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Summary

Vision in dim light requires that photons absorbed by
rod photoreceptors evoke signals that reliably propa-
gate through the retina. We investigated how a pertur-
bation in rod physiology affects propagation of those
signals in the retina and ultimately visual sensitivity.
Recoverin is a protein in rods that prolongs photo-
transduction and enhances visual sensitivity. It is not
present in neurons postsynaptic to rods, yet we
found that light-evoked responses of rod bipolar and
ganglion cells were shortened when measured in re-
coverin-deficient retinas. Unexpectedly, the effect of
recoverin on postsynaptic signals could not be ex-
plained by its effect on phototransduction. Instead, it
is an effect of recoverin downstream of phototrans-
duction in rods that prolongs signal transmission and
enhances visual sensitivity. An important implication
of our findings is that the recovery phase of the rod
photoresponse does not contribute significantly to vi-
sual sensitivity near absolute threshold.

Introduction

The high sensitivity of scotopic, or rod-mediated, vision
requires that rods detect single photons (Baylor et al.,
*Correspondence: jbhhh@u.washington.edu
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kha Neurogenetic Institute, Keck School of Medicine, University of
Southern California, Los Angeles, California 90089.
1979b; Baylor et al., 1984; reviewed by Field et al.,
2005) and that the resulting signals are reliably propa-
gated across the retina to produce a noticeable change
in the retina’s output (Barlow et al., 1971). In this study,
we investigated the influence of the Ca2+ binding pro-
tein recoverin (Rv) on signal transmission in the retina
and on visual sensitivity.

Photoactivation of rhodopsin in rods initiates a G pro-
tein-mediated signaling cascade that hyperpolarizes
the rod and ultimately slows glutamate release at its
synaptic terminal. The shutoff of rod phototransduction
is important for scotopic vision. In particular, the shutoff
of rhodopsin is essential, because a photoresponse will
persist as long as rhodopsin is active. The shutoff of
rhodopsin’s catalytic activity requires phosphorylation
of its C terminus (Chen et al., 1995; Chen et al., 1999).
Rv inhibits rhodopsin phosphorylation in vitro (Kawa-
mura, 1993), and physiological evidence suggests that
it regulates the quenching of phototransduction in rods.
Dialysis of Rv into a rod outer segment (OS) prolongs
light responses (Gray-Keller et al., 1993; Erickson et al.,
1998), and a genetic deficiency of Rv shortens the rod
light response (Makino et al., 2004).

Using Rv-deficient mice, we found that Rv enhances
scotopic vision, and we investigated the retinal mecha-
nisms underlying this effect. We found that Rv prolongs
the responses of rods, rod bipolar cells, and ganglion
cells. Unexpectedly, however, the prolongation of rod
responses could not explain the prolongation of down-
stream responses and could not account for the ability
of Rv to enhance visual sensitivity. Our findings show
instead that Rv enhances vision in dim light by enhanc-
ing signal transfer from rods to rod bipolar cells.

Results

Recoverin Increases the Sensitivity
of Rod-Mediated Vision
We estimated thresholds for scotopic vision of Rv+/+

and Rv−/− mice using a water maze (Figure 1A). The
apparatus and strategy for evaluating visual threshold
have been described (Hayes and Balkema, 1993; see
Experimental Procedures). Each trial was initiated by
releasing a mouse at the center of the maze. The back
walls of five chambers of the maze were white, and the
sixth wall, associated with a ramp and platform, was
black. Mice were trained to find the black wall and were
tested at various light intensities.

We compared the performance of nine Rv+/+ mice
and nine Rv−/− siblings derived from crosses of four
sets of Rv+/− parents. Figure 1B plots the time taken
to find the platform (relative to the time in complete
darkness) versus the intensity of light reflected from the
white walls. Visual threshold, the light intensity at which
the time to find the platform was 50% of that in dark-
ness, was w4-fold higher in Rv−/− mice.

