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Abstract

It is likely that the holographic principle will be a consequence of the would be theory of quantum gravity. Thu
interesting to try to go in the opposite direction: can the holographic principle fix the gravitational interaction? It is sho
the classical gravitational interaction is well inside the set of potentials allowed by the holographic principle. Comp
clarify which role such a principle could have in lowering the value of the cosmological constant computed in QFT
observed one.
 2005 Elsevier B.V.

PACS: 04.70.Dy; 04.90.+e; 98.80.Es; 11.15.Kc
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1. Introduction

One of the most promising route towards a deeper understanding of quantum gravity is holography (two
reviews are[1,2]). The pioneering ideas of Bekenstein[3], ’t Hooft [4] and Susskind[5] shed light on a very
peculiar characteristic of gravitational field which is very likely to survive in the final theory of quantum gr
While in quantum field theory (henceforth QFT), the number of degrees of freedom of a given space-like r
proportional to the volume of the region itself, if the gravitational effects are taken into account such a num
appear to be proportional to the surface of the region. In the elegant framework of[6,7] which refined the works
[3,4] and[5], the above statement on the degrees of freedom is translated in a covariant entropy bound
formulation of a causal entropy bound[8] is possible which discloses other important aspects of the above
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An explicit and highly non-trivial realization in (super)string theory of the holographic principle is the AdS
correspondence, first introduced by Maldacena[9], in which the role of (super)gravity in decreasing the numbe
degrees of freedom, which one would naively expect on QFT grounds, is manifest. Such a decreasing of the
of degrees of freedom could also have important consequences, as far as the cosmological constant is c
since the striking disagreement between the cosmological constant computed in QFT and the observe
about 120 orders of magnitude (the situation will be slightly better if supersymmetry is introduced but it re
extremely unpleasant) is likely to be related to an overcounting of degrees of freedom in QFT. It is now com
believed that the property of the number of degrees of freedom to be proportional to the area of a (suitable
surface enclosing them will be a distinguishing feature of quantum gravity. The problem is, however, that a
of quantum gravity is not available yet. A fruitful point of view which could give even stronger physical ba
the holographic principle is the following: since the quantum gravity is still lacking and we cannot deduce
the holographic principle, can we try to go in the opposite direction? That means, from the holographic p
is it possible to deduce (at least) the classical gravitational interaction?

In this Letter we move some preliminary steps in this direction. We consider a closed volume containing
but large number of particles interacting with an a priori unknown potential. The question we try to add
which form the potential has to have in order for the entropy to be proportional to the area of the surface
encloses the particles? The computations are almost entirely classical, nevertheless quantum mechanics
important role in specifying some hypothesis. The results are very encouraging: the gravitational potentia
likely to be the unique answer to the above question. This analysis also clarifies the role of the holographic p
in decreasing the QFT-computed cosmological constant to the observed value.

2. The method

Let us consider a spherical1 three-dimensional regionM with diameter 2ρ. LetN denote the number of particle
andu be the interaction potential. Since we will work at a constant density of particles the number of partiN

is proportional to the volumeV (M) of M :

(1)N = c1V (M),

c1 being a constant with the dimension of an inverse volume proportional to the density of the gas.2 The classica
partition function can be written as follows:

(2)Zβ =
∫ N∏

i=1

d3p(i) d
3q(i) exp

[
−β

∑
H(i)

]

(3)=
(

2π

β

) 3N
2

∫

MN

i=1,...,N∏
d3q(i) exp

[
−β

∑
i,j |i �=j

u
(�q(i), �q(j)

)]
,

(4)H(i) = 1

2

( �p(i)

)2 +
∑
j |j �=i

u
(�q(i), �q(j)

)
,

whereβ is a positive real number which can be interpreted as the inverse temperature,�q(i) and �p(i) are the position
(which is assumed to vary inM ⊂ R3) and momenta of theith particle andu is the potential which, as usual,
assumed to be a binary interaction. The mass of the particles have been set to one. It is worth to note th

