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If x and y are roots in the root system with respect to the standard
(Tits) geometric realization of a Coxeter group W , we say that x
dominates y if for all w ∈ W , wy is a negative root whenever wx
is a negative root. We call a positive root elementary if it does
not dominate any positive root other than itself. The set of all
elementary roots is denoted by E . It has been proved by B. Brink
and R.B. Howlett [B. Brink, R.B. Howlett, A finiteness property
and an automatic structure of Coxeter groups, Math. Ann. 296
(1993) 179–190] that E is finite if (and only if) W is a finite-
rank Coxeter group. Amongst other things, this finiteness property
enabled Brink and Howlett to establish the automaticity of all
finite-rank Coxeter groups. Later Brink has also given a complete
description of the set E for arbitrary finite-rank Coxeter groups
[B. Brink, The set of dominance-minimal roots, J. Algebra 206
(1998) 371–412]. However the set of non-elementary positive
roots has received little attention in the literature. In this paper
we answer a collection of questions concerning the dominance
behavior between such non-elementary positive roots. In particular,
we show that for any finite-rank Coxeter group and for any non-
negative integer n, the set of roots each dominating precisely n
other positive roots is finite. We give upper and lower bounds for
the sizes of all such sets as well as an inductive algorithm for their
computation.

© 2012 Elsevier Inc. All rights reserved.

1. Summary of background material

Definition 1.1. (See Krammer [12].) Suppose that V is a vector space over R and let ( , ) be a bilinear
form on V , and let Π be a subset of V . Then Π is called a root basis if the following conditions are
satisfied:
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(C1) (a,a) = 1 for all a ∈ Π , and if a, b are distinct elements of Π then either (a,b) = − cos(π/mab)

for some integer mab = mba � 2, or else (a,b) � −1 (in which case we define mab = mba = ∞);
(C2) 0 /∈ PLC(Π), where for any set A, PLC(A) denotes the set{∑

a∈A

λaa
∣∣∣ λa � 0 for all a ∈ A and λa′ > 0 for some a′ ∈ A

}
.

If Π is a root basis, then we call the triple C = (V ,Π, ( , )) a Coxeter datum. Throughout this paper
we fix a particular Coxeter datum C . Observe that (C1) implies that for each a ∈ Π , a /∈ PLC(Π \ {a}).
Furthermore, (C1) together with (C2) yield that whenever a,b ∈ Π are distinct then {a,b} is linearly
independent. For each a ∈ Π define ρa ∈ GL(V ) by the rule: ρax = x − 2(x,a)a, for all x ∈ V . Note that
ρa is an involution, and ρaa = −a. The following proposition summarizes a few useful results:

Proposition 1.2. (See [9, Lecture 1].)

(i) Suppose that a,b ∈ Π are distinct such that mab �= ∞. Set θ = π/mab. Then for each integer i,

(ρaρb)
ia = sin(2i + 1)θ

sin θ
a + sin 2iθ

sin θ
b,

and in particular, ρaρb has order mab.
(ii) Suppose that a,b ∈ Π are distinct such that mab = ∞. Set θ = cosh−1(−(a,b)). Then for each integer i,

(ρaρb)
ia =

{
sinh(2i+1)θ

sinh θ
a + sinh 2iθ

sinh θ
b, if (a,b) �= −1,

(2i + 1)a + 2ib, if (a,b) = −1,

and in particular, ρaρb has infinite order.

Let GC be the subgroup of GL(V ) generated by the involutions in the set {ρa | a ∈ Π}. Let (W , R)

be a Coxeter system in the sense of [2], [8] or [11] with R = {ra | a ∈ Π} being a set of involutions
generating W subject to the condition that (rarb)

mab = 1 for all distinct a,b ∈ Π with mab �= ∞. Fur-
thermore, suppose that there exists a group homomorphism φC : W → GC satisfying φC (ra) = ρa for
all a ∈ Π . This homomorphism together with the GC -action on V give rise to a W -action on V : for
each w ∈ W and x ∈ V , define wx ∈ V by wx = φC (w)x. It can be easily checked that this W -action
preserves ( , ). Denote the length function of W with respect to R by �. Then we have:

Proposition 1.3. (See [9, Lecture 1].) Let GC , W and R be as the above, and let w ∈ W and a ∈ Π . Then
�(wra) � �(w) implies that wa ∈ PLC(Π).

Corollary 1.4. (See [9, Lecture 1].) φC : W → GC is an isomorphism.

Proof. All we need to show is that φC is injective. Let w ∈ W such that wa = a for all a ∈ Π . If w �= 1
then �(w) � 1, and so we can write w = w ′ra with a ∈ Π and �(w ′) = �(w)−1. Since �(w ′ra) > �(w ′)
the above proposition yields that w ′a ∈ PLC(Π); but then

a = wa = w ′raa = w ′(−a) = −w ′a,

implying 0 = a + w ′a ∈ PLC(Π), contradicting (C2) of the definition of a root basis. �
In particular, the above corollary yields that (GC , {ρa | a ∈ Π}) is a Coxeter system isomorphic to

(W , R). We call (W , R) the abstract Coxeter system associated to the Coxeter datum C and we call W
a Coxeter group of rank #R , where # denotes cardinality.
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Definition 1.5. The root system of W in V is the set

Φ = {wa | w ∈ W and a ∈ Π}.
The set Φ+ = Φ ∩ PLC(Π) is called the set of positive roots, and the set Φ− = −Φ+ is called the set
of negative roots.

From Proposition 1.3 and Corollary 1.4 we may readily deduce that:

Proposition 1.6. (See [9, Lecture 3].)

(i) Let w ∈ W and a ∈ Π . Then

�(wra) =
{

�(w) − 1 if wa ∈ Φ−,

�(w) + 1 if wa ∈ Φ+.

(ii) Φ = Φ+ � Φ− , where � denotes disjoint union.
(iii) W is finite if and only if Φ is finite.

Let T = ⋃
w∈W w R w−1, and we call it the set of reflections in W . For x ∈ Φ , let ρx ∈ GL(V ) be

defined by the rule: ρx(v) = v − 2(v, x)x, for all v ∈ V . Since x ∈ Φ , it follows that x = wa for some
w ∈ W and a ∈ Π . Direct calculations yield that ρx = (φC (w))ρa(φC (w))−1 ∈ GC . Now let rx ∈ W
such that φC (rx) = ρx . Then rx = wra w−1 ∈ T , and we call it the reflection corresponding to x. It
is readily checked that rx = r−x for all x ∈ Φ and T = {rx | x ∈ Φ}. For each t ∈ T we let αt be the
unique positive root with the property that rαt = t . It is also easily checked that there is a bijection
T ↔ Φ+ given by t → αt (t ∈ T ), and x → φ−1

C (ρx) (x ∈ Φ+). We call this bijection the canonical
bijection between T and Φ+ .

