0 0 0 4 0 0 0 0 0 0 3
L(—3)eg 00 0 0 0 3 0 2 0 0 0
L(—3)eg 00 0 0 0 0O 0O 0 6 0 0
L(—3)e; 00 0 0 0 0O 0O 0 0 2 0
h(—D*;h(-1)*1 96 0 0 144 0 144 0 144 0 48 72
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It is easy to see that
h(—1)"5h(-1)"1
= 96h( —9)h( —1)1 + 144h(~T)h(—1)1

+ 144h( —6)h( —2)h(—1)*1 + 144h(—5)h( —3)h(—1)*1Q
+ 72h(—4)*h(—1)* + 48h(-5)h(—1)°1
+ 96h( —4)h(—2)h(—1)"1 + 48h(—3)*h(—1)"1
+ 48h(—3)h(—2)’h(—1)°1 + 4h(-3)h(—1)"1
+6h(—2)*h(—1)"1.

Tables Al and A2 give the precise linear combinations of certain vectors
in terms of g, for i = 1,...,22. For example, L(—-1)f, = 8g, + g,. We
know from the tables that the vectors in (4.2) without L(—2)°1 span a 21
dimensional subspace of M(1);, and none of these vectors involves the
term A(—1)1°1. On the other hand, L(—2)°1 involves the term A(—1)11.
Thus the vectors in (4.2) span M(1){;, as expected.

TABLE A2

812 813 814 815 816 817 818 819 820 821 822

L(-Df, o 0 0 0 O 0 0 0 0 0 O
L(-1f, o 0o o0 O O 0 0O 0 0 0 0
L(—=Df, o 0 0 0 0O 0 0 0 0 0 O
L(-Df, o 0o 0 0 O 0 0O 0 0 0 O
L(—Df; o 0 0 0 0O 0 0 0 0 0 O
L(-Df, o 0o 0 0 O 0 0O 0 0 0 O
L(-Df, 2 0 0 0 0O 0 0 0 0 0 O
L(—Dfq 4 1 0 0O 0 O O 0 0 o0 O
L(—Df, 0o 0 5 0 0 0 0 0 0 0 O
L(—=Dfy, 6 0 0 2 1 0 0 0 0 0 O
L(-Dfy, o 3 0 0 6 0 0O 0 0 0 O
L(-Df, 0o 0 3 0 0 2 4 0 0 0 O
L(—1fy, o 0 o0 0 O O 6 0 3 0 O
L(—=Df, o 0o o0 0 O 0 0 2 0 7 0
L(—3)e, o 0o o0 0 O 0 0O 0 0 0 O
L(—3)e, 0o 0 0 0 O O 0 0 0 0 O
L(—3)e, 1 0 0 O O O 0O 0 0 0 O
L(—3)e, o 0o 1 0 0 0 0 0 0 0 O
L(—3)eg 2 0 0 0 0O 0 1 0 0 0 O
L(—3)eg o 1 0 0 O O 0 0 1 0 0
L(—3)e, o 0 5 0 0 0 0 0 0 1 0
h(-D*m(-1* 0 0 9% 0 0 48 48 4 0 6 O
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