The conversion of light intensity in the water maze to
photoisomerizations per rod (Rh*) depends on pupil
size (Lyubarsky and Pugh, 1996). Pupil size was nearly
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Figure 1. Recoverin Improves the Sensitivity
of Rod-Mediated Vision

(A) A schematic of the water maze used to
measure scotopic threshold (Hayes and Bal-
kema, 1993). The white background illumina-
tion was spatially uniform. It was generated
by reflecting the output from a halogen
source off a diffuser over the maze. The
black wall reflects 3%–4% of the light re-
flected by the white wall. Mice were placed
in the center of the maze, and the time taken
to reach the platform was measured.
(B) Collected results from nine Rv+/+ and nine
Rv−/− mice (all siblings from Rv+/− crosses).
The time required to find the ramp relative to
the time required in complete darkness
(w20 s) is plotted versus the intensity of light
reflected from the white walls of the maze.
Visual threshold was defined as the light in-
tensity at which the time to find the platform
was 50% of that in darkness. At visual
threshold, the light intensity at the cornea,
expressed in equivalent 501 nm photons
(see Experimental Procedures), was 0.012 ±
0.002 photons/�m2/s in Rv+/+ mice and
0.047 ± 0.009 photons/�m2/s in Rv−/− mice
(mean ± SEM; n = 9 each). A similar analysis
of five rod transducin-deficient mice (Tr −/−)

is also included in order to show the lower limit of cone-mediated vision and therefore the range over which rods must be functional. Visual
threshold in Tr −/− rods was 200 photons/�m2/s.
(C) Pupil areas were measured in unanesthetized mice (n = 7 for each strain) in the water maze under the same illumination used for behavior.
Maximal area was 3.93 ± 1.14 mm2 for Rv+/+ and 3.95 ± 1.16 mm2 for Rv−/− (mean ± SD).
constant across the range of illumination where escape o
ttimes for Rv+/+ and Rv−/− mice depended on light inten-
osity (Figure 1C; see Experimental Procedures). Assum-
Ring a rod collecting area at the cornea of 0.2 �m2 (Lyu-
Wbarsky and Pugh, 1996; see Experimental Procedures),
fvisual threshold was 0.0024 ± 0.0005 Rh*/s for Rv+/+

rmice and 0.009 ± 0.002 Rh*/s for Rv−/− mice (mean ±
(SEM; n = 9 each). Since the integration time of rod sig-
inals is approximately 0.2 s (Walraven et al., 1990), the
2threshold for this behavior occurs when 1 out of w2000
m(Rv+/+) or 1 out of w500 (Rv−/−) rods absorbs a photon
cper integration time. Under these circumstances, beha-
Dvior is guided by single photon absorptions in a small
sfraction of the rods in the retina.
iTo confirm that this behavior was mediated only by
Rrods, we also analyzed rod transducin−/− mice (Calvert
cet al., 2000). Since these mice use only cones for see-
cing, the light levels at which they begin to use visual
acues define the upper end of the range over which vi-
Rsion is mediated exclusively by rods. rod transducin−/−

Tmice exhibited visually guided behavior only at light
dlevels above 100 photons/�m2/s (Figure 1B). In total,
rthe range of background light intensity over which rods
scontribute to visual behavior is about 4 orders of mag-
nnitude. The action of Rv provides an w4-fold enhance-
lment at the lower end of this range.
c
1

Recoverin Influences Signal Transmission o
through the Retina t
To determine how Rv influences behavioral threshold,
we compared flash responses of rods, rod bipolar cells, c
and retinal ganglion cells in Rv+/+ and Rv−/− retinas. Be- t

scause photon absorptions are rare at behavioral thresh-
ld, we measured responses to the weakest flashes
hat were practical (w1 Rh* for rods, <1 Rh* per rod for
ther cell types).
ods
e used suction electrodes to record flash responses

rom Rv+/+ (Figure 2A) and Rv−/− rods (Figure 2D). The
elationship between peak amplitude and flash strength
Figure 2G) showed that Rv+/+ and Rv−/− rods had sim-
lar flash sensitivities (Table 1; see also Makino et al.,
004). However, Rv−/− responses returned to baseline
ore quickly than Rv+/+ responses at all flash strengths,

onsistent with previous reports (Makino et al., 2004).
im flash responses of the two types of rods had a
imilar time to peak, but the integration time (response
ntegral divided by peak amplitude) was shorter in
v−/− rods (Table 1). The time course of rod photo-
urrents in these experiments was similar to the time
ourse in the intact eye (see the Supplemental Data
vailable with this article online).
od Bipolar Cells
o determine how altered rod responses influenced
ownstream processing in the retina, we recorded flash

esponses from rod bipolar cells, the first neurons in a
pecialized mammalian pathway that transmits signals
ear visual threshold (Dacheux and Raviola, 1986; Ster-

ing et al., 1988). Rv appears to be present only in rods,
ones, and a subset of OFF bipolar cells (Milam et al.,
993; McGinnis et al., 1997), and hence Rv’s influence
n signals in the rod bipolar pathway is restricted to
he rods themselves.

