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We discuss two possible covariant generalizations of the Aharonov–Bohm effect – one expression in
terms of the space–time line integral of the four-vector potential and the other expression in terms of
the space–time “area” integral of the electric and magnetic fields written in terms of the Faraday 2-form.
These expressions allow one to calculate the Aharonov–Bohm effect for time-dependent situations. In
particular, we use these expressions to study the case of an infinite solenoid with a time varying flux and
find that the phase shift is zero due to a cancellation of the Aharonov–Bohm phase shift with a phase
shift coming from the Lorentz force associated with the electric field, E = −∂t A, outside the solenoid.
This result may already have been confirmed experimentally.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The Aharonov–Bohm (AB) effect [1,2] lies at the interface of
gauge theories and quantum mechanics. In its best known form,
the AB effect predicts a shift in the interference pattern of the
quantum mechanical double-slit experiment which has a magnetic
flux carrying solenoid placed between the slits. If a solenoid with
a magnetic field B = ∇ × A (where A is the electromagnetic vector
potential) is placed between the two slits of a double-slit exper-
iment the phase, α, of the wave-function of the electrons going
through the slits and following some path to the screen will be
shifted by an amount

αB = − e

h̄

∫
path

A · dx (1)

where e is the charge of the electron. If one considers two elec-
trons arriving at the screen via two separate paths, namely path1
and path2, one can reverse one of the paths and find that the phase
difference between the two electrons at the screen is given by

δαB = αB1 − αB2 = e

h̄

∮
2−1

A · dx = e

h̄

∫
B · dS = e

h̄
Φ0 (2)

where the subscript 2 − 1 means the path going from the slits
to the screen along path2 and returning along path1. We used
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Stokes’ theorem on the closed line integral and ∇ × A = B. Fi-
nally, Φ0 is the magnetic flux through the cross sectional area, S,
of the solenoid. This shift in the phase leads to a shift in the po-
sition, x, of the interference pattern maxima and minima on the
screen by �x = Lλ

2πd δαB where L is the distance to the screen,
d is the distance between the slits and λ is the wavelength of the
wave-function. This shift due to the magnetic AB effect has been
measured [3,4]. Note, there is some unavoidable arbitrariness in
the sign δαB depending on the rotational sense of the closed loop
going around the solenoid – going along path1 to the screen and
returning along path2 versus going along path2 to the screen and
returning along path1. However, the shift of the interference pat-
tern is independent of this arbitrariness.

The importance of the magnetic AB effect of (2) is that it shows
(to some degree) the physical nature of the vector potential, A,
since the electrons move in a region, outside the solenoid, where
B = 0 but A �= 0. However, although A is gauge variant under the
gauge transformation A → A−∇Λ, where Λ(x, t) is some arbitrary
function, the final result in the phase difference, δαB , is gauge in-
dependent since it can be turned into a surface integral of the
magnetic field, which is gauge invariant.

The electric version of the AB effect has been less discussed
and investigated. It was experimentally observed relatively recently
in [5]. Similar to the magnetic case above, one can show [1] that
for an electron moving through some region of space with an
electric scalar potential φ, it will have its phase shifted by an
amount

αE = e

h̄

t2∫
φ dt (3)
t1
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where �t = t2 − t1 is the time the electron spends in the poten-
tial. If one considers electrons moving along two different paths,
path1 and path2, with different values of the potential, φ1 and φ2,
along the different paths, then the electrons will acquire a phase
difference due to traveling in different potentials given by

δαE = e

h̄

t2∫
t1

�φ dt = e

h̄

t2∫
t1

∫
E · dx dt (4)

where �φ = φ2 − φ1 = − ∫ 1
2 ∇φ · dx = ∫

E · dx is the potential dif-
ference between the two paths through which the electrons move.
The last form of the electric phase shift in (4), i.e. e

h̄

∫ t2
t1

∫
E · dx dt ,

appears similar to the last form of the magnetic phase shift in (2),
i.e. e

h̄

∫
B ·dS, in that both have the form δ(Phase) ∝ (Field)× (Area)

although for the electric phase shift the “area” has one space side
and one time side while the magnetic phase shift has a conven-
tional area having two space sides. One can flesh out this con-
nection via the following heuristic argument: For a small distance,
�x, between the two different potentials, φ2 and φ1, one can write
�φ = E ·�x. Using this in the first expression in (4), one can write
δαE = e

