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We study the scattering theory of a conservative nonlinear one-parameter group 
of operators on a Hilbert space X relative to a group of linear ‘unitary operators. 
Under certain hypotheses, the scattering operator carries a neighborhood of 0 in X 
into X. The theory is designed to apply to the semilinear Schrodinger and 
Klein-Gordon equations. 

1. INTRODUCTION 

In scattering theory one has a Hilbert space X, a “free” group of unitary 
operators U,,(t) = exp(ifti,) on X, and a “perturbed” evolution equation. We 
write the perturbed equation formally as 

du 
dt=iH,u+Pu, (1) 

where P is the perturbation operator. For instance, in quantum mechanics, 
H, = -A and P is the multiplication by a “potential” function iv(x). One 
looks for conditions under which solutions u of (1) are related to free 
solutions U, and U- , where u+(t) = exp(itH,,)f+ , by the asymptotic con- 
dition 

II w> - u * Wllx -+ 0 as t-+fa~. (2) 

The scattering operator is defined as S(f-) = f, and the two wave operators 
as W,(f,) = u(O), if time t = 0 is used as the reference time. 

In this paper we are concerned with the case where P is nonlinear. We find 
conditions on Uo(t) and P so that S maps a whole neighborhood of 0 in X 
into X (Theorem 1). We show in Theorem 2 that S is one-one and 
continuous in this neighborhood. In Theorem 3 we show that W, and W_ 
map all of X into X. In Theorem 4 we solve the Cauchy problem with u(0) 
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NONLINEAR SCATTERING THEORY 111 

given small in X and show that f+ and f- exist; that is, we construct W;’ 
locally. 

Theorem 1 is applied in Section 7 to the nonlinear Klein-Gordon 
equation. 

(NLKG) u,~ -Au + m2u + h(u) = 0, 

m > 0, x E R”, where 

W(s)\ < c IV, (3) 

1+4/n<p,< 1 +4/(n- l), (4) 

and X = H’(R”) @ L’(R”) is the usual Hilbert space of Cauchy data of finite 
energy. It is applied in Section 6 to the nonlinear Schriidinger equation 

(NW iu,-du t h(Jul)argu=O, 

where h satisfies (3), p = 1 + 4/n, and X= H’(R”). The critical power 
1 t 4/n is related to the Lm decay rate for the free equation, which is the 
same for the Klein-Gordon and the SchrSdinger equations. It appears in 
these theorems because of the fact that NLKG is conformally invariant and 
NLS is pseudo-conformally invariant only if h(s) = CS’+~~ [3, 181. 

The theory presented in this paper was initiated by Segal in [ 13, 141. A 
second version was formulated by me in [ 161 with later expositions given by 
me in [ 181 and by Reed in [ 10, 111. In these versions W, and S are only 
defined on dense subsets. The present, third version depends (except in 
Section 5) on the discovery by Segal [ 151 and Strichartz [21] that arbitrary 
solutions of finite energy of the linear equations decay as t -+ m in a certain 
sense. It is also inspired by the ingenious way that Ginibre and Velo (31 
make use of the conservation laws for NLS. I began this third version with 
the paper [ 191 where Theorems 3 and 7 were proved under assumptions 
slightly less than optimal. A special case of Theorem 1 was announced in 
1201. 

In this paper we do not consider the more difficult question of whether S 
acts on large data, that is, away from a neighborhood of 0 in X. 

In Section 5 we dispense with the requirement that the data df- or u(0)) 
be arbitrary within a neighborhood in X, with the advantage that a more 
general perturbation operator is allowed. In Theorem 5 we show under this 
more general assumption on P that the domain D(S) of S includes a certain 
large set. In the applications D(S) is dense in a neighborhood of 0 in X. 
Theorems 6 and 7 are similar analogues of Theorems 3 and 4, respectively. 
Theorems 5-7 are subsequently applied to NLKG and NLS where h satisfies 
(3) and 

y(n) < p < 1 t 4/(n - 2) (< co if n = 1 or 2), (5) 

SRO.I4I/I-8 



112 WALTER A. STRAUSS 

where r(n) is the positive root of the quadratic 

ny-1 1 --=-* 
2?J+1 Y 

For example, if n = 3 the interval (4) is [Zj, 31 while the interval (5) is 
(2, 5). The condition (3) on h can be weakened to the condition 

1 h(s)] = O(lsl”) as s --+ 0 (7) 

in case we have an a priori bound in La@“) (Theorems 10 and 13). In 
Section 8 we apply Theorems 5-7 to the nonlinear wave equation (NLKG 
with m = 0) and we apply similar ideas to the generalized Korteweg-de 
Vries equation (GKdV). 

The critical power y(n) first appeared explicitly in [ 191. John [6] proved 
that solutions of a nonlinear wave equation in three space dimensions blow 
up if 1 < p < 1 + fi but exist for all time if the data are small and 
p > 1 + a. Now 1 + \/z= y(2). We conjecture that the critical power in 
John’s theorem in II space dimensions is ~(n - 1). The shift of one in the 
dimension is due to the different rates of decay of the Klein-Gordon 
equation when m > 0 and when m = 0. Glassey [5] proved the blow up 
theorem in two space dimensions if 1 < p < y( 1). The power y(n) has 
recently been rediscovered by Dong and Li [ 1 ] and by Kato [7] who each 
prove versions of Theorem 10. Klainerman [8] obtains results like 
Theorems 10 and 13-15 which permit much more general nonlinear terms 
which are not necessarily quasilinear but are required to have higher degree, 
namely, 4~ - 11/&) > l/O - 1). 

