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We study sequential programs that are instruction sequences with jump-shift instruc-
tions in the setting of PGA (ProGram Algebra). Jump-shift instructions preceding a jump
instruction increase the position to jump to. The jump-shift instruction is not found in
programming practice. Its merit is that the expressive power of PGA extended with the
jump-shift instruction, is not reduced if the reach of jump instructions is bounded. This is
used to show that there exists a finite-state execution mechanism that by making use of a
counter can produce each finite-state thread from some program that is a finite or periodic
infinite sequence of instructions from a finite set.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study sequential programs that are instruction sequences with jump-shift instructions. With that we
carry on the line of research with which a start was made in [2]. The object pursued with this line of research is the
development of a theoretical understanding of possible forms of sequential programs, starting from the simplest form.
The view is taken that sequential programs in the simplest form are sequences of instructions. PGA (ProGram Algebra),
an algebra of programs in which programs are looked upon as sequences of instructions, is taken for the basis of the
development aimed at. The work presented in this paper is part of an investigation of the consequences of small differences
in the choice of primitives in the algebra of programs.

In the line of research carried on in this paper, the view is taken that the behaviors of sequential programs under
execution are threads as considered in basic thread algebra [2].1 The experience gained so far leads us to believe that
sequential programs are nothing but linear representations of threads.

If n jump-shift instructions precede a jump instruction, they increase the position to jump to by n. This feature of the
jump-shift instruction is called jump shifting. It is a programming feature that is not suggested by existing programming
practice. Its merit is that the expressive power of PGA extended with the jump-shift instruction, unlike the expressive power
of PGA, is not reduced if the reach of jump instructions is bounded. Therefore, we consider a study of programs that are
instruction sequences with jump-shift instructions relevant to programming.

We believe that interaction with services provided by an execution environment is inherent in the behavior of programs
under execution. Intuitively, a counter service provides for jump shifting. In this paper, we define the meaning of programs
with jump-shift instructions in two different ways. One way covers all programs with jump-shift instructions. The other way
covers all programs with jump-shift instructions that contain no other jump instruction than the one whose effect in the
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Table 1
Axiom of BTA

x � tau� y = x � tau� x T1

absence of preceding jump-shift instructions is a jump to the position of the instruction itself. The latter way corresponds to
a finite-state execution mechanism that by making use of a counter produces the behavior of a program from that program.

A thread proceeds by doing steps in a sequential fashion. A thread may do certain steps only for the sake of getting
reply values returned by some service and that way having itself affected by that service. The interaction between behaviors
of programs under execution and a counter service referred to above is an interaction with that purpose. In [6], the use
mechanism is introduced to allow for such a kind of interaction between threads and services. In this paper, we will use
the use mechanism, which has been renamed to thread-service composition, to have behaviors of programs under execution
affected by services.

A hierarchy of program notations rooted in PGA is introduced in [2]. Included in this hierarchy are very simple pro-
gram notations which are close to existing assembly languages up to and including simple program notations that support
structured programming by offering a rendering of conditional and loop constructs. However, although they are found in
existing assembly programming practice, indirect jump instructions are not considered. In [5], several kinds of indirect jump
instructions are considered, including a kind by which recursive method calls can easily be explained. Moreover, dynamic
instruction instantiation, a useful programming feature that is not suggested by existing programming practice, is considered
in [4].

This paper is organized as follows. First, we review basic thread algebra (Section 2). Next, we review PGA and extend
it with the jump-shift instruction (Section 3). After that, we extend basic thread algebra with thread-service composition,
introduce a state-based approach to describe services, and give a state-based description of counter services (Section 4).
Following this, we revisit the meaning of programs with jump-shift instructions and show that there exists a finite-state
execution mechanism that by making use of a counter can produce each finite-state thread from a program that is a finite or
periodic infinite sequence of instructions from a finite set (Section 5). Finally, we make some concluding remarks (Section 6).

2. Basic Thread Algebra

In this section, we review BTA (Basic Thread Algebra), a form of process algebra which is tailored to the description of
the behavior of deterministic sequential programs under execution. The behaviors concerned are called threads.

In BTA, it is assumed that there is a fixed but arbitrary finite set A of basic actions with tau /∈ A. We write Atau for
A ∪ {tau}. The members of Atau are referred to as actions.

The intuition is that each basic action performed by a thread is taken as a command to be processed by a service
provided by the execution environment of the thread. The processing of a command may involve a change of state of the
service concerned. At completion of the processing of the command, the service produces a reply value. This reply is either
T or F and is returned to the thread concerned.

Although BTA is one-sorted, we make this sort explicit. The reason for this is that we will extend BTA with an additional
sort in Section 4.

The algebraic theory BTA has one sort: the sort T of threads. To build terms of sort T, BTA has the following constants
and operators:

• the deadlock constant D : T;
• the termination constant S : T;
• for each a ∈ Atau , the binary postconditional composition operator _ �a � _ : T × T → T.

Terms of sort T are built as usual (see, e.g., [11,12]). Throughout the paper, we assume that there are infinitely many
variables of sort T, including x, y, z.

We use infix notation for postconditional composition. We introduce action prefixing as an abbreviation: a ◦ p, where p
is a term of sort T, abbreviates p �a � p.