h̄ (E · �x)�t , where again �t is the time that the two elec-
trons spend in their respective potentials. Now �t ∝ L where L is
the length of the region through which the electrons move where
the potentials are φ2 and φ1 – more precisely ve�t = L where
ve is the speed of the electrons as they move through these re-
gions of constant scalar potential. Combining these results, we find
δαE ∝ (E · �x)L, and (�x)L is the area between the two tubes of
length L separated by a distance �x, i.e. d(Area) = (�x)L. Thus,
both magnetic and electric AB phase differences from (2) and (4)
can be written in the form δ(Phase) ∝ (Field) × (Area). Pictorially,
one can see this (Area) as the area swept out by an imaginary
string which connects the two electrons – the length of the string
is �x and the length swept out is L. Note that the phase dif-
ference in (4) is in addition to any phase difference due to the
path length difference between path1 and path2. Also, as in the
magnetic case (2), there is an unavoidable sign ambiguity in (4)
depending whether one considers �x as coming from a path go-
ing from φ1 to φ2 or, alternatively, a reversed path going from φ2
to φ1.

The expressions (2) and (4) are written in three-vector form
so they are not obviously covariant. In the next section, we ex-
amine two possible covariant generalizations of the AB phase dif-
ferences (2) and (4) which allow one to examine time-dependent
Aharonov–Bohm experiments.

2. Covariant expressions for the AB phase shift

The first covariant version of the AB phase differences general-
izes the potential form of the phase difference given by the first
expressions on the right hand side of (2) and (4)

δαE B = e

h̄

∮
Aμ dxμ = e

h̄

[ t2∫
t1

�φ dt −
∮

A · dx

]
. (5)

This covariant expression for the AB phase shift was used in [1].
The closed loop integral in the four-vector expression,

∮
Aμ dxμ ,

is not a closed time loop but is to be taken in the sense that
the two electrons both start at the space–time point (ti,xi), travel
along two different paths, path1 and path2, and end up at the same
space–time point (t f ,x f ) with t f > ti . One reverses the direction
of one of the paths and in this way gets �φ = φ2 − φ1 in the
time integral and one gets a closed loop for the spatial integral, i.e.∮

A · dx.
The second covariant version of the AB phase difference gen-
eralizes the (Field) × (Area) form of the phase difference, i.e. the
last two expressions for the magnetic and electric phase differ-
ences given in (2) and (4). This second covariant version of the
AB phase is best expressed in the notation of differential forms
and the wedge product.1 This second proposed expression for the
covariant AB phase is

δαE B = − e

2h̄

∫
Fμν dxμ ∧ dxν = e

h̄

∫
F (6)

where F = − 1
2 Fμν dxμ ∧ dxν is the Faraday 2-form, dxμ and dxν

are differential four-vectors, and ∧ is the anti-symmetric wedge
product [6]. The factor of 1

2 accounts for the anti-symmetry of Fμν

and dxμ ∧ dxν .
We now expand the Faraday 2-form out, and show that it re-

produces the standard, static AB phase results (2) and (4),

F = −1

2
Fμν dxμ ∧ dxν

= (Ex dx + E y dy + Ez dz) ∧ dt + Bx dy ∧ dz + B y dz ∧ dx

+ Bz dx ∧ dy. (7)

If the electric field is zero, i.e. E = 0, then one has F = Bx dy ∧
dz + B y dz ∧ dx + Bz dx ∧ dy = B · dS where the differential forms
expression has been converted back to three-vector notation and
dS is the differential area. Thus, the expression in (6) reduces to
δαE B = e

h̄

∫
F = e

h̄

∫
B · dS which is equivalent to the three-vector

expression (2).
If, on the other hand, the magnetic field is zero, i.e. B = 0,

and one has a time independent system (so that ∂t A = 0 and
E = −∇φ), then the non-zero terms of the Faraday 2-form are
F = −∂xφ dx ∧dt − ∂yφ dy ∧dt − ∂zφ dz ∧dt . Doing the spatial inte-

gral of this expression for the Faraday 2-form yields − ∫ 1
2 ∇φ ·dx =

φ2 − φ1 = �φ. Thus, under these conditions, the expression in (6)
reduces to δαE B = e

h̄

∫
F = e

h̄

∫
�φ dt which is equivalent to the

first three-vector expression on the right hand side of (4).
In summary, in this section, we have constructed two covari-

ant versions of the AB phase difference, (5) and (6). In the next
section, we will discuss how one can experimentally test these co-
variant expressions for the AB phase difference, (5) or (6), in the
time-dependent situation of an infinite solenoid with a time vary-
ing magnetic flux.