It is convenient to rewrite (1) in its integral form 

t*sYf) u(t) = U&)f + jr Uo(t - r) Pu(7) dr. 
7 

Here u is the solution of the differential equation (1) with the initial values 
U(S) = (i,(s)1 at t = s. Formally letting s + +co or s + -03, we get the 
integral equations which relate u to f+ and f _ : 

t* *co,f*> u(t) = u&>f* + I’ U,(t - 7) Pu(r) ds. 
im 

If Y is a Banach space and I is an interval of real numbers, we denote by 
Lp(Z, Y) the usual Lebesgue space of functions: I+ Y, by C(Z, Y) the space 
of strongly continuous functions, and by B(Z, Y) the space of bounded 
functions, If X and Y are Banach spaces continuously embedded in some 
other Banach space and if X f? Y is dense in X and in Y, then X n Y and 
X + Y are Banach spaces. 
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2. THE SCATTERING OPERATOR AT Low ENERGY 

We make the following hypotheses. 

(I) Let X be a Hilbert space with norm 1 j2. Let U,,(t) be a one- 
parameter group of unitary operators on X. 

(II) Let X, and X, be Banach spaces with norms denoted by / II and 
I 133 respectively. Let P be an operator which takes a neighborhood of 0 in 
X, into X,. Assume that PO = 0 and 

IPf-P&Al G c(lfl3 + IM-’ If- 435 

where p and c are constants, p > 1. 
(III) Let X, ,X and X, be continuously embedded in some Banach 

space X4. Let X n X, be dense in both X and X,. We define 
Z = Lp+ ‘(R, X,) n B(R, X,). 

(IV) For each f E X assume that the function t -+ U,(t)f belongs to 
Lp+ ‘(R, X,). Let X be continuously embedded in X, . 

(V) Let U,,(t), restricted to X n X,, have a continuous linar extension 
(still denoted U,,(t)) which maps X, into X, with norm ( c 1 tlpd for t # 0. 
We assume c is a constant and 

d=V(p+ 1). (8) 

Let U,,(t) (restricted to X r7 X,) also have a continuous extension from X, to 
X4 such that U,,(t) U,(s) f = Uo(t + s)f for all f E X,. 

(VI) Let G be a functional which maps a neighborhood of 0 in X, into 
R. Assume G is lower semicontinuous and is continuous at 0. 

(VII) Whenever I is a time interval, s E I, f E X, and u E Z, with ((u (jz 
sufficiently small, satisfies the equation (*S, f) in 1, then u E C(I, X) and 

fl WI: + W(t)) is independent of t. (9) 

THEOREM 1. There exists 6 > 0 with the following property. If f- E X, 
If-II2 < 6, then th ere exists a unique solution of the integral equation 

(*-a03 f-) u(t) = v,(t)f- + Jf uo(t - z) PU(Z) dr 
--to 

for t E R such that 

u E C(R, X)n Lp+‘(R, X,) 
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and 

Furthermore, there exists a unique f+ E X such that 

In addition, 

I40 - ~&)f+ I2 + 0 as t++co. 

+I WI: + ‘34)) = ilf- I: = +lf+ I: 

(11) 

(12) 

(13) 

and 

(* +001”f+) u(t) = U,(t)f+ - $ + c4 U,,(t - r) Pu(s) d?. 
1 

Remark 1. We do not assume that P maps X into X. Instead we assume 
it maps another space X, into X, while U,(t) maps X, back into X,. In fact, 
(II) and (V) will always be used together in the form 

for f. g E X, and t # 0. The intermediate space X, is irrelevant in principle. 
The original Hilbert space X is brought back via hypothesis (VII), which is a 
kind of regularity statement together with a modified conservation of norm 
condition. 

Remark 2. If P were a locally Lipschitz map from X to X, then the 
regularity statement in (VII) would be automatic. Indeed, we could then 
solve (*s,f) locally in t by the standard iteration method [ 121. If we 
assumed (9) were true for this local solution, then lu(t)lz would be bounded 
so that u would extend to a global solution continuous with values in X. 

3. PROOF OF THEOREM 1 

LEMMA 1. Assume (II), (III), and (V). There exists 6, > 0 with the 
foil0 wing property. Let -aJ<s<+m. Let U,,( . )fE Z with 
II U,( . )fllz < 6,/2. Then there exists a unique solution v of equation (*$, f) 
which satisfies UEZ and 11 u JIz < 2 II U,( . )fll,. The equation 
(*r, U,(-r) u(r)) is satisfied for all r E R. 

Proof: This is simply a consequence of the contraction principle in the 
space Z. We denote 

2%(t) = f U,,(t - z)Pv(z) dr. 
s 
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BY (V) and (II), 

Iru(t)i,~cjtlf-71-dly(r)~~d7 (14) 
5 

provided 147) belongs to the neighborhood of 0 in X, which is referred to in 
(II). By the singular integral inequality, 

jm I9v(t)l;” dr < c (I” lu(r)[;+’ dr)’ 
-m -a2 

since 
1 

1+- 
P+l 

=d+L. 
P+l 

We next let I, = [s, t] n [t - 1, t + l] and I, = [s, t]\[t - 1, t + 11. We break 
the integral defining 3% up into two parts. In the part over the interval I, we 
again use (p + 1)d = 2 and Holder’s inequality: 

+c (t-r)-*dz )“““) (j Iv(r)l;+l d7)p’@+1’ 
12 

G c Il~ll”z. (15) 

Let Z(S,) = {U E Z : I] v ]lz < 6, }. Thus /]9’u ]lz < c I( v I]$ for all v E Z(S,) if 6, 
is sufficiently small. In exactly the same manner we show that 

for such u and U. We choose 6, so small that c(26,)p-’ < l/2. Then 9 is a 
contraction mapping on Z(S,). Now let f be given and let y(t) = U,(t)f and 
(1 y]lz < 6,/2. Then the mapping u + y + 3% carries Z(S,) into itself and so it 
has a unique fixed point in Z(6,): 

u=y+9u, v E Z(S,). 