1 The hypothesis of sphericity is not necessary, it only simplifies computations but the same conclusions can be reached by drop
2 In this section we will not pay much attention to the physical dimensions of the parameters of the model. A concrete examp

numerical estimates that one can get will be given in the last section.
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“almost classical” model in which quantum mechanics will only enter through some constraints on the poten
on the parameters of the model, one can trust computations only above some temperature below which
effects cannot be neglected anymore. We will set the critical value ofβ equal to one (in suitable units):βc = 1 and
we will assume that

β < βc = 1.

To be more precise, we could leaveβ unspecified, in this case computations themselves would tell thatβ < 1.
The first restriction is to assumeu to be a non-decreasing function of the Euclidean distance between tith

and thej th particles. The point is that ifu does not increase with the distance then the potential could n
compatible with bound states and, in such a case, it is very likely that the holographic bound cannot be
This fact can be explained as follows: gravitational interaction is able to lower the effective degrees of f
because it is always attractive so that many bound states can be formed and such bound states behav
respects, as single particles. If the potential decreases with the distance then the particles cannot form bo
because they prefer to be far apart. The second hypothesis will be to take the interaction potential depen
on the euclidean distance between theith and thej th particles:

(5)u = u
(∣∣�q(i) − �q(j)

∣∣).
This simplifying assumption is not very restrictive, the following computations can be generalized also t
general ansatz for the interaction potential. For example, if one assume that

(6)u = u′(∣∣�q(i) − �q(j)

∣∣)f (θ(i), θ(j), ξ(i), ξ(j)), 0< α1 � f (θ(i), θ(j), ξ(i), ξ(j)) � α2,

whereαi , i = 1,2, are two positive numerical constants,θ(i) are the angular coordinates of�q(i) andξ(i) are some
internal coordinates characterizing theith particle, then one will obtain qualitatively the same results provideu′
is a non-decreasing function of the Euclidean distance between theith and thej th particles.

In principle, since we have at our disposal the interaction potential, we can compute the entropy:

(7)Sβ = −β∂β lnZβ = c1V (U)Iβ − β∂βIβ

Iβ

,

(8)Iβ =
∫

UN

i=1,...,N∏
d3q(i) exp

[
−β

∑
i,j |i �=j

u
(∣∣�q(i) − �q(j)

∣∣)],

whereU is any region contained inM and Eqs.(3) and (1)have been used. Now, the problem is to find which k
of potentials fulfils the condition

(9)Sβ = c2A(∂U),

whereA(∂U) is the area of the boundary∂U of the regionU andc2 is a dimensional constant to be specifi
later on. The above holographic requirement can be thought as a differential equation for the integralIβ defined in
Eq.(8):

(10)
c1V (U)Iβ − β∂βIβ

Iβ

= c2A(∂U).

The above equation can be easily solved as follows

(11)Iβ = kβ[c1V (U)−c2A(∂U)],

wherek is an integration constant. Thus, we have to deduce which conditions on the potential (remembeIβ

depends on the potential through Eq.(8)) the above form ofIβ implies. At a first glance, it seems unlikely fo
Eq.(11) to be able to severely constraint the interaction potential since, roughly speaking, many functions c
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the same integral. In fact, by taking into account that Eq.(8) should hold for any fixedβ < 1 and for any volume
not too small (in a sense which will be clarified later on) contained inM and containing all the particles as well
the line segment joining them, it will be possible to find powerful restrictions on the form ofu. In other words, with
a suitable choice of the region contained inM (as we will now see, it will be important to consider a region wh
area and volume have non-trivial scaling withρ), Eq. (11) will disclose the physical content of the holograph
principle.