Let p and q be closed terms of sort T and a ∈ Atau . Then p �a � q will perform action a, and after that proceed as p if
the processing of a leads to the reply T (called a positive reply), and proceed as q if the processing of a leads to the reply F
(called a negative reply). The action tau plays a special role. It is a concrete internal action: performing tau will never lead
to a state change and always lead to a positive reply, but notwithstanding all that its presence matters.

BTA has only one axiom. This axiom is given in Table 1. Using the abbreviation introduced above, axiom T1 can be
written as follows: x � tau� y = tau ◦ x.

Each closed BTA term of sort T denotes a finite thread, i.e. a thread of which the length of the sequences of actions that
it can perform is bounded. Guarded recursive specifications give rise to infinite threads.

A recursive specification over BTA is a set of recursion equations {X = t X | X ∈ V } where V is a set of variables of sort T
and each t X is a BTA term of sort T that contains only variables from V . Let E be a recursive specification over BTA. Then
we write V(E) for the set of all variables that occur on the left-hand side of an equation in E . A solution of a recursive
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Table 2
Axioms for guarded recursion

〈X |E〉 = 〈t X |E〉 if X = t X ∈ E RDP
E ⇒ X = 〈X |E〉 if X ∈ V(E) RSP

Table 3
Approximation induction principle
∧

n�0 πn(x) = πn(y) ⇒ x = y AIP

Table 4
Axioms for projection operators

π0(x) = D P0
πn+1(S) = S P1
πn+1(D) = D P2
πn+1(x �a� y) = πn(x) �a� πn(y) P3

Table 5
Axioms of PGA

(x ; y) ; z = x ; (y ; z) PGA1
(xn)ω = xω PGA2
xω ; y = xω PGA3
(x ; y)ω = x ; (y ; x)ω PGA4

specification E is a set of threads (in some model of BTA) {T X | X ∈ V(E)} such that the equations of E hold if, for all
X ∈ V(E), X stands for T X .

Let t be a BTA term of sort T containing a variable X of sort T. Then an occurrence of X in t is guarded if t has a
subterm of the form t′ �a � t′′ containing this occurrence of X . Let E be a recursive specification over BTA. Then E is a
guarded recursive specification if, in each equation X = t X ∈ E , all occurrences of variables in t X are guarded or t X can be
rewritten to such a term using the equations in E from left to right. We are only interested in models of BTA in which
guarded recursive specifications have unique solutions, such as the projective limit model of BTA presented in [1]. A thread
that is the solution of a finite guarded recursive specification over BTA is called a finite-state thread.

We extend BTA with guarded recursion by adding constants for solutions of guarded recursive specifications and axioms
concerning these additional constants. For each guarded recursive specification E and each X ∈ V(E), we add a constant of
sort T standing for the unique solution of E for X to the constants of BTA. The constant standing for the unique solution of
E for X is denoted by 〈X |E〉. Moreover, we add the axioms for guarded recursion given in Table 2 to BTA. In this table, we
write 〈t X |E〉 for t X with, for all Y ∈ V(E), all occurrences of Y in t X replaced by 〈Y |E〉. X , t X and E stand for an arbitrary
variable of sort T, an arbitrary BTA term of sort T and an arbitrary guarded recursive specification over BTA, respectively.
Side conditions are added to restrict the variables, terms and guarded recursive specifications for which X , t X and E stand.
The equations 〈X |E〉 = 〈t X |E〉 for a fixed E express that the constants 〈X |E〉 make up a solution of E . The conditional
equations E ⇒ X = 〈X |E〉 express that this solution is the only one.

We will write BTA+REC for BTA extended with the constants for solutions of guarded recursive specifications and axioms
RDP and RSP. We will often write X for 〈X |E〉 if E is clear from the context. It should be borne in mind that, in such cases,
we use X as a constant. We will also use the following abbreviation: aω , where a ∈ Atau , abbreviates 〈X | {X = a ◦ X}〉.

In [3], we show that the threads considered in BTA + REC can be viewed as processes that are definable over ACP [9].
Closed terms of sort T from the language of BTA + REC that denote the same infinite thread cannot always be proved

equal by means of the axioms of BTA + REC. We introduce the approximation induction principle to remedy this. The ap-
proximation induction principle, AIP in short, is based on the view that two threads are identical if their approximations up
to any finite depth are identical. The approximation up to depth n of a thread is obtained by cutting it off after performing
a sequence of actions of length n.

AIP is the infinitary conditional equation given in Table 3. Here, following [2], approximation of depth n is phrased in
terms of a unary projection operator πn : T → T. The axioms for the projection operators are given in Table 4. In this table,
a stands for an arbitrary member of Atau .

We will write BTA + REC + AIP for BTA + REC extended with the projection operators and the axioms from Tables 3
and 4.

A linear recursive specification over BTA is a guarded recursive specification E = {X = t X | X ∈ V }, where each t X is a term
of the form D, S or Y �a � Z with Y , Z ∈ V . For each closed term p of sort T from the language of BTA + REC, there exist
a linear recursive specification E and a variable X ∈ V(E) such that p = 〈X |E〉 is derivable from the axioms of BTA + REC.

