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ABSTRACT 

A characterization of a class of symmetric (0,l) matrices A such that AP is a 
symmetric matrix too, where P is a permutation matrix, is given, and an application 
to double coverings of graphs is considered. 
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1. INTRODUCTION 

A square symmetric (0,l) matrix A = [aij] such that aii = 0, 16 i < n, is 
called a g-matrix. Thus a g-matrix is the adjacency matrix of an undirected 
graph. 

A g-matrix A is said to be compatible with a permutation matrix P # I if 

AP is also a g-matrix. A compatible g-matrix is a g-matrix compatible with 
some nonidentity permutation matrix. 

In this paper we consider the problem of the existence and construction 
of compatible g-matrices. In particular, in Theorem 3.1 we prove that a 
g-matrix A is compatible with a permutation matrix P representing an 
n-cycle if and only if A = 0. In Theorem 3.4 we characterize the class of 
g-matrices compatible with matrices corresponding to permutations parti- 
tioned in h disjoint cycles, where h >, 2. 

Moreover, in Theorem 4.3 we give an interesting application concerning 
the automorphism group of a subclass of double coverings of graphs. 

2. PRELIMINARIES 

In this section we prove a number of lemmas which will be used later on 
in the proofs of our main results in Section 3. 

LEMMA 2. I. LetHi, 16 j<n, bethesetoforderedpairs {(j+i, j-i), 

(j - i, j + i); 0 Q i < n/2} of integers mod n, with n even. Then 

(9 IHjl = 12, 

(‘) Hj = Hj+n,,/e, 

(iii) Hjl n Hjz = 0 for j, 4 { jl, j, + n/2}. 

Proof. (i): We note that the relation j + i = j - i (mod n) implies 2i = 
0 (mod n); therefore the components of the pair (j + i, j - i) coincide if and 
only if i = 0 or i = n/2. Moreover, distinct values of i give rise to distinct 
elements of Hi. Namely, suppose that i,, i, E (0, 1, . . . , n/2} are distinct and 
the pair (j + i,, j - il) coincides either with (j + i,, j - iz) or with (j - i,, 
j + ia). Then it follows that j + i, = j + i, (mod n) in the first case or j + 
i,=j-i,(mod n)inthe second case, both of which are clearly impossible. 
Therefore 1 Hjl = n. 
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Part (ii) follows from the fact that (j + i, j - i) = (j + n/2 + (i - n/2), 
j + n/2 - (i - n/2)). 

In order to prove (iii) assume that HiI n Hj2 f 0 for some j, 4 { ji, j, + 
n/2}. Then there exists an integer h, with Ihl< n/2, such that j, = j, + h 
(mod n), and integers ii, is E {O,l,. . . , n/2} such that (j, + ii, j, - il) equals 
(j, + i,, j, - iz) or (j, - h, j, + ia). In the first case j, + ii = j, + is 
(mod n), which implies is= ii - h (mod n). Moreover, j, - i, = j, - is 
(mod n), which implies is = ii + h (mod n). Therefore we obtain the 
equation 2h = 0 (mod n), which contradicts the choice of h. 

A similar argument takes care of the second case. This proves Lemma 2.1. 
n 

LEMMA 2.2. Let Kj, l<jdn, be the set of ordered pairs {( j + i, 
j - i - l), (j - i - 1, j + i); 0~ i G n/2 - l} of integers mod n, with n 
even. Then 

(9 lKjl = n, 
(ii> Kj = Kj+,/z9 

(iii) Kj,nKjp=O forj,E{j,,j,+n/2}. 

Proof (i): The relation j + i = j - i - 1 (mod n) implies 2i = - 1 
(mod n); this is impossible for n even. So all the elements of Kj have distinct 
components. 

Moreover, distinct values of i give rise to distinct elements of Ki. 
Namely, suppose that ii, is E { 0, 1, . . . , n/2 - l} are distinct and that the pair 
(j + ii, j - ii - 1) coincides either with (j + i,, j - i, - 1) or with (j - is - 1, 
j + is). Then it follows that i, = i, (mod n) in the first case or i, + i, = - 1 
(mod n ) in the second case, both of which are clearly impossible in view of 
the choice of i, and i,. Therefore JKjJ = n. 

Part (ii) follows from the fact that (j+i,j-i-l)=(j+n/2+ 
(i - n/2), j + n/2 - (i - n/2) - 1). 