It satisfies //~//, < IIYL + CP’ /l~llz G IIYIL + QIl~llz, hence II~IL Q 2 IIYIL. 
Now each term in the equation (*S, f) belongs to X,. We let I E R and 

we write (*S, f) with t = r. We apply Uo(t - I) to both sides to obtain 

U,,(t - r) v(r) = Uo(t - r) [ U,(r)f + Ir U,(r - r) h(z) dr] . 
s 
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The integral converges in the space X,. Since the linear operator Uo(t - r) is 
continuous from X, to X,, we may write 

U,,(t) U,(-r) u(r) = U,(t)f + Jr U,(t - t) Pu(t) dr. 
s 

Each term in this equation belongs to X4. If this equation is subtracted from 
(*s, f), we obtain 

u(t) = U,,(t)[ U,(-r) u(r)] + jr CT,,@ - t)Pu(r) dr 
I 

which is equation (*r, U,,(-r) U(T)). 

LEMMA 2. Assume (II), (III), and (V). Let U,( . )f- E 2 be given such 
that (U,(t)f- I3 -+ 0 us t -+ --03 and (1 U,,( . )f- ((= < 6,/2. Let u be a solution 
in z of (*-m, f-) and let v, be a solution in Z of (*S, f-), where --oo < s. 
Then 

I WI3 --) 0 as t---co (17) 

I m ) u,(t) - u(t)\;+ ’ dt -, 0 as s--m. (18) -02 

Proof: We have u = u- + 3%. As in (15) we have 

19u(t)13 < c (I’-’ l~(r)l;+~ df”” I) 
--co 

where c is independent of t and E is fixed so that d( 1 + E) < 1. Since 
u E LPf1(R,X3)n Lp(‘+‘)“(R,X3), we have j.Yu(t)l, + 0 as t+ --a. This 
proves (17). 

Now we subtract the equations satisfied by U, and u: 

u,(t) - u(t) =I’ U,,(t - r)[Pu,(t) - Pu(s)] ds 
s 

I 

5 
- U,,(t - z) Pu(r) ds. 

-cl2 
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whence 

II us - ulls G c (II u, IIB + II 24 IL?- ’ II us - ZJ Ile 

+c (,’ Iu(z)l~+‘dr)p’@+~), 
-02 

where B = Lp+ ‘(R, X,). Since 

C(IlU,Ile + Il4lY G 4w@ < 4, 

it follows that 

(Iv,-ulle<2c J’ 
( 

Iu(r)~:+‘dr)*B+l~+o as s-+-co. 
-cc 

LEMMA 3. Assume (I)-(III) and (V)-(VII). Given f- and u as in 
Lemma 2. If f- E X, then u E C(R, X) and 

;I WI: + G(u(t)) < i lf- I:. (19) 

Proof By (VII), U, E C(R, X) and 

I U)l: + 2G(~,W) = I u&M- I: + 2W&V-). (20) 

By (I) the first term on the right equals If- 1:. By (VI), G(U,,(s)f-) -+ 0 as 
s -+ --co. We assume of course that {h E X, : I h I3 < 6, } is contained in the 
domain of G and that G is bounded there. From (18) it follows that there 
exists a sequence sj + -co suh that I v,(t) - u(t)13 -+ 0 for almost every t. We 
fix any such t. By (VI), 

G(u(t)) < lim inf G(v,(t)). 

From (20) it follows that Iu,(t)lz is bounded. Each weak accumulation point 
in X of v,(t) must be equal to u(t). Hence u(t) E X and v,(t) -+ u(t) weakly in 
X. Hence 

I u(t)l: < lim inf I u,(t)l:. 
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Therefore (20) implies (19). By (VII) and the last part of Lemma 1, 
u E C(R, X) and (9) is valid. 

LEMMA 4. Under the same assumptions as Lemma 3, 

and 

I w - ul&)f- I* -+ 0 as t+--oO (11) 

il WI: + W(O) = iIf-. I:. (21) 

Proof As in the proof of Lemma 1, we may apply U,(4) to both sides 
of equation (* _ a, ,f-) to obtain 

Hence 

U,,(-t)u(t) - f- = f U,,(-7) Pu(7) dt. (22) 
-cc 

I Ud-f) u(t) - f- 13 

d I c 171-d Iu(s)l$ds 
-cc 

< (f, c7-2&)1’lli1) (fm ~u(i),:+‘dr)ri’+l’ 

tends to zero as t + --co. On the other hand we know from (19) that 
I Uo(-Q e>i2 = INl2 is bounded. Hence Uo(--t) u(t) converges weakly in X 
to f- as t + --oo. By (17) and (VI), G(u(t))+ 0 as t--t --oo. Hence 

I f_ 1: < lim inf 1 Uo(-t) u(t)l: = lim inf lu(t)l: 

= lim inf I u(t)l: + 2G(u(t)) < ) f- 1: 

by Lemma 3. It follows that (21) holds and that the weak limit is strong. 
Therefore 

LEMMA 5. Under the same assumptions, define 

f+ =f- +y U,(-t)Pu(t) d7. (23) 
-cc 

Then f+ E X. If I U,Jt)f+ I3 + 0 as t + +co, then If+ I2 < If- I2 and Idt>l3 + 0 
as t+ +co. 
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Proof We first show that the integral converges in X,. For any t let 
Z,=[t-l,t+l]andZ,=(-~,t-l)U(t+l,co).Exactlyasintheproof 
of Lemma 1, 

When t = 0 this shows that the integral in (23) converges in X,. Let us write 
u*(t) = U,(t)f, . We apply the operator U,,(t) to (23) so that 

m u+(t) = u-(t) + 
I 

U,,(t - 7) Pu(t) ds. (24) 
-a, 

As in Lemma 1, this implies that 

ll~+II,~Il~-ll,+~ll~llP,. 