For each x ∈ Φ+ , as in [3], we define the depth of x relative to R , written dp(x), by requiring
dp(x) = min{�(w) | w ∈ W and wx ∈ Φ−}. For x, y ∈ Φ+ , we say that x precedes y, written x ≺ y
if and only if the following condition holds: there exists w ∈ W such that y = wx and dp(y) =
�(w) + dp(x). It is readily seen that precedence is a partial order on Φ+ , and (Φ+,≺) forms a root
poset in the sense of [1]. The next result is taken from [3]:

Lemma 1.7. (See [3, Lemma 1.7].) Let r ∈ R and α ∈ Φ+ \ {αr}. Then

dp(rα) =
⎧⎨
⎩

dp(α) − 1 if (α,αr) > 0,

dp(α) if (α,αr) = 0,

dp(α) + 1 if (α,αr) < 0.

Define functions N : W → P(Φ+) and N : W → P(T ) (where P denotes power set) by setting
N(w) = {x ∈ Φ+ | wx ∈ Φ−} and N(w) = {t ∈ T | �(wt) < �(w)} for all w ∈ W . Standard arguments as
those used in [11] yield that for each w ∈ W , �(w) = #N(w) and N(w) = {rx | x ∈ N(w)}. In particular,
N(ra) = {a} for each a ∈ Π . Furthermore, �(w v−1) + �(v) = �(w), for some w, v ∈ W , if and only if
N(v) ⊆ N(w).

A subgroup W ′ of W is a reflection subgroup of W if W ′ = 〈W ′ ∩ T 〉 (W ′ is generated by the
reflections that it contains). For any reflection subgroup W ′ of W , let

S
(
W ′) = {

t ∈ T
∣∣ N(t) ∩ W ′ = {t}}

and

�
(
W ′) = {

x ∈ Φ+ ∣∣ rx ∈ S
(
W ′)}.
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It was shown by Dyer in [6] and Deodhar in [5] that (W ′, S(W ′)) forms a Coxeter system:

Theorem 1.8 (Dyer).

(i) Suppose that W ′ is a reflection subgroup of W . Then (W ′, S(W ′)) forms a Coxeter system, and further-
more, W ′ ∩ T = ⋃

w∈W ′ w S(W ′)w−1 .
(ii) Suppose that W ′ is a reflection subgroup of W and suppose that a,b ∈ �(W ′) are distinct. Then

(a,b) ∈ {− cos(π/n)
∣∣ n ∈N and n � 2

} ∪ (−∞,−1].
And conversely if � is a subset of Φ+ satisfying the condition that

(a,b) ∈ {− cos(π/n)
∣∣ n ∈N and n � 2

} ∪ (−∞,−1]
for all a,b ∈ � with a �= b, then � = �(W ′) for some reflection subgroup W ′ of W . In fact, we have W ′ =
〈{ra | a ∈ �}〉.

Proof. (i) [6, Theorem 3.3].
(ii) [6, Theorem 4.4]. �
Suppose that W ′ is a reflection subgroup of W and suppose that ( , )′ is the restriction of ( , ) on

the subspace of V spanned by �(W ′). Then C ′ = (span(�(W ′)),�(W ′), ( , )′) is a Coxeter datum with
(W ′, S(W ′)) being the associated abstract Coxeter system. Consequently the notion of a root system
applies to C ′ . We let Φ(W ′), Φ+(W ′) and Φ−(W ′) be, respectively, the set of roots, positive roots
and negative roots for the datum C ′ . Then it follows from Definition 1.5 that Φ(W ′) = W ′�(W ′),
Φ+(W ′) = Φ(W ′) ∩ PLC(�(W ′)) and Φ−(W ′) = −Φ+(W ′). Note that Theorem 1.8 (i) yields that

Φ
(
W ′) = {

x ∈ Φ
∣∣ rx ∈ W ′}.

We call S(W ′) the set of canonical generators of W ′ , and we call �(W ′) the set of canonical roots
of Φ(W ′) (note that �(W ′) forms a root basis for the Coxeter datum C ′). In this paper a reflection
subgroup W ′ is called a dihedral reflection subgroup if #S(W ′) = 2.

A subset Φ ′ of Φ is called a root subsystem if ryx ∈ Φ ′ whenever x, y are both in Φ ′ . It is eas-
ily seen that there is a bijective correspondence between reflection subgroups W ′ of W and root
subsystems Φ ′ of Φ given by W ′ �→ Φ(W ′) and Φ ′ �→ 〈{rx | x ∈ Φ ′}〉.

Theorem 1.8 (ii) yields that if a,b ∈ Φ+ then {a,b} forms the set of canonical roots for the dihedral
reflection subgroup 〈{ra, rb}〉 generated by ra and rb if and only if (a,b) = − cos(π/n) for some integer
n � 2 or else (a,b) � −1. Observe that in either of these cases, {a,b} is linearly independent. In the
former case a similar calculation as in Proposition 1.2 (i) yields that (rarb)

n acts trivially on V , further-
more, the dihedral reflection subgroup 〈{ra, rb}〉 is finite. In the latter case, let θ = cosh−1(−(a,b)),
and for each integer i, we employ the following notation throughout this paper:

ci =
{

sinh(iθ)
sinh θ

, if θ �= 0;
i, if θ = 0.

(1.1)

Then similar calculations as in Proposition 1.2 (ii) yield that for each i,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(rarb)
ia = c2i+1a + c2ib;

rb(rarb)
ia = c2i+1a + c2i+2b;

(rbra)
ib = c2ia + c2i+1b;

r (r r )ib = c a + c b.

(1.2)
a b a 2i+2 2i+1
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It is well known (and can be easily deduced from (1.2)) that

Φ
(〈{ra, rb}

〉) = {cia + ci±1b | i ∈ Z}. (1.3)

Since ci > 0 for all i > 0, it follows from (1.2) and the fact that {a,b} is linearly independent that rarb
has infinite order, and consequently 〈{ra, rb}〉 is an infinite dihedral reflection subgroup of W . Observe
that ci �= c j whenever i �= j, hence (1.2) yields that a and b are not conjugate to each other under the
action of 〈{ra, rb}〉, and consequently 〈{ra, rb}〉 has two orbits on Φ(〈{ra, rb}〉), one containing a and
the other containing b. The root cia + ci±1b lies in the former orbit if and only if i is odd, and it lies
in the latter orbit if and only if i is even.

For the rest of this section we assume that a,b ∈ Φ+ with (a,b) � −1 and we keep all the notation
of the preceding paragraph.

Proposition 1.9. Suppose that W ′ is a reflection subgroup of the dihedral reflection subgroup 〈{ra, rb}〉. Then
#S(W ′) � 2.