Below, the interpretations of the constants and operators of BTA + REC in models of BTA + REC are denoted by the
constants and operators themselves. Let M be some model of BTA + REC, and let p be an element from the domain of M.
Then the set of states or residual threads of p, written Res(p), is inductively defined as follows:

• p ∈ Res(p);
• if q �a � r ∈ Res(p), then q ∈ Res(p) and r ∈ Res(p).

We are only interested in models of BTA + REC in which card(Res(〈X |E〉)) � card(E) for all finite linear recursive specifica-
tions E , such as the projective limit model of BTA presented in [1].

3. Program algebra and the jump-shift instruction

In this section, we first review PGA (ProGram Algebra) and then extend it with the jump-shift instruction, resulting in
PGAjs. PGA is an algebra of sequential programs based on the idea that sequential programs are in essence sequences of
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instructions. PGA provides a program notation for finite-state threads. The jump-shift instruction is not found in program-
ming practice: if one or more jump-shift instructions precede a jump instruction, then each of those jump-shift instructions
increases the position to jump to by one.

3.1. PGA

In PGA, it is assumed that there is a fixed but arbitrary finite set A of basic instructions. PGA has the following primitive
instructions:

• for each a ∈ A, a plain basic instruction a;
• for each a ∈ A, a positive test instruction +a;
• for each a ∈ A, a negative test instruction −a;
• for each l ∈ N, a forward jump instruction #l;
• a termination instruction !.

We write Ijmp for the set of all forward jump instructions and IPGA for the set of all primitive instructions of PGA.
The intuition is that the execution of a basic instruction a may modify a state and produces T or F at its completion.

In the case of a positive test instruction +a, basic instruction a is executed and execution proceeds with the next primi-
tive instruction if T is produced and otherwise the next primitive instruction is skipped and execution proceeds with the
primitive instruction following the skipped one. In the case where T is produced and there is not at least one subsequent
primitive instruction and in the case where F is produced and there are not at least two subsequent primitive instructions,
deadlock occurs. In the case of a negative test instruction −a, the role of the value produced is reversed. In the case of a
plain basic instruction a, the value produced is disregarded: execution always proceeds as if T is produced. The effect of a
forward jump instruction #l is that execution proceeds with the lth next instruction of the program concerned. If l equals
0 or the lth next instruction does not exist, then #l results in deadlock. The effect of the termination instruction ! is that
execution terminates.

PGA has the following constants and operators:

• for each u ∈ IPGA, an instruction constant u;
• the binary concatenation operator _ ; _;
• the unary repetition operator _ω .

Terms are built as usual. Throughout the paper, we assume that there are infinitely many variables, including x, y, z.
We use infix notation for concatenation and postfix notation for repetition. We also use the notation Pn . For each PGA

term P and n > 0, the term Pn is defined by induction on n as follows: P 1 = P and Pn+1 = P ; Pn .
Closed PGA terms are considered to denote programs. The intuition is that a program is in essence a non-empty, finite or

periodic infinite sequence of primitive instructions.2 These sequences are called single pass instruction sequences because PGA
has been designed to enable single pass execution of instruction sequences: each instruction can be dropped after it has
been executed. Programs are considered to be equal if they represent the same single pass instruction sequence. The axioms
for instruction sequence equivalence are given in Table 5. In this table, n stands for an arbitrary natural number greater
than 0. The unfolding equation xω = x ; xω is derivable. Each closed PGA term is derivably equal to a term in canonical form,
i.e. a term of the form P or P ; Q ω , where P and Q are closed PGA terms that do not contain the repetition operator.

Each closed PGA term is considered to denote a program of which the behavior is a finite-state thread, taking the set
A of basic instructions for the set A of actions. The thread extraction operation |_| assigns a thread to each program. The
thread extraction operation is defined by the equations given in Table 6 (for a ∈ A, l ∈ N and u ∈ IPGA) and the rule given in
Table 7. This rule is expressed in terms of the structural congruence predicate _ ∼= _, which is defined by the formulas given
in Table 8 (for n,m, l ∈ N and u1, . . . , un, v1, . . . , vm+1 ∈ IPGA).

The equations given in Table 6 do not cover the case where there is a cyclic chain of forward jumps. Programs are
structural congruent if they are the same after removing all chains of forward jumps in favor of single jumps. Because a
cyclic chain of forward jumps corresponds to #0, the rule from Table 7 can be read as follows: if x starts with a cyclic
chain of forward jumps, then |x| equals D. It is easy to see that the thread extraction operation assigns the same thread to
structurally congruent programs. Therefore, the rule from Table 7 can be replaced by the following generalization: x ∼= y ⇒
|x| = |y|.

Let E be a finite guarded recursive specification over BTA, and let P X be a closed PGA term for each X ∈ V(E). Let E ′ be
the set of equations that results from replacing in E all occurrences of X by |P X | for each X ∈ V(E). If E ′ can be obtained
by applications of axioms PGA1–PGA4, the defining equations for the thread extraction operation and the rule for cyclic
jump chains, then |P X | is the solution of E for X . Such a finite guarded recursive specification can always be found. Thus,
the behavior of each closed PGA term, is a thread that is definable by a finite guarded recursive specification over BTA.