3. Solenoid with time varying flux

For static situations, both (5) and (6) reproduce the results for
the magnetic and electric AB phase differences (2) and (4). How-
ever, for certain time-dependent situations, the two expressions
both lead to the conclusion that there is an exact cancellation of
the magnetic and electric AB phase shifts so that one finds no net
phase shift differences coming from the time-dependent electro-
magnetic field. In particular, we have in mind the usual magnetic
AB set-up of an infinite solenoid but with a time-dependent mag-
netic field and vector potential, i.e. B(t), and A(t). Note that for this
situation the scalar potential is still zero, φ = 0. At first, one might
think that for this set-up the AB phase would simply be obtained
by inserting A(t) into the first expression on the right hand side
of (2), or inserting B(t) into the second expression on the right
hand side of (2), giving the usual magnetic AB phase shift (2) but
with the time dependence of the vector potential, i.e. δαB ∝ Φ0(t).
This is in fact what previous work [7–9] on the time-dependent AB

1 For our purposes the elementary and excellent introduction to differential forms
given in [6] is all we will need.
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effect has suggested – that there would be a time-dependent AB
phase. However, for this time-dependent set-up one can see there
are complications since unlike the static solenoid set-up, there is
now a non-vanishing electric field outside the solenoid coming
from E = −∂t A. This induces an additional phase shift as we will
show below.

We will first calculate the AB phase difference predicted by (6).
The part of the AB phase difference from the three magnetic field
terms of (7) is

e

h̄

∫
[Bx dy ∧ dz + B y dz ∧ dx + Bz dx ∧ dy]

= e

h̄

∫
B(x, t) · dS (8)

where in the last expression we have converted back to three-
vector notation. The contribution to the covariant AB phase dif-
ference from the three electric field terms of (7) is

e

h̄

∫ [
(Ex dx + E y dy + Ez dz) ∧ dt

]
= − e

h̄

∮
A · dx = − e

h̄

∫
B(x, t) · dS (9)

where we have taken into account that E = −∂t A, performed the
dt integration, and in the last expression we have used Stokes’ the-
orem. The dt integration in (9) has turned E = −∂t A into −A. The
magnetic contribution from (8) is the negative of the electric con-
tribution from (9) and the two parts cancel exactly.

We now calculate the phase shift for the time-dependent, in-
finite solenoid using (5) for an infinitesimal arc. First, the vector
potential outside an infinite solenoid which has a time-dependent
magnetic field and, therefore, a time-dependent current, I(t), is

A = kI(t)

r
θ̂ (10)

where k is a constant whose exact form is not important for the
present and θ̂ is a unit vector in the angular direction. Without
loss of generality, we take the infinitesimal path of the particle of
charge e and mass m to be along a circular arc, i.e. dx ∝ θ̂ . Since
A ∝ θ̂ , the product A · dx will pick out the angular direction of dx.
The relationship between the angular displacement of the particle,
�θ , the radius of the arc, r, and the velocity of the particle, v , is

r�θ = v�t. (11)

Actually since the particle is accelerated by the electric field out-
side the solenoid one should use v → (v f + vi)/2, i.e. the average
velocity using the mid-point (this assumes that the acceleration
due to the electric field is a constant during this infinitesimal in-
terval). Evaluating e

h̄

∫
A · dx for this infinitesimal path, dx = r�θθ̂ ,

gives

e

h̄

kI(t)

r
(r�θ) = ekI(t)�θ

h̄
. (12)

The question that arises now is “Where does one evaluate I(t)?”;
“At the initial time ti , or final time t f ?”. Based on the fact that
we use v → (v f + vi)/2 for the velocity, we evaluate I(t) at the
midpoint time t = ti + �t/2. Inserting this into I(t) and expand-
ing to first order gives I(ti +�t/2) ≈ I(ti)+ I ′(ti)