Proof. Suppose for a contradiction that there are at least three canonical generators x, y and z for the
subsystem Φ ′ . Then from (1.3) we know that there are three integers m, n and p with x = cma+cm±1b,
y = cna + cn±1b and z = cpa + cp±1b. If either

{
x = cma + cm+1b,

y = cna + cn+1b
or

{
x = cma + cm−1b,

y = cna + cn−1b,

then either (x, y) = cosh((m − n)θ) � 1 (if θ �= 0), or else (x, y) = 1 (if θ = 0), resulting in a con-
tradiction to Theorem 1.8 (ii). Without loss of generality, we may assume that x = cma + cm+1b
and y = cna + cn−1b. Now if z = cpa + cp+1b, then a short calculation yields that, again, either
(x, z) = cosh((m − p)θ) � 1 (if θ �= 0), or else (x, z) = 1 (if θ = 0), a contradiction to Theorem 1.8 (ii);
on the other hand if z = cpa + cp−1b then, as before, either (z, y) = cosh((n − p)θ) � 1 (if θ �= 0), or
else (z, y) = 1 (if θ = 0), again a contradiction to Theorem 1.8 (ii). �

We close this section with an explicit calculation of the canonical roots for an arbitrary di-
hedral reflection subgroup of 〈{ra, rb}〉. These technical results will be used in Section 3. Let θ =
cosh−1(−(a,b)), as before.

Suppose that x = cma + cm+1b and y = cna + cn−1b are positive roots in Φ(〈{ra, rb}〉) (that is,
m is a non-negative integer and n is a positive integer). Then either (x, y) = − cosh((m + n)θ) � −1
(when θ �= 0), or else (x, y) = −1 (when θ = 0), and hence it follows from Theorem 1.8 (ii) that
{x, y} = �(〈{rx, ry}〉).

Suppose that x = cma + cm+1b and y = cna + cn+1b are roots in Φ(〈{ra, rb}〉) (with n < m ∈ Z). Put
d = m − n. Proposition 1.2 (ii) yields that

Φ
(〈{rx, ry}

〉) = {ckd−ma + ckd−m−1b, ckd+ma + ckd+m+1b | k ∈ Z}. (1.4)

Let α, β be the canonical roots for this root subsystem. Then we claim that α = cia + ci−1b and
β = c ja + c j+1b for some positive integer i and non-negative integer j. Indeed, (1.3) yields that the
only other possibilities are either

{
α = cia + ci+1b,

β = c ja + c j+1b
or

{
α = cia + ci−1b,

β = c ja + c j−1b,

and in either of these two cases, either (α,β) = cosh((i − j)θ) � 1, or else (α,β) = 1, both contra-
dicting Theorem 1.8 (ii). Therefore our claim holds, and in view of (1.4) we have
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{
α = ck1(m−n)−ma + ck1(m−n)−m−1b,

β = ck2(m−n)+ma + ck2(m−n)+m+1b,
(1.5)

for some integers k1 and k2. In fact, k1 and k2 satisfy the condition that k1(m −n)−m is the smallest
positive integer of this form and k2(m − n) + m is the smallest non-negative integer of this form.

Suppose that x = cm+1a + cmb and y = cn+1a + cnb are roots in Φ(〈{ra, rb}〉) (with n,m ∈ Z). Put
d = m − n. Interchanging the roles of a and b in the preceding paragraph, we see that

Φ
(〈{rx, ry}

〉) = {cld+m+1a + cld+mb, cld−m−1a + cld−mb | k ∈ Z}. (1.6)

Let α′ , β ′ be the canonical roots for this root subsystem. Exactly the same reasoning as in the
preceding paragraph yields that{

α′ = cl1(m−n)+m+1a + cl1(m−n)+mb,

β ′ = cl2(m−n)−m−1a + cl2(m−n)−mb,
(1.7)

for some integers l1 and l2. Indeed l1 and l2 satisfy the conditions that l1(m − n) + m is the smallest
non-negative integer of this form and l2(m − n) − m is the smallest positive integer of this form.

2. Canonical coefficients

For a Coxeter datum C = (V ,Π, ( , )), since Π may be linearly dependent, the expression of a root
in Φ as a linear combination of elements of Π may not be unique. Thus the concept of the coefficient
of an element of Π in any given root in Φ is potentially ambiguous. This section gives a canonical
way of expressing a root in Φ as a linear combination of elements from Π . This canonical expression
follows from a standard construction similar to the one considered in [10].

Given a Coxeter datum C = (V ,Π, ( , )), let E be a vector space over R with basis ΠE = {ea | a ∈ Π}
in bijective correspondence with Π and let ( , )E be the unique bilinear form on E satisfying

(ea, eb)E = (a,b), for all a,b ∈ Π.

Then CE = (E,ΠE , ( , )E ) is a Coxeter datum. Moreover, CE and C are associated to the same abstract
Coxeter system (W , R). Corollary 1.4 yields that φCE : W → GCE = 〈{ρea | a ∈ Π}〉 is an isomorphism.
Furthermore, W acts faithfully on E via ra y = ρea y for all a ∈ Π and y ∈ E .

Let f : E → V be the unique linear map satisfying f (ea) = a, for all a ∈ Π . It is readily checked
that ( f (x), f (y)) = (x, y)E , for all x, y ∈ E . Now for all a ∈ Π and y ∈ E ,

ra
(

f (y)
) = ρa

(
f (y)

) = f (y) − 2
(

f (y),a
)
a = f (y) − 2

(
f (y), f (ea)

)
f (ea)

= f
(

y − 2(y, ea)E ea
)

= f (ρea y)

= f (ra y).

Then it follows that w f (y) = f (wy), for all w ∈ W and all y ∈ E , since W is generated by {ra | a ∈ Π}.
Let ΦE denote the root system associated to the datum CE , and let Φ+

E (respectively, Φ−
E ) denote the

corresponding set of positive roots (respectively, negative roots). Then a similar reasoning as that of
Proposition 2.9 of [10] enables us to have:

Proposition 2.1. The restriction of f defines a W -equivariant bijection ΦE → Φ .

Proof. Since f (wea) = wa for all w ∈ W and a ∈ Π , it follows that f (ΦE ) = Φ . Proposition 1.6 ap-
plied to CE yields that, wea ∈ Φ+

E if and only if �(wra) = �(w) + 1, and this happens if and only if
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wa ∈ Φ+ , so f (Φ+
E ) = Φ+ . We are done if we can show that the restriction of f on Φ+

E is injective.
Suppose that there are x, y ∈ Φ+

E with f (x) = f (y). Then φC φ−1
CE

(ρx) = ρ f (x) = ρ f (y) = φC φ−1
CE

(ρy).