From (* _ oo, f-) and (24) we obtain 

(25) 

u(t) = u+(t) -f= U,,(t - 5) Pu(z) dz. (26) 
t 

From this equation or from (22) and (23), we have 

Hence 

f+ - U,,(-t) u(t) = Irn U,,(-z) Pu(t) dT. 
t 

If+ - fowl < c (i,” r’dr)“‘+” Ilull’, 

tends to zero as t+ +co. On the other hand, IU,,(-t) u(t)12 = lu(t)l, is 
bounded. So f+ E X and 

U&-t) u(t) --) f+ weakly in X as t d +co. (27) 

If ] U,(t)f+ I3 + 0, then it follows from (26) that Iu(t)13-+ 0 as t + +co, 
exactly as in the proof of (17). By (VI), G(u(t)) + 0. From (27), 

If+ I2 < lim inf ] Uo(-t)u(t)li = lim inf I u(t)l: 

= 1 @)I: + 2G(u(t)) = If- I:. 

LEMMA 6. If+ 12 = If- 12 and (12) holds. 

ProoJ: We assume ]] z.- ]lz < 6,/4. By (25) and Lemma 1, ]]u+ ]lz < 6,;/2. 
If s < +co, we let w, be the solution of equation (*s, f+ ) given by Lemma 1. 
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Exactly as in Lemma 2 (but with +oo, f+, w, playing the roles of ---co 
f- , v,) we have 

I m 1 w,(t) - @)I;+ ’ dr -, 0 as s++oo. 
-02 

We choose a sequence sj* fco so that 1 w,(t) - n(t)lj --) 0 almost 
everywhere. We fix any such t. By (VII), w, E C(R, X) and 

I w,Wl: + 2G(w,@)) = I u&V+ I: + 2G(U&)ft 1. (28) 

By (I) and (VI), the right side of this identity tends to If+ 1: as s + +co. So 
w,(r) is bounded in X as s + t co. Hence w,(t) + u(t) weakly in X, and 

I u(t)l: < lim inf 1 wSj(t)l:. 

BY PI) 
G(u(t)) ,< lim inf G(wSj(t). 

Therefore (28) implies that 

IN: + 2GMt)) G If+ I:. 

By Lemmas 4 and 5, If- I2 = If+ 12. So the weak convergence in (27) is 
strong and 

lu(t> - U&)ft I* = I Ucd-f>W -f+ I2 + 0. 

LEMMA 7. Assume (I), (III), and (IV). Let f be an arbitrary element of 
X. Then U,( . )f E 2, 

II u,( . If llz G k If 12 (29) 

and 

IU,(t)fl,-0 as t+ foe. (30) 

ProoJ: We have c I U,,(t)f I3 < 1 U,,(t)f I2 = If Il. Hence U,( . )f E Z. By 
the closed graph theorem, (29) is true. Now 

I ~&)f- U&M2 = IU&- r)f-f I2 + 0 
as t - r+ 0. So U,( . ) f is uniformly continuous with values in X,. Since it 
belongs to L JJ+ ‘(R, X,), it follows that (30) is true. 

Now assume (I)-(VII). Let f- be an arbitrary element of X with 
If-l2 < 6,/(4k). By Lemma 7, (I U,( . )f-II < c&/4 and the hypotheses of 
Lemmas l-6 are satisfied. This completes the proof of Theorem 1. 
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4. THE OPERATORS S AND W, 

THEOREM 2. Let X(S) = {f E X: lflz < S}. The (nonlinear) operator 
S: f- + f+ which is defined in Theorem 1 carries X(S) onto X(S). It is a 
homeomorphism. 

Proof of Theorem 2. Let f y’ = f y’. For j= 1, 2, the equation 
t* +co, f y’) has a unique solution among the elements of 2 of small norm. 
Thus u(l) = u(*). By (23), f !!’ = f !?. This proves that S is one-one. 

Now let f!” E X(S) such that if ?’ -f- I2 -+ 0 as n -+ co. By (IV), 
I(u?‘-u-11,+0, h w ere u?‘(t) = U,,(t)f !?. The solution u(“) of the equation 
(* -m, f ‘?) also tends to u strongly in Z. Indeed u”‘) = u!” + Yu’“’ so that 

(Id” - u llz < (1 ul”’ - u- /Iz + ill dn’ - u I(= 

since .P is a contraction; this tends to zero. By (23) ] f y’ -f+ I3 + 0. Now 

If:“‘l2=lf’“‘Iz+lf-I** 
Hence 

f y’ + f, weakly in X and 

If+ I2 < l$$lf:“‘L = If-l2 = If+ 12. 

So f y’ + f+ strongly in X. This proves the continuity of S. 
The next result says that the wave operators W_(T): u-(T)+ u(T) map 

all of X into X. It was proved in [ 191 in slightly less generality and with a 
small error in the proof. 

THEOREM 3. Assume (I)-(VII). Zf f- E X, there exists a time T > ---co 
and a unique solution u of the integral equation (*-oo, f-) in the time 
interval Z= (-CO, T] such that 

UE C(z,X)nLP+l(z,Xj) 

and (11) and (21) hold. 