Figures 2B and 2E show flash families for rod bipolar
ells from Rv+/+ and Rv−/− retinas. The relationship be-
ween peak response amplitude and flash strength was
imilar for Rv+/+ and Rv−/− rod bipolar cells (Figure 2H).
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Figure 2. Rv Prolongs Light Responses of
Rods, Rod Bipolar Cells, and Ganglion Cells

A family of light responses is shown for (A) a
Rv+/+ rod for flashes delivering 6.2, 12, 25,
49, 94, and 190 photons/�m2 (all in effective
501 nm photons); (B) a Rv+/+ rod bipolar cell
for flashes delivering 0.62, 1.2, 2.5, 5.0, 9.9,
20, and 40 photons/ �m2; (C) a Rv+/+ ON α
ganglion cell for flashes delivering 0.025,
0.051, 0.10, 0.20, 0.41, 0.81, and 1.6 pho-
tons/ �m2; (D) a Rv−/− rod for flashes deliver-
ing 5.5, 11, 22, 43, 87, 170, and 350 photons/
�m2; (E) a Rv−/− rod bipolar cell for flashes
delivering 0.58, 1.2, 2.3, 4.7, 9.3, 19, 37, and
75 photons/�m2; and (F) a Rv−/− ganglion cell
for flashes delivering 0.012, 0.025, 0.051,
0.10, 0.20, 0.41, 0.81, and 1.6 photons/�m2.
The arrow in (E) and (F) indicates a second-
ary peak prominent in Rv−/− rod bipolar and
ganglion cell responses. (G) Stimulus-
response curve for the rods in (A) and (D).
The data have been fit with an exponential
saturation function (see Experimental Pro-
cedures), with k = 0.032 (or I1/2 = 22 photons/
�m2). (H) Stimulus-response curve for the
rod bipolar cells in (B) and (E). The data have
been fit with a Hill equation (see Experimen-

tal Procedures). For Rv+/+ rod bipolar cells, n = 1.60 and I1/2 = 6.4 photons/�m2, and for Rv−/− rod bipolar cells, n = 1.51 and I1/2 = 5.8 photons/
�m2. Flashes were all 10 ms and delivered at time = 0. Bandwidth is 30 Hz for rods and 50 Hz for rod bipolar and ganglion cells.
toisomerization suppressed w5% of the circulatinglike those of rod bipolar cells, returned abruptly to

Table 1. Characterization of the Sensitivity and Time Course of the Responses of Retinal Neuronsa

Rods Rod Bipolar Cells ON α Ganglion Cells

Rv+/+ Rv−/− Rv+/+ Rv−/− Rv+/+ Rv−/−

I1/2
b 19 ± 1 (22) 20 ± 2.5 (14) 7.0 ± 0.6 (27) 6.2 ± 0.6 (32) 0.36 ± 0.10 (19) 0.31 ± 0.08 (21)

n 1.60 ± 0.06 (27) 1.70 ± 0.06 (32) 1.37 ± 0.11 (19) 1.41 ± 0.12 (21)
τint

c (ms) 328 ± 22 (12.8) 253 ± 21 (4.8) 115 ± 7.1 (10.7) 91 ± 9.7 (14.6) 120 ± 16 (4.8) 73 ± 6.1 (2.6)
Tpeak

c (ms) 204 ± 12 (12.8) 229 ± 13 (4.8) 154 ± 5.0 (10.7) 131 ± 7.6 (14.6) 141 ± 8.6 (4.8) 125 ± 4.5 (2.6)

a All values given as the mean ± SEM (number of cells).
b I1/2 is the half-maximal flash strength, in units of 501 nm photons/�m2

c Values for numbers of cells are weighted based on the number of trials per cell. An “effective” number of cells was determined by dividing
the total trials across all cells by the number of trials for the cell where the greatest number was recorded. The effective number essentially
normalizes the contribution of each cell to the cell with the most trials, providing a more accurate estimate of the SEM.
In particular, at the lowest light levels probed the re-
sponses of Rv+/+ and Rv−/− rod bipolar cells showed a
similar supralinear dependence on flash strength (Table
1); this supralinear dependence is produced by post-
synaptic saturation (Sampath and Rieke, 2004).