Since φC is an isomorphism, it follows that φ−1
CE

(ρx) = φ−1
CE

(ρy), that is, x and y correspond to the

same reflection in W . Since x, y ∈ Φ+
E , it follows that x = y, as required. �

Since ΠE is linearly independent, it follows that each root y ∈ ΦE can be written uniquely as∑
a∈Π λaea; we say that λa is the coefficient of ea in y and it is denoted by coeffea (y). We use this

fact together with the W -equivariant bijection f :ΦE ↔ Φ to give a canonical expression of a root
in Φ in terms of Π :

Definition 2.2. Suppose that x ∈ Φ . For each a ∈ Π , define the canonical coefficient of a in x, written
coeffa(x), by requiring that coeffa(x) = coeffea ( f −1(x)). The support, written supp(x), is the set of
a ∈ Π with coeffa(x) �= 0.

3. The dominance hierarchy

Definition 3.1.

(i) For x and y ∈ Φ , we say that x dominates y with respect to W if {w ∈ W | wx ∈ Φ−} ⊆ {w ∈ W |
wy ∈ Φ−}. If x dominates y with respect to W then we write x � y.

(ii) For each x ∈ Φ+ , set D(x) = {y ∈ Φ+ | y �= x and x � y}, and if x ∈ Φ+ and D(x) = ∅ then x is
called elementary. For each n ∈N, define Dn = {x ∈ Φ+ | #D(x) = n}.

Note that D0 here is the same set as E of [3] and [4]. In [3] and [4] dominance is only defined
on Φ+ , and it is found in [3] that dominance is a partial order on Φ+ . Here we have generalized
the notion of dominance to the whole of Φ , as was considered in, for example, [10]. It can be readily
seen that this generalized dominance is a partial order on Φ . Observe that it is clear from the above
definition that

Φ+ =
⊎
n∈N

Dn.

The set D0 has been properly investigated in [3] and [4]: if W is finite then D0 = Φ+ (that is, if W
is finite, then there is no non-trivial dominance among its roots), whereas if W is an infinite Coxeter
group of finite rank, then #D0 < ∞ and furthermore, we can explicitly compute D0. Observe that
in the latter case

⊎
n∈N,n�1 Dn will be an infinite set. One major result of this paper (Theorem 3.8

below) is that if R is finite then Dn is finite for all natural numbers n. We also give upper and lower
bounds on #Dn (Corollary 3.9 and Corollary 3.21 below). But first we need a few elementary results:

Lemma 3.2.

(i) If x and y ∈ Φ+ , then x � y if and only if (x, y) � 1 and dp(x) � dp(y) (with equality on depth if and
only if x = y).

(ii) Dominance is W -invariant: if x � y then wx � wy for any w ∈ W .
(iii) Suppose that x, y ∈ Φ , and x � y. Then −y � −x.
(iv) Suppose that x ∈ Φ+ and y ∈ Φ− . Then x � y if and only if (x, y) � 1.
(v) Let x, y ∈ Φ . Then there is dominance between x and y if and only if (x, y) � 1.

Proof. (i) Essentially the same reasoning as in [3, Lemma 2.3] applies.
(ii) Clear from the definition of dominance.
(iii) Suppose for a contradiction that there exists w ∈ W such that w(−y) ∈ Φ− and w(−x) ∈ Φ+ .

Then w(y) ∈ Φ+ yet w(x) ∈ Φ− , contradicting the assumption that x � y.
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(iv) Suppose that x � y. Since dominance is W -invariant, it follows that ryx � ry y ∈ Φ+ and hence
ry x ∈ Φ+ . Now part (i) yields that (ry x, ry y) � 1. Since ( , ) is W -invariant, it follows that (x, y) � 1.

Conversely, suppose that x ∈ Φ+ and y ∈ Φ− with (x, y) � 1. Then clearly ryx = x − 2(x, y)y ∈ Φ+ .
Thus ry x and ry y = −y are both positive. Then it follows from part (i) that there is dominance
between ry x and ry y. Since dominance is W -invariant, it follows that there is dominance between x
and y. Finally, given that x ∈ Φ+ and y ∈ Φ− , it is clear that x � y.

(v) Suppose that x, y ∈ Φ− . Then part (i) yields that there is dominance between −x and −y if
and only if (−x,−y) = (x, y) � 1. This combined with part (i) and part (iv) above yields the desired
result. �

The following is a simple result that we use repeatedly in this paper:

Lemma 3.3. Let x, y ∈ Φ be distinct with x � y and y ∈ D0 . Then:

(i) ry x ∈ Φ+;
(ii) (ry x, x) � −1 and (ry x, y) � −1, and in particular, ryx cannot dominate either x or y.

Proof. (i) Suppose for a contradiction that ry x ∈ Φ− . Lemma 3.2 (ii) then yields that ryx � ry y = −y.
Now Lemma 3.2 (iii) yields that y � −ry x ∈ Φ+ . Since y ∈ D0, this forces −ryx = y, contradicting
x �= y.

(ii) Since x � y, it follows from Lemma 3.2 (v) that (x, y) � 1. Then (ry x, y) = (x,−y) � −1 and
hence there is no dominance between ry x and y. Also (ryx, x) = (x, x)− 2(x, y)2 � −1, and thus there
is no dominance between x and ry x either. �

Suppose that x, y ∈ Φ with x � y. It is worthwhile investigating the connection between this
dominance and the canonical generators of the root subsystem Φ(〈{rx, ry}〉).

Proposition 3.4. Suppose that x, y ∈ Φ are distinct with x � y. Let a, b be the canonical roots for the root
subsystem Φ(〈{rx, ry}〉). Then there exists w ∈ 〈{rx, ry}〉 such that either

{
wx = a,

wy = −b
or else

{
wx = b,

wy = −a.

In particular, (a,b) = −(x, y).

Proof. By Theorem 1.8 (ii) we know that

(a,b) ∈ (−∞,−1] ∪ {− cos(π/n)
∣∣ n ∈N and n � 2

}
.

Suppose for a contradiction that (a,b) = − cos(π/n) for some integer n � 2. Write θ = π/n, and
Proposition 1.2 (i) yields that

Φ
(〈{ra, rb}

〉) =
{

sin(m + 1)θ

sin θ
a + sin mθ

sin θ
b

∣∣∣ m ∈N and 0 � m < 2n

}
.

So there are distinct integers m1 and m2 (strictly less than 2n) with

x = sin(m1 + 1)θ

sin θ
a + sin m1θ

sin θ
b and y = sin(m2 + 1)θ

sin θ
a + sinm2θ

sin θ
b.

But then (x, y) = cos((m1 − m2)π/n) < 1, contradicting Lemma 3.2 (v). Thus (a,b) � −1 and so
Lemma 3.2 (v) yields that a � −b and b � −a. It then follows readily that there are two dominance
chains in the root subsystem Φ(〈{ra, rb}〉), namely:
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· · · � rarbra(b) � rarb(a) � ra(b) � a � −b � rb(−a) � rbra(−b) � · · · (3.1)

and

· · · � rbrarb(a) � rbra(b) � rb(a) � b � −a � ra(−b) � rarb(−a) � · · · . (3.2)

Observe that each element of Φ(〈{ra, rb}〉) lies in exactly one of the above chains, and the negative of
any element of one of these chains lies in the other. Thus x′, y′ ∈ Φ(〈{ra, rb}〉) are in the same chain
if and only if (x′, y′) � 1 and in different chains if and only if (x′, y′) � −1.