2.1. Constraints on the parameters

The role of quantum mechanics will be to translate the fact that this model can be trusted only in a c
regime into inequalities between the parameters. The first constraint is related to the range of the argume|�q(i) −
�q(j)| of the potential which cannot be to small

(12)
ρ

l0
�

∣∣�q(i) − �q(j)

∣∣ � 2ρ, l0 � 1,

l0 being a large positive number to be fixed. The above inequality is related to the fact that the classical for
interaction potential is valuable only above a certain length scale below which some unknown quantum ef
in. Thus, the numberl0 is related not only to the arising of quantum effects but also to the potential.

The second constraint is purely quantum mechanical in nature and is only related to holography: it de
the minimum length below which we cannot resolve anymore distinct particles insideM due to quantum effects
A reasonable order of magnitude for such a scale, which is suggested by the holographic principle is

(13)ρmin = a

ρ2
,

wherea is a constant with the dimension of a volume. The point is that, according to the holographic b
ρ2 should be an upper bound for the total entropy ofM . The more the entropy, the more different quantum st
are available insideM ; the more different quantum states, the easier will be to distinguish distinct particl
other words, if insideM only few quantum states are available, for example, only one, then it will be impos
to distinguish distinct particles with physical measurements since they will be in a single quantum entangle
which would be destroyed by an external action.3

It is worth to note that this hypothesis is rather natural since, as it is well known, in the limit of large qu
numbers the quantum effects can be neglected (see, for example,[10,11]).

3. The model

The first problem, in trying to understand which are the possible forms of the interaction potential com
with Eq. (11), is that it is a rather unusual constraint. In order to analyze Eq.(11), it is possible to develop a
approximate method which gives very accurate results when the number of particles is large enough.

The geometrical setting is the following. Let us denote withTij a cylinder connecting the particlei and the
particlej . Let the diameter of the section ofTij be equal to 2ρmin (which is defined in Eq.(13)) in such a way
that inside the cylinderTij there are only the particlei and the particlej . Remember that, in any case, the dista
between every pair of particles has to be greater thanρ/l0 and smaller than 2ρ so that the minimum height fo
the cylinder will beρ/l0 and the maximum height will be 2ρ. Thus, the diameter of the section of the cylinder

3 Another way to argue that the above order of magnitude is reasonable is to consider a length scale of orderρ/N whereN is the total

number of particles. Because of Eq.(1), one can assumeN ∼ ρ3 so that the minimum radius below which we cannot resolve two part
anymore will be∝ ρ−2. However, the first argument is more sound since it is “purely holographic” and it does not refer to Eq.(1).
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related to the smallest geometric scale which is resolvable with physical measurements, while the minimu
is related to the minimum scale below which the potential cannot work well anymore. It is worth to note he
if two cylinder intersect, for example,Tij andTkl , we can break any of the two cylinder into two cylinders (Tij

goes intoTip andTpj while Tkl goes intoTkp andTpl) and put in the intersection a new particlep: we are allowed
to do in this way since, at the end of the computations, we will make the limit of a very large number of pa
For this reason we can simply consider a net of non-intersecting cylinders.

Hence, we have the following inequalities for the volumes (V ) and the areas (A) of the cylindersTij :

(14)πa2 1

l0ρ3
� V (Tij ) � 2πa2 1

ρ3
, πa

1

l0ρ
� A(∂Tij ) � πa

1

ρ
.

Extending the above inequalities to the union4

(15)Γ =
1�i,j�N⋃

i �=j

Tij ,

of all (N − 1)N/2 cylinders, we obtain

(16)Vmin(Γ ) = (N − 1)N

2
πa2 1

l0ρ3
� V (Γ ) � (N − 1)N

2
2πa2 1

ρ3
= Vmax(Γ ),

(17)Amin(∂Γ ) = (N − 1)Nπa
1

l0ρ
� A(∂Γ ) � 2(N − 1)Nπa

1

ρ
= Amax(∂Γ ).