Proof We iterate in the space Z = Lpfl(Z, X,) ~7 B(Z, X,). We are given 
u-(t) = U,,(t)f-. By Lemma 7, u- belongs to this space. We choose T so 
large negative that 

/lull,= (f- l~-(~)l?+‘~~)‘-” + ,“ipT, lU-(f)L 
-cc 

(31) 

is less than 6,/2. Theorem3 follows immediately from Lemmas l-4. 
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Now we consider the ordinary initial-value problem with initial data small 
in X but otherwise arbitrary. 

THEOREM 4. Assume (D-o-(I). Zf f, E X, IfO12 < 6, then there exists a 
unique solution u of equation (*0, f,) for t E R satisfying (9). Furthermore 
there exist unique f, and f- E X with the same properties as in Theorem 1. 
The mappings f. -+ f, are one-one and continuous from X(S) into X(26). 

Proof. By Lemma 1, u exists. Define 

f* =f, +J*a U,(Y) Pu(t) dr. (32) 
0 

The proof continues exactly as in Lemmas 5 and 6 and Theorem 2. 

5. A DENSE CLASS OF SOLUTIONS 

We introduce the norm 

(33) 

and the space V= {v E C(R,X,): ~IuI(~ < co}, 

THEOREM 5. Assume (I)-(III) and (V)-(VII) but allow 

P -‘<d< 1 (34) 

instead of (8). In (VII) replace Z by V. Assume that f- E X and 
U,( . )f- E V. There exists 6 < 0 such that zf I( U,( . )f- lIy < 6, then all the 
conclusions of Theorem 1 are valid and u E V. 

Remark. Note that p-’ <2(p+l))‘<l for p>l. Hence the 
assumption on d is weaker than in Theorem 1. However the assumption on 
f- is stronger. Note also that V c Z since d(p + 1) > dp > 1. 

Proof: We first prove the analogue of Lemma 1 in the space V. We have 

$cI’#,~-~ lt-rl-d(l +Itl))d”d~. 
-cc 

Since d < 1, the integral is bounded. We break up the integral into the part 
with 1 t - t( < I fl/2 and its complement. Since dp > 1, the integral is O(l tied) 
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as 1 tI -+ co. Therefore /[9%ll,, < c II u 11;. Similarly we prove the analogue of 
(16) for the space V. The rest of Lemma 1 is identical, except for using the 
space V. 

As an analogue of (18) we claim that 

II~s--ullY+o as s--co 

(with u, and u defined as in Lemma 2). We now have 

I us@) - 4% 

Gc I *lt-71-d(l +171~-dp~7~II~~llv+II~llv)P-‘II~s-~llv 
s 

+c s 
I 

-m It-7qd(l + 171)-dpd711UII;. 

These integrals are <c( 1 + Ic/)-~. The second integral is less than 
w(s)(l + Itl)-d where o(s) + 0 as s + -co. This can be seen by breaking up 
the integral as above. Therefore II U, - u Iii, < w(s). 

Lemma 3 is unchanged. In Lemmas 4 and 5 we estimate 

which tends to zero as t + f co. We assume the space V in place of Z. In 
Lemma 6 we prove II w, - u/J, -+ 0 as s -+ +co. Otherwise there are no 
changes from the proof of Theorem 1. 

THEOREM 6 (The Wave Operator). Under the same assumptions as in 
Theorem 5, but without assuming the norm of U,,( . )f- is small, there exists 
a time T > --co and a unique solution u of (*-co, f-) in I = (-co, T] such 
that u E C(I,XnX,), 

sup (1 + I~l>d14~I, < ca 
-aO<f(T 

and (11) and (21) hold. 

ProoJ As in Theorem 5 we prove 

where we take the norms only over Z and 

E(T)= ;:F (1 +/f:)-df- It-7)-d(l +Isl)-dpdt 
-cc 
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tends to zero as T-+ -co. We let k = 2 11 U,,( . )f- IIy and choose T so that 
s(T)(2k)P-1 < l/2. Then 9 is a contraction map on (U E V 111 u Ily < k). The 
proof continues exactly as in Theorem 5 (up to Lemma 4). 

THEOREM 7 (The Initial-Value Problem). Assume (I)-(III) and 
(V)--(VII) but allow p-’ < d < 1. In (VII) replace Z by V. Let f, E X and 
U,( . )fO E V. There exists 6 > 0 such that if )I U,,( . )fOlly < 6, then there 
exists a unique solution u of equation (*0, fO), u E C(R, X) n V. There exist 
unique f, and f- in X with the same properties as in Theorem 1. 

Proof By the analogue of Lemma 1 in the space V, u exists. Define f+ 
and f- by (32). The proof continues just as in Lemmas 5 and 6. 

6. THE NONLINEAR SCHR~DINGER EQUATION 

By Wk9”(Rn) we denote the usual Sobolev space where k is the number of 
derivatives. The norm is denoted I( Ilk,,,’ Consider the ordinary Schriidinger 
equation 

(W 
au 

i--Au=0 at 

and the nonlinear Schrtidinger equation NLS with the nonlinear term 
W4bw. 

We assume that h is a real function and that h(0) = 0. Let H be the 
primitive of h which vanishes at 0. The invariants for NLS are 

I I u(x, t>l* dx and 
I 

[$I Vu(x, t)l’ + H(I u(x, t)l)] dx. 

We call a solution of NLS for which both invariants are finite a finite-energy 
solution. 

THEOREM 8. Assume that h is of class C’ and / h’(s)1 < c ls14/” for all s. 

