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Abstract

It is likely that the holographic principle will be a consequence of the would be theory of quantum gravity. Thus, it is
interesting to try to go in the opposite direction: can the holographic principle fix the gravitational interaction? It is shown that
the classical gravitational interaction is well inside the set of potentials allowed by the holographic principle. Computations
clarify which role such a principle could have in lowering the value of the cosmological constant computed in QFT to the
observed one.
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1. Introduction

One of the most promising route towards a deeper understanding of quantum gravity is holography (two detailed
reviews are[1,2]). The pioneering ideas of BekenstdB]j, 't Hooft [4] and Susskind5] shed light on a very
peculiar characteristic of gravitational field which is very likely to survive in the final theory of quantum gravity.
While in quantum field theory (henceforth QFT), the number of degrees of freedom of a given space-like region is
proportional to the volume of the region itself, if the gravitational effects are taken into account such a number will
appear to be proportional to the surface of the region. In the elegant framewi@k pivhich refined the works
[3,4] and[5], the above statement on the degrees of freedom is translated in a covariant entropy bounds; also a
formulation of a causal entropy bouff] is possible which discloses other important aspects of the above ideas.
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An explicit and highly non-trivial realization in (super)string theory of the holographic principle is the AdS/CFT
correspondence, first introduced by Maldacfjain which the role of (super)gravity in decreasing the number of
degrees of freedom, which one would naively expect on QFT grounds, is manifest. Such a decreasing of the number
of degrees of freedom could also have important consequences, as far as the cosmological constant is concernec
since the striking disagreement between the cosmological constant computed in QFT and the observed one of
about 120 orders of magnitude (the situation will be slightly better if supersymmetry is introduced but it remains
extremely unpleasant) is likely to be related to an overcounting of degrees of freedom in QFT. It is now commonly
believed that the property of the number of degrees of freedom to be proportional to the area of a (suitable defined)
surface enclosing them will be a distinguishing feature of quantum gravity. The problem is, however, that a theory
of quantum gravity is not available yet. A fruitful point of view which could give even stronger physical basis to
the holographic principle is the following: since the quantum gravity is still lacking and we cannot deduce from it
the holographic principle, can we try to go in the opposite direction? That means, from the holographic principle
is it possible to deduce (at least) the classical gravitational interaction?

In this Letter we move some preliminary steps in this direction. We consider a closed volume containing a finite
but large number of particles interacting with an a priori unknown potential. The question we try to address is:
which form the potential has to have in order for the entropy to be proportional to the area of the surface which
encloses the particles? The computations are almost entirely classical, nevertheless quantum mechanics has a vel
important role in specifying some hypothesis. The results are very encouraging: the gravitational potential is very
likely to be the unique answer to the above question. This analysis also clarifies the role of the holographic principle
in decreasing the QFT-computed cosmological constant to the observed value.

2. The method

Let us consider a spheriéahree-dimensional regiol with diameter 2. Let N denote the number of particles
andu be the interaction potential. Since we will work at a constant density of particles the number of pafticles
is proportional to the volum& (M) of M:

N =c1V(M), 1)

¢1 being a constant with the dimension of an inverse volume proportional to the density of th& yaslassical
partition function can be written as follows:

N
Zg =/Hd3p(i)d3q(i) exp[—ﬁZH(i)} (2
< > / ]_[ dqmexp[ B Y u(da qm] ®)

Ljli#]

H(i)—— Pay) +Z (Gay-4h) (4)
Jlj#i

whereg is a positive real number which can be interpreted as the inverse tempegatuaed ;) are the position
(which is assumed to vary i? ¢ R®) and momenta of théeth particle and: is the potential which, as usual, is
assumed to be a binary interaction. The mass of the particles have been set to one. It is worth to note that, in this

1 The hypothesis of sphericity is not necessary, it only simplifies computations but the same conclusions can be reached by dropping it.
2 |n this section we will not pay much attention to the physical dimensions of the parameters of the model. A concrete example of the
numerical estimates that one can get will be given in the last section.
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“almost classical” model in which quantum mechanics will only enter through some constraints on the potential and
on the parameters of the model, one can trust computations only above some temperature below which quantum
effects cannot be neglected anymore. We will set the critical valesafual to one (in suitable units}; = 1 and

we will assume that

B<B.=1

To be more precise, we could leagaunspecified, in this case computations themselves would telptkat.