The kinetics of rod bipolar responses from Rv+/+ and
Rv−/− retinas differed. A secondary oscillation in the rod
bipolar responses (cf. Field and Rieke, 2002a) was more
pronounced in Rv−/− cells (Figure 2E, arrow). In addition,
Rv−/− rod bipolar responses had a shorter time to peak
and integration time (Table 1). As described below, the
differences in kinetics of the rod bipolar responses
were not inherited from the rod outer segment re-
sponses.
ON a Ganglion Cells
We compared flash responses from ON α ganglion cells
in Rv+/+ and Rv−/− retinas to determine how Rv affected
the retinal output. Figures 2C and 2F compare families
of light-evoked synaptic currents (see Experimental
Procedures) from ganglion cells in whole-mount Rv+/+

and Rv−/− retinas. Responses of Rv−/− ganglion cells,
baseline. Secondary oscillations appeared in response
to the brightest flashes in Rv−/− ganglion cells at a sim-
ilar time to the secondary oscillation in rod bipolar cell
responses (Figures 2E and 2F, arrows). Like the rod and
rod bipolar responses, the time to peak and integration
time of the dim flash responses of Rv−/− ganglion cells
were shorter than those of Rv+/+ ganglion cells (Table 1).

Shortening of Rod Photoresponses Does Not
Account for the Shortening of Rod Bipolar
and Ganglion Cell Responses
The absence of Rv abbreviated responses of rods, rod
bipolar cells, and ganglion cells. To determine whether
the alterations in rod responses could account for the
effects on downstream cells, we compared the time
courses of flash responses from each cell type. Figure
3A compares averaged responses of Rv+/+ and Rv−/−

rods to dim flashes. Linear range responses that sup-
pressed between 0% and 25% of the maximum
photocurrent were pooled to evaluate the response per
photoisomerization (Baylor et al., 1979a). A single pho-
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bRod Bipolar or Ganglion Cell Responses
t(A) Responses of Rv+/+ (light) and Rv−/− (dark) rods to single pho-

tons. Single photon responses were calculated by dividing dim r
flash responses (<25% Rmax) by the average number of photoisom- c
erizations delivered (assuming a collecting area of 0.5 �m2; Field s
and Rieke, 2002b). Single photon responses were determined from R
3763 responses across 22 Rv+/+ rods, and 3269 responses across

c14 Rv−/− rods. The scale bar shows a 5% suppression of the circu-
mlating current. The time at which the Rv+/+ and Rv−/− rod responses

peel from each other is marked by a dashed line w310 ms after l
the flash. o
(B) The response of rod bipolar cells for 1 Φ per rod was deter- c
mined in a similar manner as for the rods in (A) for responses that r
ranged between 5% and 25% of Rmax. Please note that the rela-

stionship between response amplitude and flash strength in mouse
orod bipolar cells is nonlinear (Sampath and Rieke, 2004). The Rv+/+

response was the average of 639 responses across 27 rod bipolar
cells resulting from an average flash strength of 1.8 photons/�m2. R
The Rv −/− response was the average of 261 responses across 32 O
rod bipolar cells resulting from an average flash strength of 1.9

bphotons/�m2. Included in all data shown are cells from the same
manimals used for behavior experiments. The rod bipolar peel time
Ois marked by a dashed line w115 ms after the flash, much earlier

than the peel away time of the rod responses in (A). d
(C) The average response of ON α ganglion cells that ranged be- l
tween 5% and 10% of Rmax was determined for Rv+/+ and Rv−/−

m
mice. The Rv+/+ response was the average of 121 responses across

t21 ganglion cells, and the Rv−/− response was the average of 207
gresponses across 17 ganglion cells. Variability in the sensitivity of
tganglion cell responses (see Table 1) prevented scaling the re-