2 A periodic infinite sequence is an infinite sequence with only finitely many subsequences.
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Table 6
Defining equations for thread extraction operation

|a| = a ◦ D |#l| = D
|a ; x| = a ◦ |x| |#0 ; x| = D
|+a| = a ◦ D |#1 ; x| = |x|
|+a ; x| = |x| �a� |#2 ; x| |#l + 2 ; u| = D
|−a| = a ◦ D |#l + 2 ; u ; x| = |#l + 1 ; x|
|−a ; x| = |#2 ; x| �a� |x| |!| = S

|! ; x| = S

Table 7
Rule for cyclic jump chains

x ∼= #0 ; y ⇒ |x| = D

Table 8
Defining formulas for structural congruence predicate

#n + 1 ; u1 ; . . . ; un ; #0 ∼= #0 ; u1 ; . . . ; un ; #0
#n + 1 ; u1 ; . . . ; un ; #m ∼= #m + n + 1 ; u1 ; . . . ; un ; #m
(#n + l + 1 ; u1 ; . . . ; un)ω ∼= (#l ; u1 ; . . . ; un)ω

#m + n + l + 2 ; u1 ; . . . ; un ; (v1 ; . . . ; vm+1)ω

∼= #n + l + 1 ; u1 ; . . . ; un ; (v1 ; . . . ; vm+1)ω

x ∼= x
x1 ∼= y1 ∧ x2 ∼= y2 ⇒ x1 ; x2 ∼= y1 ; y2 ∧ x1

ω ∼= y1
ω

Moreover, each finite guarded recursive specification over BTA can be translated to a closed PGA term of which the behavior
is the solution of the finite guarded recursive specification concerned (cf. Section 4 of [10]).

Closed PGA terms are loosely called PGA programs. PGA programs in which the repetition operator do not occur are
called finite PGA programs.

3.2. The jump-shift instruction

We extend PGA with the jump-shift instruction, resulting in PGAjs.
In PGAjs, like in PGA, it is assumed that there is a fixed but arbitrary finite set A of basic instructions. PGAjs has the

primitive instructions of PGA and in addition:

• a jump-shift instruction #′ .

We write IPGAjs for the set of all primitive instructions of PGAjs.
If one or more jump-shift instructions precede a jump instruction, then each of those jump-shift instructions increases

the position to jump to by one. If one or more jump-shift instructions precede an instruction different from a jump instruc-
tion, then those jump-shift instructions have no effect.

PGAjs has the following constants and operators:

• for each u ∈ IPGAjs , an instruction constant u;
• the binary concatenation operator _ ; _;
• the unary repetition operator _ω .

The axioms of PGAjs are the axioms of PGA (Table 5) and in addition the axioms for the jump-shift instruction given in
Table 9. In this table, u stands for an arbitrary primitive instruction from IPGA \ Ijmp.

The thread extraction operation of PGAjs is defined by the same equations and rule as the thread extraction operation
of PGA (Tables 6 and 7), on the understanding that u still stands for an arbitrary primitive instruction from IPGA, and in
addition the equation given in Table 10. The structural congruence predicate of PGAjs is defined by the same formulas as the
structural congruence predicate of PGA (Table 8), on the understanding that u1, . . . , un , v1, . . . , vm+1 still stand for arbitrary
primitive instructions from IPGA.

The additional defining equation |x| = |x ; #0| for the thread extraction operation expresses that a missing termination
instructions leads to deadlock. For all PGA programs P , the equation |P | = |P ; #0| is derivable from the axioms of PGA
and the defining equations for the thread extraction operation of PGA. For all PGAjs programs P , the equation |#l + 2;#′;
P | = |#l +2 ; P | is derivable from the axioms of PGAjs and the defining equations of the thread extraction operation of PGAjs.

Obviously, the set of all PGA programs is a proper subset of the set of all PGAjs programs. Moreover, the thread extraction
operation of PGA is the restriction of the thread extraction operation of PGAjs to the set of all PGA programs. Therefore, we
do not distinguish the two thread extraction operations syntactically.
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Table 9
Additional axioms for the jump-shift in-
struction

#′ ; #l = #l + 1 JSI1
#′ ; u = u JSI2
#′ω = #0ω JSI3

Table 10
Additional defining equation for thread ex-
traction operation

|x| = |x ; #0|

Below, we consider PGAjs programs that contain no other jump instruction than #0. We will refer to these programs as
PGA0

js programs.

An interesting point of PGA0
js programs is that they make use of a finite set of primitive instructions. It happens that,

although PGA programs make use of an infinite set of primitive instructions, PGA programs do not offer more expressive
power than PGA0

js programs.

Theorem 1. Each PGA program P can be transformed to a PGA0
js program P ′ such that |P | = |P ′|.

Proof. Let P be a PGA program, and let P ′ be P with, for all l > 0, all occurrences of #l in P replaced by #′l ; #0. Clearly,
P ′ is a PGA0

js program. It is easily proved by induction on l that, for each l > 0, the equation #l = #′l ; #0 is derivable from
the axioms of PGAjs. From this it follows immediately that the equation P = P ′ is derivable from the axioms of PGAjs.
Consequently, |P | = |P ′|. �

As a corollary of Theorem 1 and the expressiveness results for PGA in [10], we have that | _ | can produce each finite-state
thread from some PGA0

js program.