(iii): Suppose that K,, n Kj, # 0 for js @ { ji, j, + n/2}. Then there 
exists an integer h, with JhJ < n/2, such that j, = j, + h (mod n), and 
integers ii, i, such that (j, + ii, j, - ii - 1) coincides with (j, + is, j, - i, - 1) 
or with (j, - i, - 1, j, + is). 

In the first case i, = is + h (mod n) and is = ii + h (mod n). Hence 
2h = 0 (mod n), contradicting the choice of h. 

In the second case i,+i,=h-1 (mod n) and iI+&= -h-l 
(mod n). Hence 2h = 0 (mod h), which contradicts the choice of h. m 
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LEMMA 2.3. Let Lf, 1 d j G n, be the set of ordered pairs {(j + i, 
lkk),(j-i,j+i); O<z,<(n-1)/2} ofintegers mod n, where n is odd. 

e 

(9 JLjl = n, 
(ii) Lj, n L jz = 0 fm j, # j,. 

Proof. (i): We note that j + i = j - i (mod n) implies i = 0. Therefore 
the only element of Lj with equal components is (j, j). Moreover, distinct 
values of i give rise to distinct elements of Li. Namely, if i, and i, are 
distinct elements of { 0, 1, . . . , (n - 1)/2}, then (j + i,, j - il) coincides either 
with (j + i,, j - iz) or with (j - i,, j + iz), both of which are impossible. 
Therefore lLjl = n. 

(ii): Suppose that Lj, n Lj, f 0 for j, # jr. Then there exists an integer h, 

with 1 h) < ( n - 1)/2, and distinct elements i 1, i, E [0, (n - 1)/2] such that 
j, = j, + h (mod n) and (jr + i,, j, - il) coincides either with (j, + i,, j, - i2) 

or with (j, - i,, j, + i2). 

Inthefirstcasewehavei,-iz~h(modn)andil-iz--h(modn); 
it follows that 2h = 0 (mod n), which is impossible. A similar argument holds 
in the second case. n 

We let 114, 9 a positive integer, denote the matrix representing the cyclic 
permutation (12.. . q). A matrix M of order 4 is said to be retrocirculant [2] 

if M = IIIQMJJ4. 

Let (r, s) be the greatest common divisor of r and s. The following 
lemma is proved in [5]. 

LEMMA 2.4. Let M be an r X s matrix. The relation M = n, MIYI, is 

satisfied if and only if M is partitioned into rs/(r, s)’ equal retrocirculant 

blocks of order (r, s). 

3. THE CHARACTERIZATION OF g-MATRICES 

In this section, we consider the problem of the existence and construction 
of compatible g-matrices. 

First we study the case when G is compatible with an n-cycle. 

THEOREM 3.1. Let A be a g-matrix of order n, and let II=II,. Then 

AIT is a g-matrix if and only if A = 0. 
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Proof. It is obvious that if A = 0, then All = 0 is a g-matrix. Con- 
versely, assume that 

AH=0 (1) 

is a g-matrix; we shall prove that A = 0. 
Let A = [aij] and B = [bij]. It follows from (1) that 

bij=aij_l (2) 

and therefore 

(3) 

where the subscripts are taken mod n. The symmetry of A and B together 
with (2) and (3) implies the equalities 

ajj = bjj+l =bj+lj=aj+,j_,=ajp,j+,= ‘.. =aj+ij-i 

(4) 

forO<i<n-landl<j<n. 
There are two cases to be considered. 

Case 1: n is even. Then the indices corresponding to the entries of A 
in the sequence (4) coincide for i = 0 and i = n/2. We have the sequence of 
equalities 

O=ajj=aj+lj_l=aj-~j+l= “. =aj+n/zj-n/2 (5) 

for 1~ j Q n. The set of ordered pairs corresponding to the indices of the 
sequence (5) coincides with the set Hj in the statement of Lemma 2.1. 
Therefore, by Lemma 2.1, there are n/2 disjoint sets Hj and hence n x n/2 
entries of A in distinct positions equal to 0. By the symmetry of A and B 
and by (2) and (3) we also obtain the following sequence of equalities: 

for 1~ j B n. The indices corresponding to the elements of B in (6) coincide 
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for i = 0 and i = (n - 2)/2. Therefore the entries of A satisfy the following 
sequence of equalities: 

0=Ujj-1=aj-lj=Qj+lj-2= ‘** =Uj+n/2_lj_n/2=aj_n/2j+fl/2~1 (7) 

for 1~ j < n. The set of ordered pairs corresponding to the indices of the 
elements in the sequence (7) coincides with the set Kj in the statement of 
Lemma 2.2. By Lemma 2.2 there are n X n/2 elements of A, in distinct 
positions, equal to 0. 