sponses by flash strength. Instead, response kinetics were com- n
pared by matching rising phases of the responses. This strategy T
delays the peel away time to the latest possible point. The maximal m
possible peel away time is marked by a dashed line w110 ms after

tthe flash.
a
n

current in both Rv+/+ and Rv−/− rods. Although re-
sponses of Rv+/+ and Rv−/− rods initially followed the D
same trajectory, they diverged 310 ms after the flash,
and the Rv−/− response recovered more quickly (Figure R

t3A, dashed line).
If altered rod responses caused altered rod bipolar s

mresponses, we would expect, by causality, the first
300 ms of Rv+/+ and Rv−/− bipolar responses to be
dentical. This was not the case. Figure 3B compares
od bipolar cell responses from Rv+/+ and Rv−/− retinas.
ust as for rods, we calculated the average response
er photoisomerization using only responses to the
immest flashes (5%–25% Rmax). Responses in this
ange had similar kinetics. Surprisingly, the Rv+/+ and
v−/− responses diverged w115 ms after the flash (Fig-
re 3B), much earlier than the divergence of the rod
esponses. In addition, the rod bipolar response was
early complete by the time Rv+/+ and Rv−/− rod re-
ponses began to diverge. Thus, the late divergence in
od responses cannot account for the early divergence
f rod bipolar responses. Together, these observations

ndicate that Rv in rods acts at a site distinct from its
ction in the outer segment. It is this action of Rv that
ominates the effect of Rv on the time course of the

od bipolar response.
The responses of ganglion cells resembled the rod

ipolar cell responses. Figure 3C plots averaged re-
ponses for the smallest ganglion cell responses (5%–
0% Rmax). The time course of the dimmest responses
ped up with increasing size, precluding averaging of
esponses over a larger amplitude range as for the rod
ipolar cells. In addition, variability in the sensitivity of
hese cells (see Table 1) prevented a scaling of the
esponses per photon. Thus, to compare the time
ourses we scaled the averaged responses of Rv−/− re-
ponses to delay the time at which they separated from
v+/+ responses as much as possible. Rv−/− ganglion
ell responses diverged from the Rv+/+ responses w110
s after the flash, similar to the time at which rod bipo-

ar responses diverged. Thus, the altered time course
f the rod bipolar responses can largely or entirely ac-
ount for that of the ganglion cells. However, as for the
od bipolar responses, the altered ganglion cell re-
ponses could not be explained by changes in the rod
uter segment responses.

ecoverin Is Present throughout the Entire Rod Cell
ur findings indicate that Rv influences signal transfer
etween rods and rod bipolar cells. This implies that it
ust be present in rod compartments other than the
S. We evaluated the subcellular distribution of Rv in
ark-adapted mouse retinas by immunocytochemical

abeling (Figure 4A). Although some Rv was in the OS,
ost was present in the inner segment and synaptic

erminal. This distribution was confirmed by serial tan-
ential sectioning of the retina, electrophoretic separa-
ion of denatured proteins, and quantitative immu-
oblotting (Sokolov et al., 2002; Sokolov et al., 2004).
his method is less susceptible to artifacts like epitope
asking, but it has lower sensitivity. Figure 4B shows

hat Rv was present throughout the entire rod cell, but
majority was in the cell bodies. In dark-adapted reti-

as, only 11% of Rv was in the OS.

iscussion

ecoverin is highly conserved and expressed in all ver-
ebrate retinas, suggesting that it is important for vi-
ion. Indeed, visual sensitivity is compromised in Rv−/−

ice (Figure 1). The inactivation of the Rv gene in mice
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Figure 4. Distribution of Rv in the Mouse Retina