Corollary 2. For each finite-state thread p, there exists a PGA0
js program P such that |P | = p.

This means that each finite-state thread can be produce from a program that is a finite or periodic infinite sequence of
instructions from a finite set.

3.3. On single pass execution of instruction sequences

The primitive instructions of PGA have been designed to enable single pass execution of instruction sequences. Thread
extraction defined in accordance with the idea of single pass execution of instruction sequences should ideally only involve
equations of the form |u ; x| = p where |x| is the only expression of the form |P | that may occur in p. In this section,
thread extraction has not been defined in accordance with the idea of single pass execution of instruction sequences. The
equations |+a ; x| = |x| �a � |#2 ; x|, |−a ; x| = |#2 ; x| �a � |x|, and |#l + 2 ; u ; x| = |#l + 1 ; x| are not of the right form. In
Section 5, we define an alternative thread extraction operation for PGA0

js programs, which is better in accordance with the

idea of single pass execution of instruction sequences. By that thread extraction operation, each PGA0
js program is assigned

a thread that becomes the behavior that it exhibits on execution by interaction with a counter service. In Section 4, we
introduce thread-service composition, which allows for the intended interaction.

4. Services and interaction of threads with services

In this section, we first extend BTA with thread-service composition, next introduce a state-based approach to describe
services, and then use this approach to give a description of counter services. In the current paper, we will only use thread-
service composition to have program behaviors affected by some service.

4.1. Thread-service composition

A thread may perform certain actions only for the sake of getting reply values returned by services and that way having
itself affected by services. We introduce thread-service composition to allow for threads to be affected in this way. Thread-
service composition is introduced under the name use in [6].

It is assumed that there is a fixed but arbitrary finite set F of foci and a fixed but arbitrary finite set M of methods.
Each focus plays the role of a name of a service provided by the execution environment that can be requested to process
a command. Each method plays the role of a command proper. For the set A of actions, we take the set { f .m | f ∈ F ,

m ∈ M}. Performing an action f .m is taken as making a request to the service named f to process command m.
We introduce yet another sort: the sort S of services. However, we will not introduce constants and operators to build

terms of this sort. S is considered to stand for the set of all services. We identify services with functions H : M+ → {T,F,B}
that satisfy the following condition:
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Table 11
Axioms for thread-service composition

S /f H = S TSC1
D /f H = D TSC2
tau ◦ x /f H = tau ◦ (x /f H) TSC3
(x � g.m� y) /f H = (x /f H) � g.m� (y /f H) if f = g TSC4
(x � f .m� y) /f H = tau ◦ (x /f

∂
∂m H) if H(〈m〉) = T TSC5

(x � f .m� y) /f H = tau ◦ (y /f
∂

∂m H) if H(〈m〉) = F TSC6
(x � f .m� y) /f H = D if H(〈m〉) = B TSC7

Table 12
Axioms for abstraction

τtau(S) = S TT1
τtau(D) = D TT2
τtau(tau ◦ x) = τtau(x) TT3
τtau(x �a� y) = τtau(x) �a� τtau(y) TT4

∀α ∈ M+, m ∈ M • (H(α) = B ⇒ H(α � 〈m〉) = B).

Given a service H and a method m ∈ M, the derived service of H after processing m, written ∂
∂m H , is defined by ∂

∂m H(α) =
H(〈m〉 � α).

A service H can be understood as follows:

• if H(〈m〉) = T, then the request to process m is accepted by the service, the reply is positive, and the service proceeds
as ∂

∂m H ;
• if H(〈m〉) = F, then the request to process m is accepted by the service, the reply is negative, and the service proceeds

as ∂
∂m H ;

• if H(〈m〉) = B, then the request to process m is rejected by the service.

For each f ∈ F , we introduce the binary thread-service composition operator _ /f _ : T × S → T. Intuitively, p /f H is the
thread that results from processing all actions performed by thread p that are of the form f .m by service H . When an action
of the form f .m performed by thread p is processed by service H , it is turned into tau and postconditional composition is
removed in favor of action prefixing on the basis of the reply value produced.

The axioms for the thread-service composition operators are given in Table 11. In this table, f and g stand for arbitrary
foci from F and m stands for an arbitrary method from M. Axioms TSC3 and TSC4 express that the action tau and actions
of the form g.m, where f = g , are not processed. Axioms TSC5 and TSC6 express that a thread is affected by a service
as described above when an action of the form f .m performed by the thread is processed by the service. Axiom TSC7
expresses that deadlock takes place when an action to be processed is not accepted.

Let T stand for either BTA, BTA + REC or BTA + REC + AIP. Then we will write T + TSC for T , taking the set { f .m | f ∈ F ,

m ∈ M} for A, extended with the thread-service composition operators and the axioms from Table 11.
The action tau is an internal action whose presence matters. To conceal its presence in the case where it does not matter

after all, we also introduce the unary abstraction operator τtau : T → T.
The axioms for the abstraction operator are given in Table 12. In this table, a stands for an arbitrary basic action from A.
Abstraction can for instance be appropriate in the case where tau arises from turning actions of an auxiliary nature into

tau on thread-service composition. Examples of this case will occur in Section 5. Unlike the use mechanism introduced in
[6], the use mechanism introduced in [7] incorporates abstraction.