(a) If u- is any solution of LS of finite energy, then there exists a 
unique solution u of NLS in some time interval such that 

u is continuous with values in W’.*(R”), 

II 
* lu(x, t)12+4’“dxdt < 03, 
-cc 

IIuW - u-WI,,* + 0 as t+-m. 
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(b) If the energy of u- is sufJiciently small, then u exists globally, 
IUI 2t4/n is integrable over all space-time, and there exists a unique solution 
u, of LS such that 

For all t, 

IIw-utwlll,2-o as t++oo. 

(u2dx=j-u:dx=j-u:dx, 

(c) If u0 is a solution of LS of suflciently small energy, then there 
exist unique u, u, , and u- with the same properties such that u(O) = u,(O). 

Proof We choose X= W1,‘, X3=Lpt’, X,=L’+“p, p= 1 +4/n, and 
Uo(t) is the evolution operator for LS. We verify hypotheses (I)-(VII). (I) 
and (III) are obvious. The assumption on h implies the Lipschitz condition 

We take (Pf)(x) = h(l f (x)1) arg f(x). Let s = f(x) and r = g(x) where 
f, g E X,. Taking the X, norm of the inequality and using Holder’s 
inequality, we obtain exactly (II). A simple dilation argument shows that 
there is only one value of p for which (IV) could be true, namely, 
p = 1 + 4/n. For that p, (IV) is proved by Strichartz [21]. Now U,(t) is 
unitary from L2 onto L2 and, from the explicit formula for its kernel, it 
carries L’ into Lo3 with norm <ctr d2 for t > 0. By interpolation, it carries 
X, into X, with norm <ct- d where d = (n/2)(p - l)/(p + 1). For hypothesis 
(V) we require 

n p-l 2 --= 
2 p+l p+l’ 

This is true only if p = 1 + 4/n (again!). We may choose X4 = W-m*p+’ for 
an appropriate m since (1 + / rj2)-m exp it l<j* is a multiplier on L”+ I. 

Next we let G(u) = jH(J u(x)l) dx. Because of (3) we have 

so that G is a continuous functional on L pt ‘. Finally we sketch the proof of 
(VII). Let a solution u of NLS be given with small norm in 2, say less than 
6, and U(S) =J Let h, be a sequence of smooth functions which are globally 
Lipschitz such that h,(s) -t h(s) and I h,(s)1 < I h(s)1 for all s. By Remark 2 of 
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Section 2 there exists U, E C(I, X) which satisfies NLS with the nonlinearity 
h,. and U,,(S) = f: Furthermore U, is smooth [ 10, 121 and 

is independent of t. Since U, satisfies equation (*s, f) modified by the 
approximate nonlinearity h,, 

Hence the second term in E, is bounded and so is the first term, indepen- 
dently of t and V. Pick a subsequence U, + w weakly in L”O(I, X) and in Z 
and by compactness u,-+ w a.e. Then !~,(a,)+ h(w) a.e. Since h,(u,) is 
bounded in L’f”P, h,(u,) + h(w) strongly in L:,,. Hence w satisfies NLS 
and ]] w]l, < 46. By uniqueness (in Lemma 1) w = U. It follows by passage to 
the limit that the inequality 

ill u(t)li:,2 + 1 ff(Iu(t)l) dx < +llfll:,~ + j- ff(lfl) dx 

holds, just as in the proof of Lemma 3, wheref = U(S). If the roles of s and t 
are reversed, the same argument shows the opposite inequality, hence 
equality. Equality together with weak convergence implies the strong 
continuity u E C(I, X). 

Part (a) follows from Theorem 3, part (b) from Theorem 1, and part (c) 
from Theorem 4. 

Remark. In a sequel to this paper, we show that the condition on p in 
Theorem 8 can be weakened to 

1 + 4/n < p < 1 + 4/(n - 2). (36) 

Remark. The solution in part (a) exists globally if we assume 

1 H(s)1 = o(s2 +4/n) as s++co. 

Indeed, this implies the inequality I H(s)] < c,s* + esZt 4’n for all s, E > 0. 
Hence we have the energy bound 

I IVu12dx<c+c, lul’dx+kE 
5 

(, u2dxjun (1 lVuj2 dx) 

<c:+k& IVul’dx 
5 
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by Sobolev’s inequality. Picking E = 1/2k we have u bounded in W’~*(R”). 
This implies the global existence of solutions [2, 41. 

We now consider various classes of data which are dense in X. We will 
have the condition (5) where v(n) is given by (6). 

y(n) = [n + 2 + (n’ + 12n + 4)“‘]/2n. 

Approximately y( 1) = 3.56, y(2) = 2.41, y(3) = 2.00, y(4) = 1.78, 
y(5) = 1.64, and y(n) + 1 as n -+ co. An equivalent way to state (5) and (6) 
is (37) below. 

THEOREM 9. Let h satisfy (3) where 

n p-l $<-- 
2 p+l 

< 1. (37) 

(a) Iff- E L*(R”) f7 L ’ + ‘IP(R”), then there exists a unique solution u 
of NLS in some time interval (-00, T] such that 

u is continuous with values in L*(R”) ~7 Lp+‘(Rn), (38) 

1 lu(x, t)lP’ldx< c(1 + Itl)-n@-‘)‘2, (39) 

I lu(x, t) - u-(x, t>1* c-lx-1 0 as t--a. (40) 

(b) Iff- E wd*‘(R”)f-J L It lip(R”) where d = n(p - 1)/(2(p + 1)) and 
f- has small norm in this space, then u exists and satisfies (38) and (39) for 
all time and there exists u+ asymptotic to u in the space L*(R”) as t * +a~. 

(c) If f- E W1V2(R”)n L’+Yp(R”) and f- has small norm in this 
space, then the asymptotes are valid in the space W’,*(R”). 