The first restriction is to assumeto be a non-decreasing function of the Euclidean distance betweéththe
and thejth particles. The point is that if does not increase with the distance then the potential could not be
compatible with bound states and, in such a case, it is very likely that the holographic bound cannot be fulfilled.
This fact can be explained as follows: gravitational interaction is able to lower the effective degrees of freedom
because it is always attractive so that many bound states can be formed and such bound states behave, in man
respects, as single particles. If the potential decreases with the distance then the particles cannot form bound state
because they prefer to be far apart. The second hypothesis will be to take the interaction potential depending only
on the euclidean distance between ttieand thejth particles:

u=u(|ga) —depl)- ®)
This simplifying assumption is not very restrictive, the following computations can be generalized also to more
general ansatz for the interaction potential. For example, if one assume that

u=u'(|ga —dp|) f Oy, 0 E6rs §)- 0 < a1 < f(04y, Oy, EGy, &) < a2, (6)

wheree;, i = 1, 2, are two positive numerical constang, are the angular coordinates §f, andé(;, are some
internal coordinates characterizing thb particle, then one will obtain qualitatively the same results provided
is a non-decreasing function of the Euclidean distance betweeththed thejth particles.

In principle, since we have at our disposal the interaction potential, we can compute the entropy:

c1V(U)lg — Baglg
Ig ’

i=1,...,.N
’ﬁzf I1 d361<i>eXp[—ff' > '4(|f?<f>—67<j>|)} ®)
UN

Sp=—BopInZs = @)

i jli#j

whereU is any region contained i#/ and Eqs(3) and (1)have been used. Now, the problem is to find which kind
of potentials fulfils the condition

Sp = c2AU), 9)

where A(3U) is the area of the boundagtU of the regionU andc; is a dimensional constant to be specified
later on. The above holographic requirement can be thought as a differential equation for the iptdgfaled in

Eq. (8):

clV(U)I;" —P%ls _ . acu). (10)
:

The above equation can be easily solved as follows

Is :kﬂ[c‘lv(U)*CzA(aU)]’ (11)

wherek is an integration constant. Thus, we have to deduce which conditions on the potential (remember that
depends on the potential through E8)) the above form oflg implies. At a first glance, it seems unlikely for
Eqg.(11)to be able to severely constraint the interaction potential since, roughly speaking, many functions can have
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the same integral. In fact, by taking into account that @y should hold for any fixe@ < 1 and for any volume
not too small (in a sense which will be clarified later on) containetfiand containing all the particles as well as
the line segment joining them, it will be possible to find powerful restrictions on the formlafother words, with

a suitable choice of the region containediin(as we will now see, it will be important to consider a region whose
area and volume have non-trivial scaling wigh, Eq. (11) will disclose the physical content of the holographic
principle.

2.1. Constraints on the parameters

The role of quantum mechanics will be to translate the fact that this model can be trusted only in a classical
regime into inequalities between the parameters. The first constraint is related to the range of the afgyrent
q(j| of the potential which cannot be to small

o - .
L Slio —dpl<2e. o> 1, (12)

Ip being a large positive number to be fixed. The above inequality is related to the fact that the classical form of an
interaction potential is valuable only above a certain length scale below which some unknown quantum effects set
in. Thus, the numbélp is related not only to the arising of quantum effects but also to the potential.

The second constraint is purely quantum mechanical in nature and is only related to holography: it deals with
the minimum length below which we cannot resolve anymore distinct particles imdsidee to quantum effects.
A reasonable order of magnitude for such a scale, which is suggested by the holographic principle is

a
Pmin = —, (13)
P

wherea is a constant with the dimension of a volume. The point is that, according to the holographic bounds,
p? should be an upper bound for the total entropybf The more the entropy, the more different quantum states
are available insidé/; the more different quantum states, the easier will be to distinguish distinct particles. In
other words, if insideM only few quantum states are available, for example, only one, then it will be impossible
to distinguish distinct particles with physical measurements since they will be in a single quantum entangled states
which would be destroyed by an external actfon.

It is worth to note that this hypothesis is rather natural since, as it is well known, in the limit of large quantum
numbers the quantum effects can be neglected (see, for exdfriplEl]).