Let T stand for either BTA, BTA + REC, BTA + REC + AIP, BTA + TSC, BTA + REC + TSC or BTA + REC + AIP + TSC. Then we
will write T + ABSTR for T extended with the abstraction operator and the axioms from Table 12.

The equation τtau(tauω) = D is derivable from the axioms of BTA + REC + AIP + ABSTR.

4.2. State-based description of services

We introduce a state-based approach to describe families of services which will be used in Section 4.3. The approach is
similar to the approach to describe state machines introduced in [7].

In this approach, a family of services is described by

• a set of states S;
• an effect function eff : M × S → S;
• a yield function yld : M × S → {T,F,B};

satisfying the following condition:
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∃s ∈ S • ∀m ∈ M • (yld(m, s) = B ∧ ∀s′ ∈ S • (yld(m, s′) = B ⇒ eff (m, s′) = s)).

The set S contains the states in which the services may be, and the functions eff and yld give, for each method m and
state s, the state and reply, respectively, that result from processing m in state s.

We define, for each s ∈ S , a cumulative effect function ceff s : M∗ → S in terms of s and eff as follows:

ceff s(〈 〉) = s,

ceff s(α � 〈m〉) = eff (m, ceff s(α)).

We define, for each s ∈ S , a service Hs in terms of ceff s and yld as follows:

Hs(α � 〈m〉) = yld(m, ceff s(α)).

Hs is called the service with initial state s described by S , eff and yld. We say that {Hs | s ∈ S} is the family of services
described by S , eff and yld.

The condition that is imposed on S , eff and yld imply that, for each s ∈ S , Hs is a service indeed. It is worth mentioning
that ∂

∂m Hs = Heff (m,s) and H(〈m〉) = yld(m, s).

4.3. Counter services

We give a state-based description of a very simple family of services that constitute a counter. This counter will be used
in Section 5 to describe the behavior of programs in PGAjs.

The counter services accept the following methods:

• a counter reset method reset;
• a counter increment method incr;
• a counter decrement method decr;
• a counter is-zero method iszero.

We write Mcnt for the set {reset, incr,decr, iszero}. It is assumed that Mcnt ⊆ M.
The methods accepted by counter services can be explained as follows:

• reset: the content of the counter is set to zero and the reply is T;
• incr: the content of the counter is incremented by one and the reply is T;
• decr: if the content of the counter is greater than zero, then the content of the counter is decremented by one and the

reply is T; otherwise, nothing changes and the reply is F;
• iszero: if the content of the counter equals zero, then nothing changes and the reply is T; otherwise, nothing changes

and the reply is F.

Let s ∈ N. Then we write Cnts for the service with initial state s described by S = N∪{↑}, where ↑ /∈ N, and the functions
eff and yld defined as follows (k ∈ N):

eff (reset,k) = 0, yld(reset,k) = T,

eff (incr,k) = k + 1, yld(incr,k) = T,

eff (decr,0) = 0, yld(decr,0) = F,

eff (decr,k + 1) = k, yld(decr,k + 1) = T,

eff (iszero,k) = k, yld(iszero,0) = T,

yld(iszero,k + 1) = F,

eff (m,k) = ↑ if m /∈ Mcnt, yld(m,k) = B if m /∈ Mcnt,

eff (m,↑) = ↑, yld(m,↑) = B.

We write Cntinit for Cnt0.

5. PGA0
js programs revisited

In this section, we define an alternative thread extraction operation for PGA0
js programs, which is in accordance with the

idea of single pass execution of instruction sequences. By that thread extraction operation, each PGA0
js program is assigned

a thread that becomes the behavior that it exhibits on execution by interaction with a counter service. We also introduce a
notion of an execution mechanism. The alternative thread extraction operation induces a finite-state execution mechanism
that by making use of a counter can produce each finite-state thread from some PGA0 program.
js



J.A. Bergstra, C.A. Middelburg / Journal of Applied Logic 6 (2008) 553–563 561
Table 13
Defining equations for thread extraction operation

|x|′ = |x ; #0|′
|a ; x|′ = cnt.reset ◦ (a ◦ |x|′)
|+a ; x|′ = cnt.reset ◦ (|x|′ �a� (cnt.incr ◦ |x|′jmp))

|−a ; x|′ = cnt.reset ◦ ((cnt.incr ◦ |x|′jmp) �a� |x|′)
|#′ ; x|′ = cnt.incr ◦ |x|′
|#0 ; x|′ = D � cnt.iszero� |x|′jmp
|! ; x|′ = S

|#′ ; x|′jmp = |x|′jmp
|u ; x|′jmp = cnt.decr ◦ (|u ; x|′ � cnt.iszero� |x|′jmp) if u = #′

5.1. Alternative semantics for PGA0
js programs

When defining the alternative thread extraction operation for PGA0
js programs, it is assumed that there is a fixed but

arbitrary finite set F of foci with cnt ∈ F and a fixed but arbitrary finite set M of methods. Besides, the set { f .m | f ∈
F \ {cnt},m ∈ M} is taken as the set A of basic instructions. Thereby no real restriction is imposed on the set A: in the case
where the cardinality of F equals 2, all basic instructions have the same focus and the set M of methods can be looked
upon as the set A of basic instructions.