From (3.1) we see that the roots dominated by a are all negative, and from (3.2) we see that the
roots dominated by b are all negative. Clearly we may choose w ∈ 〈{ra, rb}〉 such that either wx = a
or wx = b, and since wx � wy, it follows that either

wx = a and wy ∈ Φ
(〈{ra, rb}

〉) ∩ Φ− (3.3)

or

wx = b and wy ∈ Φ
(〈{ra, rb}

〉) ∩ Φ−. (3.4)

Suppose that wx = a. Then (a,−wy) = (wx,−wy) = −(x, y) � −1. Since −wy ∈ Φ(〈{rx, ry}〉) ∩ Φ+
and 〈{ra, rwy}〉 = 〈{rx, ry}〉, it follows from Theorem 1.8 (ii) that {a,−wy} is the set of canonical roots
for Φ(〈{rx, ry}〉), which then forces that −wy = b. Similarly, in the case wx = b, we may conclude
that wy = −a. �
Lemma 3.5. Suppose that x, y ∈ Φ are distinct with x � y. Let a and b be the canonical roots for Φ(〈{rx, ry}〉).
Then either

{
x = cma + cm+1b,

y = cm−1a + cmb
or

{
x = cma + cm−1b,

y = cm−1a + cm−2b,

for some integer m, where ci is as defined in (1.1) for each integer i.

Proof. Proposition 3.4 yields that (a,b) � −1. Since a, b are the canonical roots of Φ(〈{rx, ry}〉), it
follows from Eq. (1.3) that x = cma + cm±1b and y = cna + cn±1b, for some integers m and n. Let
θ = cosh−1(−(a,b)). If either

{
x = cma + cm+1b,

y = cna + cn−1b
or

{
x = cma + cm−1b,

y = cna + cn+1b,

then either (x, y) = − cosh((n + m)θ) � −1 (when θ �= 0), or else (x, y) = −1 (when θ = 0), contra-
dicting x � y. Therefore there are only two possibilities, namely:

{
x = cma + cm+1b,

y = cna + cn+1b
(3.5)

or

{
x = cma + cm−1b,

y = c a + c b.
(3.6)
n n−1
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First suppose that (3.5) is the case. Since a and b are the canonical roots for Φ(〈{ra, rb}〉) =
Φ(〈{rx, ry}〉), it follows from Eq. (1.5) that there are integers k1 and k2 such that

1 = k1(m − n) − m and 0 = k2(m − n) + m.

But then k1 + k2 = 1
m−n ∈ Z. Clearly this is only possible when m − n = ±1. On the other hand, since

x � y, it is readily seen that m > n, giving us x = cma + cm+1b and y = cm−1a + cmb. On the other
hand, if (3.6) is the case, then by taking Eq. (1.7) into consideration, a similar reasoning as above
yields that x = cma + cm−1b and y = cm−1a + cm−2b. �
Remark 3.6. Let x and y be as in Proposition 3.4 and Lemma 3.5 above. Then in fact x and y are
consecutive terms in precisely one of the dominance chains (3.1) or (3.2).

Now we are ready for the first key result of this paper:

Theorem 3.7. D1 ⊆ {rab | a,b ∈ D0}. Furthermore, if #R < ∞ then #D1 � (#D0)
2 − #D0 .

Proof. Suppose that x ∈ D1 and let D(x) = {y}. Clearly y ∈ D0. By Lemma 3.3 (i), we know that
ry x ∈ Φ+ . Thus to prove Theorem 3.7, it suffices to show that ry x ∈ D0.

Suppose for a contradiction that ry x ∈ Φ+ \ D0. Then there exists z ∈ Φ+ \{ry x} with ryx � z. Since
dominance is W -invariant, it follows that x � ry z. If ry z = y then z ∈ Φ− , contradicting our choice
for z. Then the fact D(x) = {y} implies that ry z ∈ Φ− and in particular, (z, y) > 0. Since ry x � z and
x � y, it follows from Lemma 3.2 (i) that (ryx, z) � 1 and (x, y) � 1. Then

1 � (ryx, z) = (
x − 2(x, y)y, z

)
= (x, z) − 2(x, y)(y, z),

implying that 1 � (x, z). Hence Lemma 3.2 (v) yields that either x � z or else z � x. In the latter case
ry x � z � x, contradicting Lemma 3.3 (ii). On the other hand, if x � z, then our construction forces
z = y. But then ry x � y, again contradicting Lemma 3.3 (ii). Thus ryx ∈ D0, as required. Since x ∈ D1
was arbitrary, it follows that D1 ⊆ {rab | a,b ∈ D0}.

Finally, since D1 does not contain elements of the form raa, where a ∈ D0, it follows that

D1 ⊆ {rab | a,b ∈ D0} \ −D0. (3.7)

In the case that #R < ∞, Theorem 2.8 of [3] yields that #D0 < ∞, and so it follows from (3.7) that
#D1 � (#D0)

2 − #D0. �
The above treatment of D1 can be generalized to Dn for arbitrary n ∈ N. Indeed we have:

Theorem 3.8. For n ∈N,

Dn ⊆
{

rab
∣∣∣ a ∈ D0, b ∈

⊎
m�n−1

Dm

}
.

Proof. The case n = 1 has been covered by Theorem 3.7, so we may assume that n > 1.
Let x ∈ Dn , and suppose that D(x) = {y1, y2, . . . , yn}, with yn being minimal with respect to dom-

inance. Clearly yn ∈ D0 and so Lemma 3.3 (i) yields that ryn x ∈ Φ+ . Hence either ryn x ∈ D0 or else
ryn x ∈ Φ+ \ D0.
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If ryn x ∈ D0, then

x ∈ {rab | a,b ∈ D0} ⊆
{

rab
∣∣∣ a ∈ D0, b ∈

⊎
m�n−1

Dm

}
,

and the desired result clearly follows, given the arbitrary choice of x.
If ryn x ∈ Φ+ \ D0, let z ∈ D(ryn x). We claim that there are at most (n − 1) possible values for z.

Observe that this claim implies the following:

ryn x ∈
⊎

m�n−1

Dm,

and it follows immediately that Dn ⊆ {rab | a ∈ D0, b ∈ ⊎
m�n−1 Dm}, since x ∈ Dn was arbitrary.