(A) Rv was localized by immunofluorescence of sections of dark-
adapted retinas. Staining of Rv at the synapse is easily visualized,
most likely because it is concentrated into a small volume within
the synaptic terminal.
(B) Rv was also localized quantitatively by immunoblotting homog-
enates of serial sections. Rv immunoreactivity is shown versus lon-
gitudinal position of the section along the rod. Peaks of rhodopsin
(an OS marker) and cytochrome oxidase (an inner segment mito-
chondrial marker) are indicated by arrows.
(C) The cartoon illustrates a schematic drawing of the rod cell
where the respective cellular compartments are aligned with the
corresponding lanes of the immunoblot. The nucleus location
shown is arbitrary. In the retina, rod nuclei are stacked within the
outer nuclear layer. Staining of Rv in the synaptic terminal fractions
was variable in these types of experiments. It may be significantly
diluted because of the small volume of the rod synaptic terminal
relative to the section thickness.
is functionally selective and does not lead to measur-
able compensatory changes of any mRNAs or the
levels of known phototransduction proteins other than
Rv (Makino et al., 2004).

Recoverin and Signal Transfer between Rods
and Rod Bipolar Cells
The central finding of our study is that Rv enhances
signal transfer between rods and rod bipolar cells and
that this enhancement can account for its impact on
visual sensitivity. An effect of Rv on signal transmission
must derive from an action downstream of the OS, and
indeed Rv is present throughout the rod (Figure 4). Its
influence could be direct or indirect. Rv could influence
Ca2+ buffering, inner segment conductances, or the
synaptic release of glutamate. Rv is a member of the
neuronal calcium sensor (NCS) protein family, and other
NCS proteins have been shown to influence synaptic
facilitation (see Burgoyne and Weiss, 2001) and gene
expression (reviewed by Ikura et al., 2002). Regardless
of the mechanism, Rv prolongs the pause in glutamate
release during the rod single photon response (Figure
3B). Several possible mechanisms are discussed in
more detail below.
Ca2+ Buffering
Rv-Ca2+ contributes w15% of exchangeable Ca2+ in the
OS (Makino et al., 2004). A similar contribution to Ca2+
buffering at the synaptic terminal could influence gluta-
mate release. Ca2+ buffering would not influence the
equilibrium concentration of free Ca2+, so dark gluta-
mate release should not be influenced by Rv. However,
free Ca2+ would change more rapidly in Rv−/− rods. This
is consistent with faster recovery of bipolar responses
in Rv−/− retinas (Figure 3B). A steeper rising phase
might also be expected, but the initial clearance of cy-
toplasmic Ca2+ from the rod terminal could be limited
by another mechanism, or the clearance of glutamate
from the synaptic cleft may not instantaneously follow
changes in glutamate release.
Regulation of Inner Segment Conductances
An effect of Rv on inner segment conductances could
shape the rod’s voltage response and prolong the hy-
perpolarization during a response to a photon. This
would require that Rv modulate an inner segment con-
ductance that normally helps produce a close temporal
correspondence between the OS current response and
inner segment voltage change (Baylor and Nunn, 1986).
Without Rv, this conductance could speed the voltage
change relative to the current change.
Interactions with Synaptic Machinery
The NCS protein Frequenin (also called NCS-1) en-
hances synaptic facilitation either by direct interaction
with release machinery (Pongs et al., 1993; Sippy et al.,
2003) or by facilitation of the synaptic Ca2+ current
(Tsujimoto et al., 2002). Rods depolarize in darkness
and hyperpolarize with light absorption, so the changes
in synaptic Ca2+ are opposite to most conventional
neurons. The influence of Rv on synaptic transmission
would therefore need to be opposite to that of NCS-1;
i.e., Ca2+-free Rv would delay recovery of glutamate re-
lease to the dark level. A mechanism of this type could
explain why the dark rate of glutamate release appears
similar in Rv+/+ and Rv−/− rods and why fast changes in
synaptic Ca2+ could prolong rod bipolar responses in
Rv+/+ mice (Figure 3B).

Recoverin’s Influence on Vision
Vision in dim light is mediated by the rod bipolar path-
way in mammals (Deans et al., 2002; reviewed by Field
et al., 2005). Rods are the only cells in this pathway that
express Rv. The absence of Rv in rods reduces visual
sensitivity w4 fold. The rod-mediated responses in
Rv+/+ and Rv−/− retinas show smaller changes, e.g., the
integration times of rod, rod bipolar, and ganglion cell
responses are reduced 30%–40%. At the level of gan-
glion cells, the difference in integration time of light-
evoked synaptic currents cannot explain the w4 fold
change in visual sensitivity. Therefore, the differences
must be amplified during later stages of visual process-
ing. For example, a nonlinear relationship between syn-
aptic currents in ganglion cells and spike generation
could contribute to larger differences in behavior (Gal-
aretta and Hestrin, 2001; Pouille and Scanziani, 2001).