3. The model

The first problem, in trying to understand which are the possible forms of the interaction potential compatible
with Eq. (11), is that it is a rather unusual constraint. In order to analyze(Eb), it is possible to develop an
approximate method which gives very accurate results when the number of particles is large enough.

The geometrical setting is the following. Let us denote wiitha cylinder connecting the particieand the
particle j. Let the diameter of the section f; be equal to 2min (Which is defined in Eq(13)) in such a way
that inside the cylindeT;; there are only the particieand the particlg. Remember that, in any case, the distance
between every pair of particles has to be greater {halg and smaller than 2 so that the minimum height for
the cylinder will bep/ 1o and the maximum height will be2 Thus, the diameter of the section of the cylinders is

3 Another way to argue that the above order of magnitude is reasonable is to consider a length scalemfongdbere N is the total

number of particles. Because of §d), one can assumd ~ p3 so that the minimum radius below which we cannot resolve two particles
anymore will bec 0~2. However, the first argument is more sound since it is “purely holographic” and it does not refer(i9.Eq.
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related to the smallest geometric scale which is resolvable with physical measurements, while the minimum height
is related to the minimum scale below which the potential cannot work well anymore. It is worth to note here that,
if two cylinder intersect, for exampld;; andTy;, we can break any of the two cylinder into two cylindef3; (
goes intoT;, andT,; while T}; goes intoTy, andT,;) and put in the intersection a new partiglewe are allowed
to do in this way since, at the end of the computations, we will make the limit of a very large number of particles.
For this reason we can simply consider a net of non-intersecting cylinders.

Hence, we have the following inequalities for the volum#$ &nd the areasA) of the cylindersT;;:

2L 1 1

1 1
S <V(Tj) <2ra®=., ma— < A@T) <ma=. (14)
P lop P

Extending the above inequalities to the urfion

10 <N
U 7 (15)
i#]
of all (N — 1) N /2 cylinders, we obtain
N —1)N 1 N —1)N 1
V(= NN 2 by c WDV 2 Ly, (16)
2 lop® 2 P8
1 1
Amin(d7) = (N — 1)Nrml— <A@ <2(N —1)Nrma= = Amax(dT). (17)
0P o

The holographic principl€9) has to hold for any connected subsetWfcontaining all the particles and, in partic-
ular, it has to hold forr™ defined in Eq(15). Sinceu is supposed to be a non-decreasing function of the distance
between and; one gets:

o - -
—ﬁu(5> > —Bu(|da) — ) = —Bu(2p). (18)
On the other hand, E¢11) must hold, so that from Eq§16), (18) and (8]t follows (remember that & 8 < 1)

kﬁ[clvmax(r)*CZAmin(aF)] < kﬁ[qV(lﬁ)fczA(BF)] =Ig < exp _4(1\] _ 1)N,3u(l£):|V(F)N
0

2
_ 0V —DN7a?) (N-DN , (p
\ ,03N exp|:_ 2 ﬂl’l(E)]’ (19)
kBl Vmin()—c2AmaxOD] 5, g gleaV (D =c2A @] — 1> eyl — _21)N13u(2p):|v(1")1v
N-DN l)N N i
S i exp[ NN gy >} (20)
0

whereVmax(I'), Vmin(I"), Amin(d") and Amax(d ") have been defined in EqE.6) and (17) From Eqs(19) and
(20) it follows

(N — 1N
2
(N — 1N

aln N ~ DN 5 - 5 Pu20) > 220N AN ~ DNTZ 4 Lmin 3N I p, (22)

c1(n B)(N — 1)N— n ﬂu(lﬁ) <ea(InBY(N — l)N% + Lmax—3NInp, (1)
0 0

4 The unionr" is a sort of fat graph whose vertices are the particles and whose bold links are the cylinders.
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2
_ 21N N — 1)NZEN
&E_Bﬁzil}, me:n{ﬁ__J_ng}, (23)

Lmax=1In
max { & X

This is an important point: if we would perform the above computations in a larger or a shsglherical region,
the only change in Eq$21) and (22would be the replacement pfwith the new radius which, therefore, can be
identified with the argument of the potential. Thus, in Eg4) and (22we can rescale the argumentobbtaining
the following bounds:

ca(np)2ra\1  [c1(np)2na?\ 1 6N
u(r) < ( 51(2) ); - ( ,Blg’ )r_3 - m In(lor) + Amax (24)
co(np)8ra\1 (ci(np)8ra? 1 6N r _
””>< 8 >?_< Blo )ﬁ_ﬂNw=1f%é>+m“’ =
2 2
Amax= mLmaM Amin = mLmin, (26)

whereLmax and Lyin have been defined in E€R3). Eventually, by taking the limit folV — oo, the result is