Thus all it remains to do is to prove the above claim. Since ryn x � z, Lemma 3.2 (ii) yields that
x � ryn z. Thus either ryn z ∈ Φ+ and in which case ryn z = yi , for 1 � i � n − 1; or else ryn z ∈ Φ−. If
ryn z ∈ Φ− then clearly (yn, z) > 0. Since ryn x � z and x � yn , Lemma 3.2 (v) yields that (ryn x, z) � 1
and (x, yn) � 1. Then

1 � (ryn x, z) = (
x − 2(x, yn)yn, z

)
= (x, z) − 2(x, yn)(yn, z),

and hence it follows that (x, z) � 1. Similar to the proof of Theorem 3.7, we can conclude that x � z
and so z ∈ {y1, . . . , yn}. Since x � z as well as ryn x � z, Lemma 3.3 (ii) yields that z ∈ {y1, . . . , yn−1}.
Summing up, if z ∈ D(ryn x), then

z ∈ {
ryn(yi)

∣∣ ryn(yi) ∈ Φ+, i ∈ {1, . . . ,n − 1}} ∪ {
yi

∣∣ ryn(yi) ∈ Φ−, i ∈ {1, . . . ,n − 1}},
and this is clearly a disjoint union of size n − 1. Thus ryn x ∈ Dm , for some m � n − 1 and the claim is
proved. �

Note that for each positive integer n, Theorem 3.8 immediately yields the following upper bound
for the size of the corresponding Dn .

Corollary 3.9. Suppose that #R < ∞. Then #Dn < ∞ for all n ∈N. Indeed

#Dn � (#D0)
n+1 − (#D0)

n.

Proof. Clearly Di ∩ D j = ∅ whenever i �= j, so Theorem 3.8 yields that Dn ⊆ {rab | a ∈ D0, b ∈⊎
m�n−1 Dm} \ (

⊎
m<n Dm), and the desired result then follows from a simple induction on n. �

Having shown that #Dn < ∞ for all n ∈N if #R < ∞, it is not immediately clear, at this stage, that
for each n ∈ N, the corresponding Dn �= ∅. Lemma 3.10 to Corollary 3.21 below will, amongst other
things, establish that Dn �= ∅ for each n ∈N if W is an infinite Coxeter group of finite rank.

Lemma 3.10. For n ∈N,

{
wa

∣∣ a ∈ D0, w ∈ W , �(w) < n
} ∩ Dn = ∅.
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Proof. Suppose for a contradiction that there exist some n ∈ N and x = wa ∈ Dn such that a ∈ D0
and w ∈ W with �(w) < n. Suppose that D(x) = {y1, . . . , yn}. Since dominance is W -invariant, it fol-
lows that a = w−1x dominates all of w−1 y1, w−1 y2, . . . , w−1 yn . Note that a /∈ {w−1 y1, . . . , w−1 yn}.
Since a is elementary, it follows that w−1 y1, . . . , w−1 yn ∈ Φ− , that is, y1, . . . , yn ∈ N(w−1), but this
contradicts the fact that #N(w−1) = �(w−1) = �(w) < n. �
Lemma 3.11.

R D0 ⊆ −D0 � D0 � D1.

Proof. Suppose that r ∈ R and x ∈ D0 are arbitrary. If rx ∈ Φ+ , then Lemma 3.10 above yields that
rx ∈ D0 � D1. On the other hand, if rx ∈ Φ− , then x ∈ Π , which in turn implies that r = rx and
rx = −x ∈ −Π ⊆ −D0. �

Generalizing Lemma 3.11, we have:

Lemma 3.12. For all n � 1,

R Dn ⊆ Dn−1 � Dn � Dn+1.

Proof. Suppose that n � 1, and let x ∈ Dn , and z ∈ Π be arbitrary. Since x �= z, it follows that rzx ∈ Φ+ .
Suppose for a contradiction that rzx ∈ Dm for some m � n + 2. Let D(rzx) = {y1, . . . , ym}. Then

x � rz y1, . . . , rz ym . Since x ∈ Dn , and m � n +2, it follows that there are 1 � i < j � m with rz yi ∈ Φ−
and rz y j ∈ Φ− . But this is impossible, since rz could only make one positive root negative. Therefore
we may conclude that rzx /∈ Dm where m � n+2. A similar argument also shows that rzx /∈ Dm′ where
m′ � n − 2, and we are done. �
Lemma 3.13. Suppose that x, y are in Φ+ with y ≺ x. Let w ∈ W be such that x = wy and dp(x) =
dp(y) + �(w). Then y ∈ Dm implies that x ∈ Dn for some n � m. Furthermore, w D(y) ⊆ D(x).

Proof. It is enough to show that the desired result holds in the case that w = ra for some a ∈ Π . The
more general proof then follows from an induction on �(w).

Since x = ra y and y ≺ x, Lemma 1.7 yields that (a, y) < 0, and so Lemma 3.2 (v) yields that
a /∈ D(y). Let D(y) = {z1, z2, . . . , zm}. Then the fact a ∈ Π implies ra D(y) ⊂ Φ+ . Since dominance
is W -invariant, it follows that x � razi for all i ∈ {1,2 . . . ,m}. Therefore {raz1, raz2, . . . , razm} ⊆ D(x),
whence x ∈ Dn for some integer n � m, and ra D(y) ⊆ D(x). �

The next proposition, somewhat an analogue to Lemma 1.7, has many applications, among which,
we can deduce, for arbitrary positive root x, the integer n for which x ∈ Dn . Furthermore, it enables
us to compute D(x) explicitly as well as to obtain an algorithm to compute all the Dn ’s systemati-
cally.

Proposition 3.14. Suppose that x ∈ Dn with n � 1, and a ∈ Π . Then

(i) rax ∈ Dn−1 if and only if (x,a) � 1;
(ii) rax ∈ Dn+1 if and only if (x,a) � −1;

(iii) rax ∈ Dn if and only if (x,a) ∈ (−1,1).

Proof. (i) Suppose that x ∈ Dn and a ∈ Π such that rax ∈ Dn−1. Let D(x) = {z1, z2, . . . , zn}. Since
dominance is W -invariant, it follows that rax � razi for all i ∈ {1,2, . . . ,n}. Thus at least one of
raz1, . . . , razn must be negative. Without loss of generality, we may assume that raz1 ∈ Φ− . Since
a ∈ Π , it follows that a = z1. Therefore x � a, and Lemma 3.2 (v) then yields that (x,a) � 1.
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Conversely, suppose that x ∈ Dn and a ∈ Π such that (x,a) � 1. Then Lemma 3.2 (i) yields that
x � a; furthermore, Lemma 1.7 yields that rax ≺ x. Hence Lemma 3.13 yields that

ra D(rax) ⊆ D(x). (3.8)

Now suppose for a contradiction that rax /∈ Dn−1. Then Lemma 3.12 yields that rax ∈ Dn � Dn+1.
From (3.8) it is clear that rax /∈ Dn+1. But if rax ∈ Dn , then (3.8) yields that ra D(rax) = D(x). Observe
that a ∈ D(x) and a /∈ ra D(rax), producing a contradiction as desired.