What Segments of the Rod Photoresponse Are
Important for Processing at Visual Threshold?
The comparison shown in Figure 3 identifies which seg-
ments of the rod response are most important for visual
processing. Rod bipolar and ganglion cell responses
are nearly complete by the time rod responses peak. A
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Rsimilar but less direct comparison has been made by
Relectroretinography (Robson and Frishman, 1995).
IThus, the falling phase of rod responses cannot con-
b

tribute to processing of rod signals near visual thresh- m
old. The waveform of the single photon responses is (

whighly reproducible (Baylor et al., 1979b; Rieke and
iBaylor, 1998; Whitlock and Lamb, 1999; Field and
aRieke, 2002b), but the greatest variation occurs after
athe response has reached its peak (Rieke and Baylor,
N

1998; Field and Rieke, 2002b). Taken altogether, these w
results suggest that only the rising phase of the re- s

fsponse provides information about single photon ab-
lsorption to downstream neurons. Consistent with this
ointerpretation, humans with a null mutation in rhodop-
isin kinase, and presumably prolonged rod photore-
C

sponses (Chen et al., 1999), have normal rod thresholds E
when fully dark adapted (Cideciyan et al., 1998). a

f
eExperimental Procedures
3

Mice
bInactivation of the Rv gene was described in a previous report (Ma-
mkino et al., 2004). Rv−/− mice were inbred for several generations in
va mixed 129SvEv/C57Bl6 background and then outcrossed with
fC57Bl6 to produce heterozygotes. The heterozygotes were then
tinbred to produce litters of Rv+/+, Rv+/−, and Rv−/− mice. For most of
tthe experiments in this report, we used siblings from these crosses.
eAdditional studies were also done using inbred Rv−/− mice with

Rv+/+ control mice produced by inbreeding nontransgenic 129SvEv
× C57Bl6 parents. Analyses of both sets of mice demonstrated the
same effects of Rv independently of genetic background in every
type of experiment described. Mice were 2–4 months old and main- w
tained on a 12/12 hr light-dark cycle. s

b
fWater Maze and Pupil Measurement
sA vision-dependent behavior, the ability to find a black wall in a

white water maze, was used to establish visual threshold (see also
Hayes and Balkema, 1993). Each mouse received four training trials
per day for at least 10 days under ambient light. Times to find the
platform ranged from 1 to 45 s. In darkness or in dim light, a mouse
that did not find the ramp within 45 s was guided to it. The black w
wall and platform were rinsed and moved randomly between trials. a
Testing was performed under controlled illumination, beginning a
with the brightest illumination and decreasing one log unit in inten-
sity per day using neutral density filters until there was a significant
increase in the time to find the platform. Mice were then tested at

Ithat level for several days to establish the most efficient search
Istrategy. When the time to swim to the platform was constant, illu-
(mination was lowered further. The process was repeated until the
waverage time to find the platform was the same as in complete
adarkness (w20 s).
aWe determined photon flux by measuring the energy and
3spectral composition of light from the halogen lamps reflected from
athe white walls of the maze. Using the absorbance spectrum of
(rhodopsin, we calculated photon flux in units of equivalent photons
rat peak spectral sensitivity (w501 nm). To estimate the number of

absorbed photons per second at visual threshold, we converted
the photon flux at the cornea to an equivalent Rh*, using Equation

S1 of Lyubarsky and Pugh (1996). We evaluated pupil areas of mice
in the maze using an IR-sensitive video camera with macro lens T

o(model DCR-TRV22, Sony Corporation) using methods similar to
those previously published (Pennesi et al., 1998). Unanesthetized a

smice were restrained gently by hand at the center of the water
maze and exposed to background lights delivered from the same m

clamp and in the same configuration as during the behavioral task.
The eye was illuminated with infrared diodes (RadioShack), and I