�t
2 +· · · , with the

prime indicating a time derivative. The first term, I(ti), is a con-
stant and represents the initial, static AB phase contribution. We
can, without loss of generality, take the initial current to be zero,
I(ti) = 0, so that there will be no initial phase shift. If there were a
non-zero initial current, one would instead have a constant phase
shift of δαB = ekI(ti)�θ
h̄ . Next, inserting the second term in the ex-

pansion into (12) gives,

δαA(t) = ekI ′(t)�t�θ

2h̄
(13)

which is the phase shift due to the time-dependence of the vector
potential. However, (13) is not the total phase shift in this case
since there will be an electric field, E = −∂t A, outside the solenoid
which will also contribute to the phase shift. We now calculate
this shift. The electric field outside the solenoid is

E = −∂A

∂t
= −kI ′(t)

r
θ̂ . (14)

The acceleration associated with this electric field for the particle
is

a = eE

m
= −ekI ′(t)

mr
θ̂ . (15)

The change in distance, �d, due to the acceleration in (15) is

�d = 1

2
a�t2 = −ekI ′(t)

2mr

r�θ

v
�t = −ekI ′(t)�θ�t

2mv
, (16)

where we have taken the odd (but perfectly legal) step of writ-
ing one of the �t factors as r�θ/v – see Eq. (11). The change in
phase, δαE−field , due to this change in distance, �d, coming from
the acceleration due to the electric field in (14) is just �d divided
by λ

2π where λ is the de Broglie wavelength of the particle, i.e.

λ = h
mv . Putting all these together gives the phase shift due to the

electric field as

δαE−field = �d

λ/(2π)
= −ekI ′(t)�t�θ

2h̄
. (17)

One can see that the AB phase shift due the time variation of
the potential given in (13) is canceled exactly by the phase shift
due to the effect of the electric field given in (17), i.e. δαA(t) +
δαE−field = 0. This leaves only the phase shift due to any initial,
static current and magnetic flux.

Thus, both versions of the covariant AB phase, (5) and (6), pre-
dict that there will be no time-dependent AB phase shift for the
solenoid with a time-dependent current and magnetic flux. For the
covariant phase shift expression in terms of the four-potentials (5)
this result comes from a cancellation between an AB type phase
shift due to the time variation of the vector potential (13) and a
phase shift due to the electric field (17). For the covariant phase
shift expression (6), this result comes from an equivalent cancel-
lation between the electric contribution (the first three terms of
the Faraday 2-form) and the magnetic contribution (the last three
terms of the Faraday 2-form).

Previous works on this problem of the time-dependent AB ef-
fect [7–9] predicted that one should see a time-dependent phase
shift for a time-dependent vector potential and magnetic field.
This is in contrast to the prediction from the covariant expres-
sions (5) or (6) that there will be no time-dependent phase shift
due to a cancellation between the magnetic and electric parts of
these expressions. The suggested [7,8] and performed [9] experi-
ments considered the time-dependent vector potential associated
with a laser beam (i.e. a coherent, focused electromagnetic wave).
Although the laser system considered in [7–9] is different from
the time-dependent solenoid considered here, it is easy to see
from the proposed covariant phase shift in terms of the Faraday
2-form as given in (6) that the magnetic field part coming from
B = ∇ × A will always cancel the electric field part coming from
E = −∂t A. There could still be phase shift coming E = −∇φ if
there is a non-zero scalar potential in addition to the time vary-
ing vector potentials (for both the time varying solenoid and the
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laser system considered in [7–9] φ = 0). Now, the one experiment
we did find to actually test the time-dependent AB effect did find
no time varying phase shift [9] which would then favor our pro-
posed expressions for the covariant AB phase shift (5) or (6). It
should be stressed that some of the authors of the experiment [9]
argued that their null result was due to inadequacies of the ex-
periment [8]. Further experiments are needed to confirm which
prediction is correct.

From the above explicit calculation from Eqs. (10)–(17) of the
cancellation of the standard AB phase (13) with the phase contri-
bution coming from the electric field (17) one can surmise that in
order to see this effect (or rather non-effect since the two con-
tributions are predicted to cancel) there needs to be some con-
ditions or relationship between the time scale of the variation of
the magnetic field, tB , with respect to the time-scale of the elec-
tron to travel from the source to the screen, telectron . If one assumes
that the magnetic field varies sinusoidally as in [7–9] with a fre-
quency f B then tB = 1

f B
. Assuming that the electrons move with

velocity ve and if the distance between the screen and the elec-
tron source is L the time scale of the electrons is telectron = L

ve
.