The holographic principle(9) has to hold for any connected subset ofM containing all the particles and, in parti
ular, it has to hold forΓ defined in Eq.(15). Sinceu is supposed to be a non-decreasing function of the dist
betweeni andj one gets:

(18)−βu

(
ρ

l0

)
� −βu

(∣∣�q(i) − �q(j)

∣∣) � −βu(2ρ).

On the other hand, Eq.(11)must hold, so that from Eqs.(16), (18) and (8)it follows (remember that 0< β < 1)

kβ[c1Vmax(Γ )−c2Amin(∂Γ )] � kβ[c1V (Γ )−c2A(∂Γ )] = Iβ � exp

[
− (N − 1)N

2
βu

(
ρ

l0

)]
V (Γ )N

(19)� [(N − 1)Nπa2]N
ρ3N

exp

[
− (N − 1)N

2
βu

(
ρ

l0

)]
,

kβ[c1Vmin(Γ )−c2Amax(∂Γ )] � kβ[c1V (Γ )−c2A(∂Γ )] = Iβ � exp

[
− (N − 1)N

2
βu(2ρ)

]
V (Γ )N

(20)�
[ (N−1)N

2
πa2

l0
]N

ρ3N
exp

[
− (N − 1)N

2
βu(2ρ)

]
,

whereVmax(Γ ), Vmin(Γ ), Amin(∂Γ ) andAmax(∂Γ ) have been defined in Eqs.(16) and (17). From Eqs.(19) and
(20) it follows

(21)c1(lnβ)(N − 1)N
πa2

ρ3
+ (N − 1)N

2
βu

(
ρ

l0

)
� c2(lnβ)(N − 1)N

πa

l0ρ
+ Lmax− 3N lnρ,

(22)c1(lnβ)(N − 1)N
πa2

2l0ρ3
+ (N − 1)N

2
βu(2ρ) � 2c2(lnβ)(N − 1)N

πa

ρ
+ Lmin − 3N lnρ,

4 The unionΓ is a sort of fat graph whose vertices are the particles and whose bold links are the cylinders.
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(23)Lmax= ln

{ [(N − 1)Nπa2]N
k

}
, Lmin = ln

{ [(N − 1)N πa2

2l0
]N

k

}
.

This is an important point: if we would perform the above computations in a larger or a smaller5 spherical region
the only change in Eqs.(21) and (22)would be the replacement ofρ with the new radiusr which, therefore, can b
identified with the argument of the potential. Thus, in Eqs.(21) and (22)we can rescale the argument ofu obtaining
the following bounds:

(24)u(r) �
(

c2(lnβ)2πa

βl20

)
1

r
−

(
c1(lnβ)2πa2

βl30

)
1

r3
− 6N

βN(N − 1)
ln(l0r) + Λmax,

(25)u(r) �
(

c2(lnβ)8πa

β

)
1

r
−

(
c1(lnβ)8πa2

βl0

)
1

r3
− 6N

βN(N − 1)
ln

(
r

2

)
+ Λmin,

(26)Λmax= 2

βN(N − 1)
Lmax, Λmin = 2

βN(N − 1)
Lmin,

whereLmax andLmin have been defined in Eq.(23). Eventually, by taking the limit forN → ∞, the result is

(27)−Gmax

r
+ Cmax

r3
� u(r) � −Gmin

r
+ Cmin

r3
,

(28)Gmax=
∣∣∣∣c2(lnβ)8πa

β

∣∣∣∣, Gmin =
∣∣∣∣c2(lnβ)2πa

βl20

∣∣∣∣,

(29)Cmax=
∣∣∣∣c1(lnβ)8πa2

βl0

∣∣∣∣, Cmin =
∣∣∣∣c1(lnβ)2πa2

βl30

∣∣∣∣,
where

(30)r > 3
ac1

l0c2
,

otherwise the hypothesis thatu is a non-decreasing function would be violated.