(ii) Replace x by rax in (i) above then we may obtain the desired result.
(iii) Follows from (i), (ii) and Lemma 3.12. �

Definition 3.15. For each x ∈ Φ+ , define

S(x) = {
w ∈ W

∣∣ �(w) = dp(x) − 1 and w−1x ∈ Π
}
,

T (x) = {
w ∈ W

∣∣ �(w) = dp(x) and w−1x ∈ Φ−}
.

In other words, for x ∈ Φ+ , S(x) (respectively, T (x)) consists of all w ∈ W of minimal length with
w−1x ∈ Π (respectively, w−1x ∈ −Π ). Note that for each w ∈ S(x), there exist some w ′ ∈ T (x) and
a ∈ Π such that w ′ = wra with �(w ′) = �(w) + 1.

Proposition 3.16. Suppose that x ∈ Φ+ and let w ∈ S(x) be arbitrarily chosen. Then x ∈ Dn where n =
#{b ∈ N(w−1) | (x,b) � 1}. In particular, the integer n is independent of the choice of w ∈ S(x).

Proof. Let x ∈ Φ+ and write x = wa where w ∈ S(x) and a ∈ Π . Let w = ra1 · · · ral be such that
l = �(w) and a1,a2, . . . ,al ∈ Π . Observe that for each i ∈ {2, . . . , l},

w−1(ra1 ra2 · · · rai−2)ai−1 = ral · · · ra1 ra1 · · · rai−2ai−1

= ral · · · rai rai−1ai−1

= −ral · · · rai ai−1. (3.9)

Under our assumptions

�(ral ral−1 · · · rai rai−1) = �(ral · · · rai ) + 1 and �(ra1 ra2 · · · rai−2 rai−1) = �(ra1 ra2 · · · rai−2) + 1,

hence Proposition 1.6 (i) yields that ral · · · rai ai−1 ∈ Φ+ and ra1 ra2 · · · rai−2 ai−1 ∈ Φ+ . Thus (3.9) yields
that

(ra1 ra2 · · · rai−2)ai−1 ∈ N
(

w−1). (3.10)

Now by Proposition 3.14, we can immediately deduce that x ∈ Dn where

n = #
{

i
∣∣ (ai−1, rai rai+1 · · · ral a) � −1

}
= #

{
i
∣∣ (

ra1 · · · rai−1(ai−1), ra1 · · · ral (a)
)
� −1

}
= #

{
i
∣∣ (

ra1 · · · rai−1(ai−1), x
)
� −1

}
= #

{
i
∣∣ (−ra1 · · · rai−2(ai−1), x

)
� −1

}
= #

{
b ∈ N

(
w−1) ∣∣ (−b, x) � −1

}
= #

{
b ∈ N

(
w−1) ∣∣ (b, x) � 1

}
.
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Lemma 3.2 (v) then yields that either x � b or b � x. Since all such b are in N(w−1) where w ∈ S(x),
it follows that w−1x ∈ Π and w−1b ∈ Φ− . Thus b cannot dominate x. So we may conclude that
x ∈ Dn , where

n = #
{

b ∈ N
(

w−1) ∣∣ x � b
}
, (3.11)

for all w ∈ S(x). But (3.11) says precisely that D(x) ⊆ N(w−1) and

D(x) = {
b ∈ N

(
w−1) ∣∣ x � b

}
= {

b ∈ N
(

w−1) ∣∣ (x,b) � 1
}
. �

From the above proof we immediately have:

Corollary 3.17. Let x ∈ Φ+ . Then D(x) ⊆ ⋂
w∈S(x) N(w−1).

It turns out that we can also say something about the roots in
⋂

w∈S(x) N(w−1) \ D(x). Indeed in

the next two lemmas we deduce that if b ∈ ⋂
w∈S(x) N(w−1), then (x,b) > 0.

Lemma 3.18. Suppose that x ∈ Φ+ , w ∈ T (x) and b ∈ N(w−1). Then (b, x) > 0.

Proof. If dp(x) = 1 then x ∈ Π , whence T (x) = {rx} and x = b, and so (b, x) = 1 as required. Thus we
may assume that dp(x) > 1 and proceed by an induction on dp(x). Let a ∈ Π ∩ N(w−1). Then

�(ra w) = �
(

w−1ra
) = �

(
w−1) − 1 = �(w) − 1.

Now since (ra w)−1(rax) = w−1x ∈ Φ− , it follows that

dp(rax) � �(ra w) < �(w) = dp(x),

and hence Lemma 1.7 yields that (a, x) > 0. If b = a then we are done, thus we may assume that
b �= a (in particular, rab ∈ Φ+) and let w ′ = ra w . Observe that then w ′ ∈ T (rax). Since b ∈ N(w−1), it
follows that rab ∈ N(w ′−1) and so the inductive hypothesis yields that (rab, rax) > 0. Finally since ( , )

is W -invariant, it follows that (b, x) > 0 as required. �
Lemma 3.19. Suppose that x ∈ Φ+ , w ∈ S(x) and b ∈ N(w−1). Then (b, x) > 0.

Proof. Follows from Lemma 3.18 and the fact that for each w ∈ S(x) there is a w ′ ∈ T (x) such that
N(w−1) ⊂ N(w ′−1). �
Lemma 3.20. For n ∈N, if Dn = ∅, then Dm = ∅ for all m ∈ N such that m > n.

Proof. Suppose for a contradiction that there exists n ∈ N such that Dn = ∅ and yet Dn+1 �= ∅. Let
x ∈ Dn+1. Then Lemma 3.12 yields that rax ∈ Dn+1 � Dn+2, for all a ∈ Π . Furthermore, Lemma 3.13
yields that if a ∈ Π such that rax ≺ x then rax ∈ Dn+1 still. Write x = wb, where b ∈ Π , and w ∈ S(x).
Suppose that w = ra1 ra2 · · · ral with �(w) = l and a1,a2, . . . ,al ∈ Π . Then rai · · · ra2 ra1 x ∈ Dn+1, for all
i ∈ {1, . . . , l}, and in particular, b = ral · · · ra1 x ∈ Dn+1, contradicting the fact that b ∈ Π ⊂ D0. �
Corollary 3.21. Let W be an infinite Coxeter group with #R < ∞. Then for each non-negative integer n, the
corresponding Dn is non-empty.
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Proof. It is clear from the definition of the Dn ’s that Φ+ = ⊎
n�0 Dn . Since W is an infinite Cox-

eter group, Proposition 1.6 (iii) yields that #Φ+ = ∞. On the other hand, since #R < ∞, Theo-
rem 3.8 yields that for each non-negative integer n, #Dn < ∞. Thus the desired result follows from
Lemma 3.20. �

The following is a generalization of Proposition 3.14:

Proposition 3.22. Suppose that x ∈ Dn with n > 0, and let a ∈ Φ+ . Then

(i) #D(rax) < n if (x,a) � 1;
(ii) #D(rax) > n if (x,a) � −1.