(d) Iffo E wd,*(R”), L ‘+ wP(Rn) has small norm, then there exists u 
such that u(0) = f, and there exist u+ and u- asymptotic to u in the space 
L*(R”). If in addition f. E W’,‘(R”), then the asymptotes are valid in 
W’,*(Rn). 

Proof: In parts (a) and (b), we take X= L*(R”), X, = Lptl(R”), 
X,=L l+yp(Rn), G = 0. Then (I), (II), (III), and (V) are proved as in 
Theorem 8. Recall that d = (np - n)/(2p + 2). To prove (VII), we let u be 
the unique solution (given by Lemma 1) in V. We approximate h by h, as in 
the proof of Theorem 8. Then u,+ u strongly in the space V (as in the proof 
of Theorem 2, because of the smallness assumption). We have {u,} bounded 
in X. Hence u, + u weakly in X and ]u(tj2 < /u(s)12. Reversing the roles of s 
and t, we have 1 u(t)12 = Iu(s)Iz and so u E C(I, X). In part (a) we use 
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Theorem 6. Since f- E X, and since (V) is valid, u- = U,( . )f- satisfies 
(39) for t < T < 0. In part (b) we apply Theorem 5. But now (39) must hold 
for all t, including small t. Since f- E Hd(R”), we have 

u_ E C(R, IId( c C(R, Lp+‘(R”)), 

which is the required condition. 
In part (c), we take X = W’.*(R”) and G(f) = jH(]f(x)]) dx. The 

hypotheses are verified exactly as in Theorem 8. In part (d) we apply 
Theorem 7 in exactly the same way. 

In the next theorem no assumption is made on h(s) for large s. 

THEOREM 10. Assume (37). Let k be an integer greater than np/(p + 1). 
If p is not an integer, assume k < p. Let h be a Ck function such that 

IW>l= O(lsl”> as s+O. (7) 

Let f- E Wk+‘v2(R”)n Wkq”‘lp R” ( ). Then the same conclusions hold as in 
Theorem 9(a) and also in 9(c) iff- has small norm in this space. Also 

II Wll k,ptl < d1 + iti>-d* (41) 

If f, has small norm in this space, then there exists u with u(O) = f. and u t 
and u- asymptotic to u in the space W”‘(R”). 

Proof: We choose X = W’.*(R”), X, = WkTp “(R”), and Xl = 
wk.‘+ l/P@“). B ecause of the choice of k we have Xl c L”(R”). Hence it is 
well known that (7) implies (II) and (VI). Just as in Theorem 9, 
u- E C(R, Wk’ ‘,*) c C(R, Wkvpf ’ ). We apply Theorems 5, 6, and 7 as 
before. 

This theorem was proved in [ 171 in case n = 1 under the assumptions 
p > 4 and f- E W’q2n L’. 

7. THE NONLINEAR KLEIN-GORDON EQUATION 

Consider the Klein-Gordon equation 

(KG) utt -Au + m*u = 0 

with m > 0 and NLKG with the nonlinear term h(u). We consider real 
solutions only. (We could allow complex solutions with the nonlinear term 
h(lu 1) arg u.) Let X = W’.‘(R”) @ L*(R”), the space of Cauchy data of finite 
energy. It is provided with the energy norm 

l[f,.f,lli=~ Wl*+m'f~+f~Idx~ (42) 
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where f = [fi, fi] denotes an element of X. Because the energy norm is an 
invariant for KG, the evolution operator U,,(t), which acts on Cauchy data, 
is a unitary operator on X. The perturbation operator P acts on Cauchy data 

IfI, fzl by W-i, .A1 = LO, W-,)1- -r-h e only useful invariant for NLKG is 
ilfli + G(f) where G[fI,Ll = SWf,(x)) dx. 

THEOREM 11. Let 1 + 4/n < p < 1 + 4/(n - 1). Let h be a C’ function 
which satisfies (3). 

(a) If u- is any solution of KG of finite energy, there exists a unique 
solution u of NLKG in some time interval (-co, T] such that 

u is continuous with values in X, 

I 

T 

124(x, t)lPfl dxdt < al, 

-cc 

the energy of (u - u-) tends to zero as t--t --CO. 

(b) If the energy of u- is suficiently small, then u exists for all time, 
IUI pt ’ is integrable over all space-time, and there exists a unique solution u + 
of KG such that 

the energy of (u - u+) tends to zero as t * +co, 

the energies of u, u- , and u, are equal. 

(c) If uO is a solution of KG of suflciently small energy, then there 
exists unique u, u, , and u_ with the same properties and with the Cauchy 
data of u equal to that of uO at t = 0. 

Proof We choose X, = Lpt ’ @ W-‘,p+‘, X, = {0} @L” vp. Hypotheses 
(I) and (III) are obvious. Hypothesis (II) is equivalent to the inequality 

cr Ih(f,)-h(g,)l’+“Pdx ’ ) 

IfiIp+l+lg,lp+ldx )“-’ (, If, - g, I’+’ dx) 

which follows from (3) and Holder’s inequality. It is proved in [9] that (V) 
is true if and only if p satisfies the given inequality. It is shown in [21] that 
(IV) is also true for such p (for some larger p as well). We may take 
x4= w-‘.P+‘@ w-2."+', since the operator T, of [9] takes Lpt ’ into Lpt ‘. 
Clearly G is a continuous functional on X,. Now we verify (VII). If n < 3, 
then p < 1 + 2/(n - 2), hence W1*2(R”)cL2p(R”), hence P is a locally 
Lipschitz operator from X to X. Then (VII) follows from Remark 2 of 
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Section 2. For general n, we approximate h, -+ h and use the same argument 
as in the proof of Theorem 8 to prove (VII). Part (a) follows from 
Theorem 3, part (b) from Theorem 1, and part (c) from Theorem 4. 