The alternative thread extraction operation |_|′ for PGA0
js programs is defined by the equations given in Table 13 (for

a ∈ A, l ∈ N, u ∈ (IPGAjs \ Ijmp) ∪ {#0}). The thread assigned to a program by this thread extraction operation is not the
behavior that the program exhibits on execution. That behavior arises from interaction of this thread with a counter service.

The following theorem states rigorously that, for any PGA0
js program, the behavior under execution coincides with the

alternative behavior under execution on interaction with a counter when abstracted from tau.

Theorem 3. For all PGA0
js programs P , |P | = τtau(|P |′ /cnt Cntinit).

Proof. Strictly speaking, we prove this theorem in the algebraic theory obtained by: (i) combining PGAjs with BTA + REC +
AIP + TSC + ABSTR, resulting in a theory with three sorts: a sort P of programs, a sort T of threads, and a sort S of services;
(ii) extending the result by taking | _ | and | _ |′ for additional operators from sort P to sort T and taking the semantic
equations and rule defining thread extraction and alternative thread extraction for additional axioms. We write P for the
set of all closed terms of sort P from the language of the resulting theory and T for the set of all closed terms of sort T
from the language of the resulting theory. Moreover, we write P 0 for the set of all closed terms from P that contain no
other jump instructions than #0.

Let

T = {|P |, |#′i+1 ; P |, |#′i+1 ; #0 ; P | | i ∈ N ∧ P ∈ P 0},
T ′ = {τtau(|P |′ /cnt Cnti), τtau(|P |′jmp /cnt Cnti+1) | i ∈ N ∧ P ∈ P 0},

and let β : T → T ′ be the bijection defined by

β(|P |) = τtau(|P |′ /cnt Cntinit),

β(|#′i+1 ; P |) = τtau(|P |′ /cnt Cnti+1),

β(|#′i+1 ; #0 ; P |) = τtau(|P |′jmp /cnt Cnti+1).

For each p′ ∈ T , write β∗(p′) for p′ with, for all p ∈ T , all occurrences of p in p′ replaced by β(p). Then, it is straightforward
to prove that there exists a set E consisting of one derivable equation p = p′ for each p ∈ T such that, for all equations
p = p′ in E:

• the equation β(p) = β∗(p′) is also derivable;
• if p′ ∈ T , then p′ can always be rewritten to a p′′ /∈ T using the equations in E from left to right.

Because β(|P |) = τtau(|P |′ /cnt Cntinit), this means that, for all P ∈ P 0, |P | and τtau(|P |′ /cnt Cntinit) are solutions of the same
guarded recursive specification. Because guarded recursive specifications have unique solutions, it follows immediately that,
for all P ∈ P 0, |P | = τtau(|P |′ /cnt Cntinit). �

As a corollary of Theorem 3 and Corollary 2, we have that | _ |′ by making use of a counter can produce each finite-state
thread from some PGA0 program.
js
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Corollary 4. For each finite-state thread p, there exists a PGA0
js program P such that τtau(|P |′ /cnt Cntinit) = p.

5.2. On finite-state execution mechanisms

Below, we introduce a notion of an execution mechanism. The intuition is that, for a function that assigns a finite-state
behavior to each member of some set of instruction sequences, an execution mechanism is a deterministic behavior that
can produce the behavior assigned to each of these instruction sequences from the instruction sequence concerned by going
through the instructions in the sequence one by one. We believe that there do not exist execution mechanisms that can
deal with sequences of instructions from an infinite set. Therefore, we restrict ourselves to finite instruction sets.

Let I be a finite set, let P be a set of non-empty finite or periodic infinite sequences over I, and let | _ | be a function
that assigns a finite-state thread to each member of P . Assume that pgs ∈ F , that hdeq:u ∈ M for all u ∈ I, that drop ∈ M,
and that basic actions of the form pgs.m do not occur in |P | for all P ∈ P . Moreover, for each P ∈ P , let PGSP be the service
with initial state P described by S = P ∪ {ε} ∪ {↑}, where ↑ /∈ P ∪ {ε},3 and the functions eff and yld defined as follows
(u, u′ ∈ I, P ∈ P , Q ∈ P ∪ {ε}):

eff (hdeq:u, Q ) = Q , yld(hdeq:u, ε) = F,

yld(hdeq:u, u) = T,

yld(hdeq:u, u ; P ) = T,

yld(hdeq:u, u′) = F if u = u′,
yld(hdeq:u, u′ ; P ) = F if u = u′,

eff (drop, ε) = ε, yld(drop, ε) = F,

eff (drop, u) = ε, yld(drop, u) = T,

eff (drop, u ; P ) = P , yld(drop, u ; P ) = T,

eff (m, Q ) = ↑ if m /∈ Mpgs, yld(m, Q ) = B if m /∈ Mpgs,

eff (m,↑) = ↑, yld(m,↑) = B.