We next prove that 

Hi,” zcjz=O (8) 

for ji,j,E {1,2 ,..., n}. Assume the contrary, and let j, = j, + h. There exist 
ii E [0, n/2] and i, E [O,(n - 2)/2] such that (j, + i,, j, - ii) = (j, + i,, 

j2 - i2 - 1) or (j, - i, - 1, j, + i2). In the first case ii = i, + h (mod n) and 
ii = i, - h + 1 (mod n), and therefore 2h = 1 (mod n), a contradiction. A 
similar argument is used in the second case. This proves (8) which implies 
that n2 entries of A in distinct positions are equal to 0, that is, A = 0. 

Case 2: n is odd. The relation j + i = j - i (mod n)-that is, 2i = 0 
(mod n)-is only satisfied for i = 0, and the relation j - i = j + i + 1 
(mod n) is only satisfied for i = (n - 1)/2. Then in the sequence (4) the 
subscripts of the entries of A only coincide for i = 0, while the subscripts of 
the entries of B only coincide for i = (n - 1)/2. So we have the sequence of 
equalities 

The set of ordered pairs corresponding to the indices of the sequence (9) 
coincides with the set Lj in the statement of Lemma 2.3. Therefore we 
conclude by Lemma 2.3 that A has n2 entries in distinct positions equal to 0, 
that is, A = 0. W 

Let R be a permutation matrix which represents an n-cycle. Then there 
exists a permutation matrix Q such that R = QrII,,Q. The following result is 
an immediate consequence of Theorem 3.1. 

COROLLARY 3.2. Let A be a g-matrix, and R be a permutation matrix 
representing an n-cycle. Then AR is a g-matrix if and only if A = 0. 
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We define K,, rS,. , rh to be the blockdiagonal matrix with blocks 

Kl, r&7..., IIrh. Let R be a permutation matrix of order n corresponding to 
some permutation decomposable into h cycles of lengths rl, r,, . . . , r,. Then 
there exists a permutation matrix Q such that R = QTII ,,,, e ,,,,, r,Q. 

‘The proof of the next proposition is straightforward. 

PROPOSITION 3.3. Let A be a g-matrix, P = III,,, ‘2,, , rh, and R = QTPQ 
fm sm permutation matrix Q. Then AP is a g-matrix if and only if Q,AQR 
is a g-matrix. n 

THEOREM 3.4. Let P = II,,, ‘2,, ,, ,,h, and A be a g-matrix of order n = rl + 
rz+ a.. + r,,. Then AP is g-matrix if and only if A is partitioned into blocks 
Cij, i, j E {1,2 ,..., h), such that 

(a) Cii = 0; 
(b) if i < j, then Cii is a (0,l) matrix of size ri x rj partitioned into 

rirj/( ri, rj)’ blocks all equal to some retrocirculant matrix of order ( ri, rj); 
(c) if i > j, then Cij = (Cji)T. 

Proof. The proof is by induction on h. 
If h = 1, the result follows from Theorem 3.1. 
Suppose now that h is greater than 1 and that the theorem holds for any 

integer smaller than h. Let A be a g-matrix partitioned into blocks in the 
following way: 

A= 

Ml 

Ah-l 
MY2 

M’ h-l 

A$ N, .*a Nh-l M, 

where Ah_l is a g-matrix of order n - r,,, Mi is an ri X rh matrix, and 

y = ( Mi)T* where 1 < i < h. Then we have 
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It is clear that B is g-matrix if and only if each of the following conditions is 
satisfied: 

(i) A,- IK,,rz ,..., ,h_, is g-matrix; 
(ii) %JII, is a g-matrix; 
(iii) (MiII,), = NilI,, that is, Mi = III,MiIIrh. 

The condition (i) is equivalent to saying that Ah-i satisfies the theorem, 
which is true in view of the induction hypothesis. By Theorem 3.1 the 
condition (ii) is equivalent to M, = 0. The condition (iii) holds if and only if 
Mi is a (0,l) matrix satisfying Lemma 2.4 for each i E { 1,2,. . . , h - 1). 