4short video clips (5–10 s) were collected once the mouse adapted
for 1 min to the background illumination. Pupil areas were deter- a

dmined from single frames of these videos. The light intensity at
each background was scaled based on changes in pupil area. p
ecording Light-Evoked Currents from Rods,
od Bipolar Cells, and Ganglion Cells

n all recordings, cells were superfused at 35°C–37°C with bicar-
onate-buffered Ames medium (Sigma). Rod photocurrents were
easured by drawing rod outer segments into suction electrodes

Baylor et al., 1979a). Rod bipolar cell responses were measured
ith whole-cell voltage-clamp recordings (Vm = −60 mV) from cells

n retinal slices prepared as described previously (Armstrong-Gold
nd Rieke, 2003). The internal solution for these experiments was
s follows: 125 mM K-Aspartate, 10 mM KCl, 10 mM HEPES, 5 mM
MG-HEDTA, 0.5 mM CaCl2, 1 mM ATP-Mg, 0.2 mM GTP-Mg. pH
as adjusted to 7.2 with NMG-OH. ON α ganglion cell light re-
ponses were also measured under voltage clamp (Vm = −60 mV)
rom a whole-mount retina. Cells were selected based on the fol-
owing criteria: large cell bodies and inward currents at the onset
f light but not at the onset of darkness (Peng et al., 2003). The

nternal solution for ganglion cell recordings was as follows: 90 mM
s-Methanesulfonate, 20 mM TEA-Cl, 20 mM HEPES, 10 mM
GTA, 5 mM ATP-Mg, 0.5 mM GTP-Mg, 2 mM QX-314; pH was
djusted to 7.3 with CsOH. This solution prevented ganglion cells
rom spiking so synaptic currents could be isolated. All light-
voked currents were digitized at 1 kHz after low-pass filtering at
0 Hz for rods, and 300 Hz for rod bipolar and ganglion cells.
The sensitivity and kinetics of light-evoked currents in rods, rod

ipolar cells, and ganglion cells were measured in response to 10
s or 30 ms flashes from an LED (λmax = 470 nm), whose strength

aried from those generating a just-measurable response to
lashes that generate a maximal response. For rod photoreceptors,
he response amplitude normalized to the brightest flash was plot-
ed versus flash strength and fit with an exponential saturation
quation:

R

Rmax

= 1− e-kI

here R/Rmax is the normalized response amplitude, f is the flash
trength with a half-maximal flash strength (I1/2) of log(2)/k. For rod
ipolar and ganglion cells, the fraction of the maximal amplitude

or each flash was plotted versus the flash strength and was least-
quares fit with a Hill Equation:

R

Rmax

=
1

1 + (I1/2 / I)n

here I1/2 is the flash strength generating a half-maximal response,
nd n is Hill exponent relating the flash strength to the response
mplitude.

mmunofluorescence
mmunocytochemical analyses were performed as described
McGinnis et al., 1997). Balb/cJ mice were dark adapted >12 hr. Rv
as localized using a rabbit antibody against the last 28 amino
cids of mouse Rv. The signal was amplified with biotinylated horse
nti-rabbit IgG followed by streptavidin conjugated to Alexa Green
50 (Molecular Probes) (McGinnis et al., 1997). Sections were ex-
mined using a Nikon Eclipse 800 microscope with 20× objective

0.75 NA), and images were captured digitally. The image shown is
epresentative of three sections from three mice.

erial Sectioning and Immunoblotting
he method was as described (Sokolov et al., 2002) with additional
ptimization (Sokolov et al., 2004). Wild-type mice were dark
dapted overnight and euthanized. Retinas were mounted flat, and
equential tangential sections were isolated and analyzed by im-
unoblotting with the following antibodies: p26 anti-Rv rabbit poly-

lonal (a gift from A.M. Dizhoor), anti-cytochrome oxidase subunit
V (A-6431 from Molecular Probes), and monoclonal anti-rhodopsin
D2 (a gift from R.S. Molday). Protein bands were visualized using
n ECL Detection System (Amersham). To average data among in-
ividual experiments, data sets were aligned with the rhodopsin
eak set at the same position (section 4).
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Supplemental Data
The Supplemental Data include Supplemental Experimental Pro-
cedures and one supplemental figure and can be found with this
article online at http://www.neuron.org/cgi/content/full/46/3/413/
DC1/.
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