Then an execution mechanism for | _ | is a thread p such that τtau(p /pgs PGSP ) = |P | for all P ∈ P . An execution mechanism
is called a finite-state execution mechanism if it is a finite-state thread.

In order to execute an instruction sequence P , an execution mechanism makes use of the service PGSP to go through
that the instructions in that sequence one by one. The methods accepted by this service can be explained as follows:

• hdeq:u: if there is an instruction sequence left and its first instruction is u, then nothing changes and the reply is T;
otherwise, nothing changes and the reply is F;

• drop: if there is an instruction sequence left, then its first instruction is dropped and the reply is T; otherwise, nothing
changes and the reply is F.

Notice that the service does not have to hold an infinite object: there exists an adequate finite representation for each finite
or periodic infinite sequence of instructions.

It is easy to see that there exists a finite-state execution mechanism for the thread extraction operation | _ |′ for PGA0
js

programs. From this and Corollary 4, it follows immediately that there exists a finite-state execution mechanism that by
making use of a counter can produce each finite-state thread from some program that is a finite or periodic infinite sequence
of instructions from a finite set.

We also have that there does not exist a finite-state execution mechanism that by itself can produce each finite-state
thread from a program that is a finite or periodic infinite sequence of instructions from a finite set.

Theorem 5. Let I be a finite set, let P be a set of non-empty finite or periodic infinite sequences over I, and let | _ | be a function that
assigns a finite-state thread to each member of P . Assume that, for each finite-state thread p, there exists a P ∈ P such that |P | = p.
Then there does not exist a finite-state execution mechanism for | _ |.

Proof. Suppose that there exists a finite-state execution mechanism, say pexec. Let n be the number of states of pexec.
Consider the thread T0 defined by the guarded recursive specification consisting of the following equations:

Ti = Ti+1 �a � T ′
i+1,0 for i ∈ [0,n],

Tn+1 = S,

T ′
i+1,i′ = b ◦ T ′

i+1,i′+1 for i ∈ [0,n], i′ ∈ [0, i],
T ′

i+1,i+1 = c ◦ T ′
i+1,0.

3 We write ε for the empty sequence.
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Let P be a member of P from which pexec can produce T0. Notice that T0 performs a at least once and at most n + 1 times
after each other. Suppose that T0 has performed a for the jth time when the reply F is returned, while at that stage pexec
has gone through the first k j instructions of P . Moreover, write P j for what is left of P after its first k j instructions have
been dropped. Then pexec still has to produce T ′

j,0 from P j . For each j ∈ [1,n + 1], a k j as above can be found. Let j0 be
the unique j ∈ [1,n + 1] such that k j′ � k j for all j′ ∈ [1,n + 1]. Regardless the number of times T0 has performed a when
the reply F is returned, pexec must eventually have dropped the first k j0 instructions of P . For each of the n + 1 possible
values of j, pexec must be in a different state when P j0 is left, because the thread that pexec still has to produce is different.
However, this is impossible with n states. �

In the light of Theorem 5, Corollary 4 can be considered a positive result: a finite-state execution mechanism that makes
use of a counter is sufficient. However, this result is reached at the expense of an extremely inefficient way of representing
jumps. We do not see how to improve on the linear representation of jumps. With a logarithmic representation, for instance,
we expect that a counter will not do.

Theorem 5 is actually a generalization of Theorem 4 from [8] adapted to the current setting.
The hierarchy of program notations rooted in program algebra introduced in [2] includes a program notation, called PGLS,

that supports structured programming by offering a rendering of conditional and loop constructs instead of (unstructured)
jump instructions. Like PGA0

js, PGLS has a finite set of primitive instructions. Like for PGA0
js programs, there exists a finite-

state execution mechanism that by making use of a counter can produce the behavior of each PGLS program. However, PGLS
programs offer less expressive power than PGA programs (see Section 9 of [2]). Therefore, PGLS is unsuited to show that
there exists a finite-state execution mechanism that by making use of a counter can produce each finite-state thread from
some program that is a finite or periodic infinite sequence of instructions from a finite set.

6. Conclusions

We have studied sequential programs that are instruction sequences with jump-shift instructions. We have defined the
meaning of the programs concerned in two different ways which both involve the extraction of threads. One way covers
only programs with jump-shift instructions that contain no other jump instruction than the one whose effect in the absence
of preceding jump-shift instructions is a jump to the position of the instruction itself. We have shown that the extraction
of threads involved in that way corresponds to a finite-state execution mechanism that by making use of a counter can
produce each finite-state thread from some program that is a finite or periodic infinite sequence of instructions from a
finite set.

We have also shown that there does not exist a finite-state execution mechanism that by itself can produce each finite-
state thread from some program that is a finite or periodic infinite sequence of instructions from a finite set. In the light
of this result, the former result can be paraphrased as follows: the kind of infinity that an execution mechanism needs to
be capable of producing by itself each finite-state thread from some program that is a finite or periodic infinite sequence of
instructions from a finite set can be isolated in a counter.

In the course of this work, we got convinced that a general format for the defining equations of thread extraction
operations can be devised that yields thread extraction operations corresponding to execution mechanisms that can produce
each finite-state thread from some program. One of the options for future work is to investigate this matter.
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