Remark. The solution in part (a) exists globally if we assume 

li,: ?f H(s)/s’ > -co. 

For then we get from the energy identity (9) an a priori bound for the energy 
norm. This implies the global existence of solutions. 

THEOREM 12. Let y(n) < p < 1 + 4/(n - 1) and let h satisfy (3). 

(a) rff- E [ W’*‘n I@,‘+ lip] @ [L2 n L” “p], then there exists u as 
in Theorem 1 l(a). 

(b) If f_ has small norm in this space, then the conclusion of 
Theorem 11 (b) holds. 

(c) If f, has small norm in this space, then the conclusion of 
Theorem 11 (c) holds. 

Proof We make the same choices of X, X,, and X, . We need only check 
that U- = U,( . )f- E I’. From (V) it follows that iff- E W’*l+vp@ L*tl’P, 
then lup(t)13 <c Itl-d. Since f_ E X, u_ E C(R,x) c C(R,X,). Hence 
U- E V. Theorem 12 follows from Theorems 6, 5, and 7. 

THEOREM 13. Let p, k, and h satisfy the same conditions as in 
Theorem 10. Let 

Then the same conclusions hold as in Theorem 12(a) and, also in 
Theorem 12(b) iff- has small norm. Iffo has small norm in this space, the 
same conclusions as in Theorem 12(c) hold. 

Proof. WechooseX=W’,2@L2butnowX,=Wk,pt’@Wk~’,p+’and 
X = Wk’ “‘tLlp @ Wkq’+lJp. By choice of k, WkS’ “lp c L”. Therefore (II) 
add (VI) follows from (7). Theorem 13 follows from Theorems 6, 5, and 7. 

8. Two OTHER EXAMPLES 

In order to further illustrate the abstract theorems, we now consider the 
nonlinear wave equation 

WY 
utt - Au + h(u) = 0, 
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where h(O) = h’(0) = 0. The only useful conservation law is once again the 
energy. The space X= PI’*‘@ L* is provided with the energy nqrm (42) 
where m = 0 now. We denote by pqq the closure of the test functions with 
respect to the norm 

,<;,,, (, ID”#I” dx)“‘. 
We also denote Wfi;” = (-d) mk+2,q. We choose 

x3 =LPfI @ pf,yLPfl. x, = f,j71.1+ VP @ L I+ VP 

in analogy to the Klein-Gordon case. By dilation we can see that there is 
only one value of p for which (IV) can be true, namely, p = 1 + 6/(n - 2). 
See [21]. There is also only one value of p for which (V) can be true. 
According to [9], (V) isvalidfor l<p<1+4/(n-l),whered(ptl)= 
(n- l)p-(n+ 1). In order that d(p + 1) = 2, we would require 
p = 1 + 4/(n - 1). This conflicts with the preceding requirement. It is 
interesting to note that (IV) would be true with p = 1 t 4/(n - 1) if we took 
for X the Lorentz-invariant Hilbert space (but then we would lose the 
conservation law). We can, however, apply Theorem 5, 6, and 7. 

THEOREM 14. Let 

n+2+j/m 4 
2(n - 1) 

<p<l+- 
n-1 

(<co g-n= 1). 

If h satisfies (3) and 

f- E [ PJ @ w’J+l’p] @ [L* n L’f~q, 

then the analogue of Theorem 12 holds. If k and h satisfy the conditions of 
Theorem 10 and 

f- E [@ktL*@ #7k+lJ+Vp] 0 [p+-, WkJtVp], 

then the analogue of Theorem 13 holds. 

Proof We require p- ’ < d < 1, where d is given above. This determines 
the possible values of p. The lower bound for p is larger than the critical 
power (5) for NLKG. But it is not sharp: Klainerman [8] obtains a number 
which is smaller if n < 3. 

Now consider the generalized Korteweg-deVries equation 

(GKdV) ut + uxxx t h(u), = 0, 

where x E R. We limit ourselves to an analogue of Theorem 7. 
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THEOREM 15. Let h satisfy Ih’(s)l =O(lsl’-‘) as s-10 where 
y > (5 + a)/2 G 4.79. Let p = 2y- 1 and d = (y- 1)/3y. For any 
function f0 with J” 1 fOl ’ + “p dx and J’ I( fJX1’ dx suflciently small, there is a 
solution u(x, t) of GKdV and two solutions u, and u- of the Airy equation 
such that 

IIm-~*wllL,*~O as t+fc0. 

Proof This result is a very slight improvement over [ 171 and the proof is 
a slight variation of that one. It also appears as an example in [S]. The 
existence of a global solution with values in X = Wi9*(R) is proved in [ 171. 
We will prove by iteration as in Theorem 5 that (] u(t)llp+ 1 = O(l tl-d). As 
usual we take X, = Lp ’ i(R) and X, = L’ ’ ““(R). We estimate 

by the choice of p and the condition on h. Now the evolution operator U,(t) 
for the Airy equation takes L*+ L* and L’+ L”O with norm O(ltl-V3). 
Hence U,(t) takes X, into X3 with norm O(] tlpd), where 
d = (p - 1)/3(p + 1) = (y - 1)/3y. Hence 

<c It-7i-dllu(7))l;;:d7 
I 

,<c(l + Itl)rdbyP(’ + I7l)“ll~(7>ll,+,J’-’ 

provided d(y - 1) > 1. This is the condition on y in the theorem. An iteration 
then proves the decay of the L”” norm. Then u + and u_ are defined as in 
(26) and the proof concludes as in Lemmas 5 and 6. 
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