Thus, to see this non-effect one needs telectron ∼ tB = 1
f B

. If one

has telectron � tB = 1
f B

– the time scale of the electrons is much
less that the time scale of the magnetic field variation – then one
will get the phase shift of the static situation since the electrons
move through the field much faster than it changes so that the
field is effectively static. If, on the other hand, telectron � tB = 1

f B
–

the time scale of the electrons is much greater than the time
scale of the magnetic field variation – then the effect of the mag-
netic field on the phase shift of the electron will time average to
zero. For the set-up in [8,9] and the proposed experiment in [7]
the speed of the electrons was ve ∼ 107 m

s . Assuming L ∼ 0.1 m,
one gets te ∼ 10−8 s. Thus, to see this cancellation of the stan-
dard AB phase with the phase coming from the electric field
E = −∂t A, one needs the magnetic field to vary on a time scale
of tB ∼ 10−8 s or change with a frequency of f B ∼ 108 Hz. If one
wanted to have a higher/lower frequency, one should adjust the
velocity of the electrons to be higher/lower according to the rela-
tionship ve ∼ f B L, e.g. for f B ∼ 103 Hz and with L ∼ 0.1 m, one
should take ve ∼ 102 m

s .

4. Conclusions

One of the most important phenomena which lies at the inter-
face of gauge theories and quantum mechanics is the Aharonov–
Bohm effect [1,2] – an extra phase shift in the interference pat-
tern of the quantum mechanical double-slit experiment due to
the presence of electromagnetic vector, A, and scalar, φ, potentials.
The expressions for the magnetic and electric AB phase differences
are given by (2) and (4), respectively. These expressions are non-
covariant and thus one can ask for a covariant expression which
should combine/unify (2) and (4). In this Letter, we have examined
two possible covariant generalizations, namely Eqs. (5) and (6),
of the non-covariant electric and magnetic phase differences. Ex-
pression (5) was in terms of the space–time line integral of the
four-vector potential, and expression (6) was in terms of a space–
time surface area integral of the Faraday 2-form. Both expressions
reduce to the non-covariant AB phase differences (2) and (4) in the
static limit. Additionally, for the time-dependent case of an infinite
solenoid both (5) and (6) gave the same, somewhat surprising re-
sult that there would be no time-dependent AB phase shift. One
would only have whatever static AB-phase shift existed before the
start of any time variation of the magnetic flux. For the expression
(5) in terms of the space–time line integral of the four-vector po-
tential this null result was the result of the cancellation between a
true AB phase shift, i.e. expression (13), and a non-AB type phase
shift (17) due to the electric field that exists outside the solenoid
in this case. Since the electron for the time-dependent, infinite
solenoid did not move in a field-free region (and in addition the
force on the electron was not zero) this is some generalized, or
hybrid Aharonov–Bohm effect with part of the shift coming from
the potential and the other part coming from the fields.

The expression for the AB phase difference given in terms of
the Faraday 2-form, (6), shows that the cancellation of the mag-
netic part of the AB phase coming from ∇ × A will generally be
canceled by the −∂t A part of the electric part of the AB phase.
For the time-dependent case, this then leaves only the part of the
electric AB phase coming from the scalar potential φ. For the case
of a time-varying magnetic field inside an infinite solenoid (or for
the laser set-up considered in [7–9]), φ = 0, and thus one gets no
time varying AB phase difference.

As a final comment, we note that the expression for the AB
phase difference in (5) is essentially a Wilson loop [10] which is
used to study the issue of confining versus non-confining phases,
i.e. the “area” law versus “perimeter” law, of Yang–Mills gauge
theories like QCD. In this work, we are making the suggestion
of the equivalence of the “perimeter” integral in (5) with the
“area” integral in (6). Thus, it may be of interest to study non-
Abelian gauge fields using the proposed AB phase difference given
in (6).

Note added

After this paper was accepted for publication, we learned of the related work of
[11] and [12] dealing with similar issues and having some of the same conclusions.
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