4. Physical implications

First of all, the inequalities(24) and(25) will be consistent only whenβ < 1 in such a way that the terms
round brackets multiplying 1/r are negative. We observe from Eq.(27) that, forr big enough, the terms of orde
1/r3 are negligible andu is constrained to lie between two Newtonian-like potentials. It is remarkable tha
Newtonian terms only depends on purely “holographic” constants. That is, the constants in the round b
multiplying 1/r only depend onβ, a andc2.

This is a highly non-trivial self-consistency check of the fact that the holographic principle can really fi
form of the gravitational interaction: the constantc2 is the constant multiplying the area ofM in the holographic
constraint(9) and alsoa enters in the definition of the holographic length scale(13). Thus, the Newtonian pa
is constrained only by the holographic principle (as it should be), while the 1/r3 terms, which do not vanis
for N → ∞, contain the proportionality constant between the volume and the entropy in the limit of van
potential.

5 The new radius can be taken larger thanρ; it can also be smaller thanρ provided that all the particles are contained in the new sphe
region and Eq.(30) is fulfilled, otherwise the results would change as it happens when one consider the gravitational potential outside a
a sphere of constant density.
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Another important aspect of the above model is the following. In our universe, the number of parti
very large but, actually, it is not infinite. For this reason, there is the possibility of a very small const
be added to the potential. The inequalities(24) and (25) tell us that the magnitude of such a constant sho
lie betweenΛmin and Λmax defined in Eq.(26). It is very interesting to note that inΛmin and Λmax, besides
a geometrical factor, it appears a factor(logN)/N which (beingN ∼ 10120 a reasonable estimate of the t
tal number of particles in the universe) is of order 10−118. Such a small factor could resolve the problem
the too large value QFT-computed cosmological constant: if the coupling of gravity with quantum fields
that holography is preserved, then the quantized version of the holographic constraint(9) could provide the righ
factor to suppress the “bare” QFT cosmological constant. The holographic principle, by properly taking i
count the effects of gravity on the degrees of freedom, could renormalize the “bare” QFT cosmological c
with a very small factor. An intuitive explanation of this fact is that QFT counts as distinct pair of degre
freedom which, in fact, coupled by gravity behave as single degrees of freedom and should, therefore
overcounted.

A more formal way to understand this fact, which also clarify that the above argument could also ho
quantum level, is the following. One of the main reason behind the fact that in QFT the computed cosmo
constant is too large is that in the path integral approach one performs the diagrammatic expansion star
classical vacua. On the other hand, classical vacua (that is, stable solutions of the classical equations of
are invariant if we add to the Hamiltonian a constant term so that they cannot provide us with an energy sc
energy scale (“zero point energy”) of QFT is a purely quantum effects which, when renormalized, is of the o
theUV cutoff and, therefore, too large. If the coupling with gravity is standard (via Lagrangian or Hamilto
then the above problem, at a first glance, will be only slightly softened for the same reasons as above. In
us consider an equation like

(31)−β∂β lnZβ = 1

4L2
P

A(∂M),

(32)Zβ =
∫ [

DΦaDgµνDπµν

]∣∣
B.C.→∂M

exp

[
−β

∫
M

H
(
Φa,gµν,πµν

)
dµ

]
,

whereLP is the Planck length,D is the standard notation for the “path” integration,Φa is a collective symbo
to denote the set of quantum fields (besides gravity) and their conjugated momenta (whose phase space
are denoted withgµν and πµν ), µ the Lebesgue measure onM and the symbolB.C. → ∂M means that we
must impose suitable boundary condition on the fields as they approach the boundary ofM . Gravity should be
introduced by requiring that the metric needed to compute the curved partition function(32) is such that Eq.(31)
is fulfilled.