This completes the proof of Theorem 3.4. n 

4. STABLE GRAPHS 

The characterizations obtained in Theorems 3.1 and 3.4 have an interest- 
ing application for stable graphs. We first introduce some terminology. 

Let G be an undirected graph with vertex set V = { ol, us,. . . , o, } and 
adjacency matrix A. Consider the double covering B(G) of G, that is, the 
conjunction of G by K,, whose adjacency matrix is 

Jrj= 0 A 
[ 1 A 0' 

Note that B(G) is a bipartite graph with vertex set V U V’, where V’ = 

{ v;, vi,. . . , 0;) and with edges of the form u~u~, where vioj is an edge of G. 
In [1] it was proved that B(G) is connected if and only if G is connected and 
is not bipartite. 

We shall hereafter assume that G is a connected graph which is not 
bipartite. Let Aut G be the automorphism group of G. 

If P is the permutation matrix corresponding to an automorphism of G, it 
is easy to see that the matrices 

[: al and [F :I 
represent automorphisms of B(G). Hence Aut G X 2, is isomorphic to a 
subgroup of Aut B(G). 

We say that a graph G is stable if Aut B(G) 2: Aut G X Z,. An example of 
a stable graph is given by the triangle G = K,. 
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Let x E V(G). By N(X) we denote the neighhorhood of x. We say that G 
is vertexdetermining (v-d) if N(u) # N(U) for any two distinct vertices u 
and 0 of G [3]. 

PROPOSITION 4.1. lf G is stable, then it is vertexdetennining. 

Proof. Let G be a stable graph, and let X, y E V(G) have the same 
neighborhoods. Then the permutation of V( B( G)) which interchanges x and 
y and fixes everything else is an automorphism of R(G) which does not 
correspond to an element of Aut G X Z,. n 

PROPOSITION 4.2. A v-d graph G of order n and adjacency matrix A is 
stable if and only if there does not exist a pair of distinct permutation 
matrices Q and R such that QA = AR, corresponding to permutations of 
V(G) of the same order and not belonging to Aut G. 

Proof. Let 

be the adjacency matrix of R(G). Since R(G) is bipartite, it follows that an 
automorphism of R(G) corresponds to a permutation matrix 9 partitioned 
into one of the two forms 

[z :I Or [:: 3. 00) 

It is easy to see that the condition 9.& = SPP implies the equalities 
QA=AR and AQ=RA, h’h w ic are equivalent. Hence 9 corresponds to an 
automorphism of B( G ) if and only if 

QA= AR. 01) 

Now, G is stable if and only if there does not exist an automorphism 9 
partitioned into one of the two forms (lo), for Q # R. Namely, if G is stable, 
then of course Q = R in (10). 

Conversely, if G is not stable, then there exists some permutation matrix 
9 such that Q # R in (10). 
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Assume that one of the two permutations of V(G) corresponding to Q 
and R belongs to Aut G. Then AQ = AR, that is, AQR, = A, where 
QRT # I. It is easy to see that this relation implies that there are at least two 
coincident columns in A. So there exist at least two distinct vertices of G 
with equal neighborhoods, a contradiction. Therefore the permutations corre- 
sponding to Q and R do not belong to Aut G. Finally, suppose that the 
orders 9 and r of Q and R are different, say 9 < r. Then (11) implies that 
A = ARQ. By the preceding arguments this is not possible. Therefore 9 = r. 
This concludes the proof of Proposition 4.2. n 

THEOREM 4.3. Let G be a v-d graph with a rwnmmpatibk adjacency 
matrix. Then G is stable. 

Proof. Let 9 be an automorphism of B(G) partitioned into one of the 
forms (10). Then the relation (11) holds, and therefore 

AS= B, (12) 

where S = RQT and B = QAQr. 
Since A is not compatible, (12) implies S - I. Hence Q = R, and by (11) 

R corresponds to an automorphism of G. W 

It is natural to ask whether the converse of Theorem 4.3 holds; however, 
it appears difficult to construct a nonstable graph G with a compatible 
adjacency matrix. So we conjecture that the sufficient condition for the 
stability of a graph in the statement of Theorem 4.3 is also a necessary one. 
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