_Gmax + Cr’r;ax <u(r) < _Gmin + Crr;in’ (27)
r r r r
c2(InB)8ra c2(InB)2ra
Gmax= % ) Gnmin = % ) (28)
B BIZ
c1(In B)8ra? c1(n B)2ra?
Cmax= L ) Cmin= % ) (29)
Blo Bls
where
r>34% (30)
loco

otherwise the hypothesis thais a non-decreasing function would be violated.

4. Physical implications

First of all, the inequalitie$24) and (25) will be consistent only whei < 1 in such a way that the terms in
round brackets multiplying /- are negative. We observe from Eg&7) that, forr big enough, the terms of order
1/r2 are negligible and: is constrained to lie between two Newtonian-like potentials. It is remarkable that the
Newtonian terms only depends on purely “holographic” constants. That is, the constants in the round brackets
multiplying 1/ only depend orB, a andcs.

This is a highly non-trivial self-consistency check of the fact that the holographic principle can really fix the
form of the gravitational interaction: the constantis the constant multiplying the area #f in the holographic
constraint(9) and alsoa enters in the definition of the holographic length sqdlg). Thus, the Newtonian part
is constrained only by the holographic principle (as it should be), while fé ferms, which do not vanish
for N — oo, contain the proportionality constant between the volume and the entropy in the limit of vanishing
potential.

5 The new radius can be taken larger tharit can also be smaller tham provided that all the particles are contained in the new spherical
region and Eq(30)is fulfilled, otherwise the results would change as it happens when one consider the gravitational potential outside and inside
a sphere of constant density.
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Another important aspect of the above model is the following. In our universe, the number of particles is
very large but, actually, it is not infinite. For this reason, there is the possibility of a very small constant to
be added to the potential. The inequaliti@g) and (25) tell us that the magnitude of such a constant should
lie betweenAmin and Amax defined in Eq.(26). It is very interesting to note that imin and Amax, besides
a geometrical factor, it appears a factéwgN)/N which (beingN ~ 10'?° a reasonable estimate of the to-
tal number of particles in the universe) is of order 3. Such a small factor could resolve the problem of
the too large value QFT-computed cosmological constant: if the coupling of gravity with quantum fields is such
that holography is preserved, then the quantized version of the holographic cor(®ramild provide the right
factor to suppress the “bare” QFT cosmological constant. The holographic principle, by properly taking into ac-
count the effects of gravity on the degrees of freedom, could renormalize the “bare” QFT cosmological constant
with a very small factor. An intuitive explanation of this fact is that QFT counts as distinct pair of degrees of
freedom which, in fact, coupled by gravity behave as single degrees of freedom and should, therefore, not be
overcounted.

A more formal way to understand this fact, which also clarify that the above argument could also hold at a
quantum level, is the following. One of the main reason behind the fact that in QFT the computed cosmological
constant is too large is that in the path integral approach one performs the diagrammatic expansion starting from
classical vacua. On the other hand, classical vacua (that is, stable solutions of the classical equations of motions)
are invariant if we add to the Hamiltonian a constant term so that they cannot provide us with an energy scale. The
energy scale (“zero point energy”) of QFT is a purely quantum effects which, when renormalized, is of the order of
the UV cutoff and, therefore, too large. If the coupling with gravity is standard (via Lagrangian or Hamiltonian),
then the above problem, at a first glance, will be only slightly softened for the same reasons as above. Instead, let
us consider an equation like

1
—BogInZg = —A(OM), 31
BogInZg a2 OM) (31)
Zg :/[quaz)ngnW]bicﬁaM exp|:—ﬂ/H(@b“,gw,nw)du], (32)
M

where L p is the Planck lengthD is the standard notation for the “path” integrati@’ is a collective symbol
to denote the set of quantum fields (besides gravity) and their conjugated momenta (whose phase space variable
are denoted witlg,, andx,,), u the Lebesgue measure @af and the symbolB.C. — M means that we
must impose suitable boundary condition on the fields as they approach the boundanGoévity should be
introduced by requiring that the metric needed to compute the curved partition fu(@2pis such that Eq(31)
is fulfilled.