Although to solve explicitly this problem seems to be a rather hopeless task, a very interesting result
apparent: we are not free anymore to add an arbitrary constant to the density of Hamiltonian, since Eq.(31) is not
invariant under the transformation

(33a)H → H + const,

in other words, an holographic equation like Eq.(31)set a scale for the zero point energy.
As it has been shown at the end of Section3, when one takes into account that the number of particle

very large but finite, the gravitational potentialu(r) is determined up to a constantΛ0 ∈ [Λmin,Λmax] which may
be naturally interpreted as the zero point energyH(0, gµν = ηµν,0). Even if a rigorous quantum computation
required to obtain the exact value ofΛ0, it is nevertheless interesting to note that Eq.(31) tells thatΛ0 should be
positive and of the order (such an estimate could be improved by a careful quantum computation)
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1

4L2
P

A(∂M) = −β∂β ln

(∫ [
DΦaDgµνDπµν

]
exp

[
−β

∫
M

Λ0 dµ

])

(34)= −β∂β

(
−βΛ0

∫
M

dµ

)
= βV (M)Λ0.

From the above equation we obtain

Λ0 ∼ H(0, gµν = ηµν,0) ∼ 1

4βL2
P

A(∂M)

V (M)
∼ M4

P

(
kbT

MP

)(
LP

LU

)
,

whereMP is the Planck mass andLU = V (M)/A(∂M) should be a length measuring the size of the space–
region past causally connected today. If we take asLU the Hubble radius today and asT the cosmic temperatur
today we get

Λ0 ∼ M4
P × 10−95.

This result is very promising if we consider that, in this computation (even if QFT has been taken into acc
a rather rough way) it has been achieved a striking reduction (of, at least, 30 orders of magnitude) of the v
the cosmological constant which are usually obtained in different context (QFT, SUSY QFT, SUGRA and
without introducing SUSY, extra dimensions or fine-tuning of any kind. Eq.(34)also suggests that, in the past, t
cosmological “constant” should had been (much) greater. This implies a modification of Einstein equatio
necessity of some kind of modification of the Einstein equations is, today, widely recognized due, for exam
the experimental data on the accelerated expansion. The best explanation of the actual experimental data w
“varying” cosmological constant much higher in the past than now (see, for example,[12]). On the other hand, ther
is not in the standard approaches a natural way to achieve this goal. Usually, non-minimally coupled sca
(whose physical origin is, however, unknown) are introduced in order to imitate the behavior of a “varying”Λ term
(see, for example,[12]). In fact, the holographic principle can give rise to results in a much better agreemen
experimental data providing, at the same time, with a more natural explanation of aΛ decreasing with time. On th
theoretical side, it would be also very interesting to try to repeat the previous computation in curved backg
In particular, we would like to give an interpretation of the type here proposed to the AdS/CFT corresponden
could disclose, for example, a sharp relation between the cosmological constant and the number of the el
degrees of freedom without using CFT. However, the difficulties related to a curved background have not a
up to now, this ambitious achievement.

5. Conclusion

In this Letter an alternative point of view to analyze the relations between gravity and holography ha
proposed. It is commonly believed that the holographic principle will be a corollary of the final theory of qu
gravity which, on the other hand, is not available yet. For this reason, it is interesting to try to go in the
site direction: is it possible to deduce the gravitational interaction from the holographic principle? Here, t
preliminary steps in this direction have been performed. It has been shown that the classical gravitationa
tial belongs to the rather narrow region allowed by the holographic principle. It has been clarified the p
mechanism responsible for the smallness of the observed cosmological constant with respect the one co
QFT: QFT overcounts pairs of degrees of freedom which, in fact, coupled by gravity, behave as single de
freedom and should not be overcounted. The holographic principle could face with this overcounting tha
very small multiplying factor. Even if the computation are entirely classical, it has been argued that the sam
hold at a quantum level; a promising estimate of the order of magnitude of the cosmological constant has a
obtained. The reason for this is that Eq.(31) is not invariant when we add to the density of Hamiltonian a cons
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likely to
In other words, the holographic principle encodes a natural scale for the cosmological constant which is
survive also at a quantum level.
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