Proof. (i) If dp(a) = 1 then this is just Proposition 3.14. Hence we may assume that dp(a) > 1, and
proceed by an induction on dp(a).

Write a = rbc where b ∈ Π and c ∈ Φ+ . Then ra = rbrcrb . Furthermore, suppose that

dp(a) = dp(c) + 1. (3.12)

Now since (x,a) = (x, rbc) = (rbx, c) � 1, it follows from the inductive hypothesis that

#D
(
rc(rbx)

)
< #D(rbx). (3.13)

Then we have three possibilities to consider:

1) (b, x) � 1;
2) (b, x) � −1;
3) (b, x) ∈ (−1,1).

If 1) is the case, then Proposition 3.14 yields that rbx ∈ Dn−1 and hence

#D(rax) = #D
(
rb(rcrbx)

)
� #D

(
rc(rbx)

) + 1 (follows from Lemma 3.12)

� #D(rbx) (follows from (3.13))

= n − 1,

as required.
If 2) is the case, then Proposition 3.14 yields that rbx ∈ Dn+1, and (b, rc(rbx)) = (b, rbx −

2(rbx, c)c) = (b, rbx) − 2(x,a)(b, c). Observe that Lemma 1.7 and (3.12) together yield that (b, c) < 0
and since by assumption (x,a) � 1, it follows that(

b, rc(rbx)
)
> (b, rbx) � 1. (3.14)

Then

#D(rax) = #D
(
rb(rcrbx)

)
= #D(rcrbx) − 1 (by (3.14) above and Proposition 3.14)

� #D(rbx) − 2 (by (3.13))

� n − 1 (since rbx ∈ Dn+1 in case 2))

as required.
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If 3) is the case, then we are done unless #D(rc(rbx)) = n − 1 together with (b, rcrbx) � −1. But
this is impossible, since

(b, rcrbx) = (b, rbx) − 2(rbx, c)(b, c)

= −(b, x) − 2 (a, x)︸ ︷︷ ︸
�1

(b, c)︸ ︷︷ ︸
<0

> −1.

Thus #D(rax) = #D(rbrcrbx) < n in this case too. This completes the proof of (i).
(ii) Replace x by rax, then apply (i) above. �

Lemma 3.23. Suppose that x ∈ Dn with n � 1. Then there exists some y ∈ Dn−1 with y ≺ x.

Proof. Suppose that the contrary is true. Let x ∈ Dn such that there is no root in Dn−1 preceding x.
Write x = wa, where a ∈ Π , and w ∈ S(x). Let w = ra1 ra2 · · · ral for some a1, . . . ,al ∈ Π with �(w) = l.
Then a = ral · · · ra1 x. Observe that then

a ≺ ral−1 · · · ra1 x ≺ ral−2 · · · ra1 x ≺ · · · ≺ ra1 x ≺ x. (3.15)

The assumption that x is not preceded by any root in Dn−1, together with Proposition 3.14 yield that
all the roots in (3.15), including a, are in Dn , contradicting the fact the a ∈ Π ⊆ D0. �

Next we give an algorithm to systematically compute all the Dn ’s for an arbitrary Coxeter group W
of finite rank:

Proposition 3.24. Suppose that W is a Coxeter group of finite rank. For n � 1, there is an algorithm to com-
pute Dn provided that Dn−1 is known.

Proof. We outline such an algorithm:

1) Set D = ∅.
2) Enumerate all the elements of Dn−1 in some order, that is, write Dn−1 = {x1, . . . , xm}, where

m = #Dn−1.
3) Starting with x1, apply all the reflections ra where a ∈ Π , to x1, one at a time. If (a, x1) � −1,

then add rax1 to D if it is not already in D .
4) Repeat 3) to x2, . . . , xm .
5) Enumerate all the elements of the modified set D in some order, that is, write D = {x′

1, x′
2,

. . . , x′
#D}.

6) Starting with x′
1, apply all the reflections ra where a ∈ Π , to x′

1, one at a time. If (a, x′
1) ∈ (−1,0)

and rax′
1 /∈ D , then add rax′

1 to D .
7) Repeat 6) to x′

2, . . . , x′
#D .

8) Repeat steps 5) to 7) above.
9) Repeat 8) until no new elements can be added to D .

10) Set Dn = D .

Next we show that the above algorithm will be able to produce all elements of Dn within a finite
number of iterations.

Let x ∈ Dn (n � 1) be arbitrary. Lemma 3.23 yields that there exists a y ∈ Dn−1 with y ≺ x. Write
x = wy for some w ∈ W with �(w) = dp(x) − dp(y). Let w = ra1 ra2 · · · ral where a1, . . . ,al ∈ Π and
�(w) = l. Then

y ≺ ral y ≺ ral−1 ral y ≺ · · · ≺ ra1 ra2 · · · ral y = x.
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Since x ∈ Dn and y ∈ Dn−1, it follows from Lemma 3.13 that

ral y, ral−1 ral y, . . . , ra2 ra3 · · · ral y ∈ Dn−1 � Dn.

Therefore there exists i ∈ {1,2, . . . , l} such that

y ∈ Dn−1,

ral y ∈ Dn−1,

...

rai+1 rai+2 · · · ral y ∈ Dn−1

and

rai (rai+1 rai+2 · · · ral y) ∈ Dn,

rai−1 rai (rai+1 rai+2 · · · ral y) ∈ Dn,

...

ra1 ra2 · · · ral y = x ∈ Dn.

Since rai+1 rai+2 · · · ral y ∈ Dn−1, it follows that rai rai+1 rai+2 · · · ral y is an element of Dn obtainable by
going through steps 3) and 4) above. This in turn implies that rai−1 rai · · · ral y is an element obtainable
by going through steps 5) to 7). It then follows that rai−2 rai−1 rai · · · ral y and so on are all obtainable by
(repeated) application of step 8). In particular, x = ra1 · · · ral y can be obtained after (i −2) iterations of
step 8). Thus x can be obtained by going through steps 1) to 8), with step 8) repeated finitely many
times. Since x ∈ Dn was arbitrary, it follows that every element of Dn can be obtained from the above
algorithm in this manner with step 8) repeated finitely many times.

Finally, W is of finite rank, so #Dn < ∞ and #Dn−1 < ∞. Therefore step 9) will only be repeated
a finite number of times and hence the algorithm will terminate completing the proof. �
Corollary 3.25. If #R < ∞, then we may compute Dn, for all n ∈N.

Proof. [4] gives a complete description of D0 when #R < ∞. Now combine [4] and Proposition 3.24,
the result follows immediately. �
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