Although to solve explicitly this problem seems to be a rather hopeless task, a very interesting result is now
apparent: we are not free anymore to add an arbitrary constant to the density of Hamiltonian, s{i3d¢ iEq.ot
invariant under the transformation

H — H + const (33a)

in other words, an holographic equation like E8{l) set a scale for the zero point energy.

As it has been shown at the end of Sect®&)nvhen one takes into account that the number of particles is
very large but finite, the gravitational potential) is determined up to a constany € [ Amin, Amax] Which may
be naturally interpreted as the zero point enef, g,.» = n.v, 0). Even if a rigorous quantum computation is
required to obtain the exact value 4§, it is nevertheless interesting to note that B1.) tells thatAg should be
positive and of the order (such an estimate could be improved by a careful quantum computation)
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MizA(aM) = —,88,3In(/[DQY‘DgWDnW]exp|:—,8fAod,u])
P
M

= —Bog (—ﬂAO/du> = BV (M) A. (34)
M

From the above equation we obtain
1 A@M) af kT Lp
Ao~ H(O, gpv =1y, 0) ~ ~Mpl — || — ).
0~ HO 8w = v 0) 4BL3 V(M) P\'mp» )\ Ly

whereMp is the Planck mass andy = V(M)/A(dM) should be a length measuring the size of the space—time
region past causally connected today. If we také ashe Hubble radius today and &sthe cosmic temperature
today we get

Ao~ M$ x 107%,

This result is very promising if we consider that, in this computation (even if QFT has been taken into account in

a rather rough way) it has been achieved a striking reduction (of, at least, 30 orders of magnitude) of the values of
the cosmological constant which are usually obtained in different context (QFT, SUSY QFT, SUGRA and so on)
without introducing SUSY, extra dimensions or fine-tuning of any kind.(B4) also suggests that, in the past, the
cosmological “constant” should had been (much) greater. This implies a modification of Einstein equations. The
necessity of some kind of modification of the Einstein equations is, today, widely recognized due, for example, to
the experimental data on the accelerated expansion. The best explanation of the actual experimental data would be
“varying” cosmological constant much higher in the past than now (see, for exdajle On the other hand, there

is not in the standard approaches a natural way to achieve this goal. Usually, non-minimally coupled scalar fields
(whose physical origin is, however, unknown) are introduced in order to imitate the behavior of a “vatyiegh

(see, for exampld12]). In fact, the holographic principle can give rise to results in a much better agreement with
experimental data providing, at the same time, with a more natural explanatiofi déereasing with time. On the
theoretical side, it would be also very interesting to try to repeat the previous computation in curved backgrounds.
In particular, we would like to give an interpretation of the type here proposed to the AAS/CFT correspondence: this
could disclose, for example, a sharp relation between the cosmological constant and the number of the elementary
degrees of freedom without using CFT. However, the difficulties related to a curved background have not allowed,
up to now, this ambitious achievement.

5. Conclusion

In this Letter an alternative point of view to analyze the relations between gravity and holography has been
proposed. It is commonly believed that the holographic principle will be a corollary of the final theory of quantum
gravity which, on the other hand, is not available yet. For this reason, it is interesting to try to go in the oppo-
site direction: is it possible to deduce the gravitational interaction from the holographic principle? Here, the first
preliminary steps in this direction have been performed. It has been shown that the classical gravitational poten-
tial belongs to the rather narrow region allowed by the holographic principle. It has been clarified the physical
mechanism responsible for the smallness of the observed cosmological constant with respect the one computed ir
QFT: QFT overcounts pairs of degrees of freedom which, in fact, coupled by gravity, behave as single degrees of
freedom and should not be overcounted. The holographic principle could face with this overcounting thanks to a
very small multiplying factor. Even if the computation are entirely classical, it has been argued that the same could
hold at a quantum level; a promising estimate of the order of magnitude of the cosmological constant has also been
obtained. The reason for this is that Eg1) is not invariant when we add to the density of Hamiltonian a constant.
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In other words, the holographic principle encodes a natural scale for the cosmological constant which is likely to
survive also at a quantum level.
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