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Abstract

The location-based routing protocol has been chosen as one of the efficient routing approaches in vehicular ad hoc networks in

terms of low overhead and high scalability. Its critical advantage lies in performing a pathless routing such that a node having a

packet forwards it to its neighbor node that provides the shortest physical distance to destination and this process continues until

the packet reaches destination. The problem lies in that the link stability of the neighbors varies largely depending on the mobility

of vehicles and the environmental factors that incur shadowing and fading effects. In this paper, we propose a new link quality

prediction metric associated with location based protocols to improve the selection of next hop, that consider both the link quality

assessment based on the transmission success rate and the link quality assessment based on the prediction of the future locations

of vehicles. Simulation results are presented to demonstrate the efficiency of the proposed metric.
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1. Introduction

Over the last two decades, much attention has focused on the application of mobile ad hoc network (MANET)

technology to the Vehicular Ad Hoc Networks (VANETs) that consists of vehicles (nodes) with high mobility. The

routing protocols designed for MANETs were tried for their application to VANETs with evaluation1,2. However,

the effectiveness of those trials was limited due to the unique characteristics of VANET such as high node mobility,

movement constraints, the mobility pattern of vehicles, and the road conditions with high building forest. Some

location based routing protocols such as the GPSR3, the CFG4, and the GOAFR5 tried to overcome these limitations.

In these approaches, each node periodically broadcasts a hello message that includes its node identification number

and the geographic location to its neighbors. Then, every node can maintain the geographical location information of

its neighbors.
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Based on the geographical location information, a node having data packet chooses a neighbor node which provides

the shortest physical distance to destination as next hop and then forwards the packet to the selected node. However,

because of node mobility and hello interval, the selected node may have moved out of the transmission range of a

sender, thereby breaking the corresponding link. One simple way of improving this problem is to decrease the hello

interval so that every node can maintain more accurate motion information for its neighbors; however, it will increase

control overhead. In addition, a link can be broken temporally due to variation of environmental factors such as path

loss, shadowing and multipath fading. Consequently, if the next hop selection process does not take link quality into

account, a forwarding node may frequently fail to forward a packet to the selected neighbor. As a result, a forwarding

node may have to select next hop multiple times before forwarding data packet. Sometimes, it may exclude some

node with a good link quality. This will degrade network throughput and increase packet end-to-end delay.

To resolve the two above mentioned problems, we propose a new link prediction metric that considers two link

quality evaluation techniques - the past link quality is obtained from the link quality assessment based on the success

rate of packets and the future link quality is obtained from the link quality assessment based on the prediction of the

future locations of nodes. Then, next hop is selected by applying the combined link quality metric to each forwarding

node. The past link quality is given in terms of the Expected Transmission Count (ETX) that indicates how many

retransmissions have to be made before a forwarding node forwards a packet to next hop successfully. Whereas, the

future link quality is given in terms of the Predicted Forwarding Progress Distance that is determined by the relative

locations of a forwarding node and next hop. The mobility prediction mechanism6 is employed to predict the future

locations of a forwarding node’s neighbors based on the motion information included in the last hello messages. Then,

a node which is predicted to stay in the transmission range of the sender and has a good link quality will be given

higher priority to be chosen as next hop.

The rest of the paper is organized as follows. In Section 2, we briefly review a radio propagation model. Then,

we present some works related to link quality estimation and forwarding progress distance and describe a new quality

metric in Section 3. In Section 4, the performance of the proposed approach is compared with those of some popular

approaches. Finally, we make concluding remarks in Section 5.

2. Radio Propagation Model

The radio propagation model is used to predict the average signal strength at a given distance from a transmitter.

Each radio propagation model of mobile radio system must reflect the effects of path loss, shadowing and multipath

fading. While the path loss predicts the decay of the received power as a function of the distance between a transmitter

and a receiver, and sometimes includes the effect of the antenna gains, the shadowing model considers effects of sur-

rounding obstacles on the mean signal attenuation at a given distance. The multipath fading is caused by interference

between multiple versions of the transmitted signal which arrive at a receiver at slightly different times.

In this paper, the Groud Reflection (2-ray) is used to model the path loss. This model is based on geometric optics

and considers both direct path and a ground reflected propagation path between a transmitter and a receiver. The 2-ray

path loss model is expressed in dB as follows7.

PL(dB) = 10 log

[
d4

ht
2hr

2

]
(1)

where, ht is the transmitter antenna height, and hr is the receiver antenna height.

In addition, the log-normal distribution with a zero mean and a standard deviation σ describing the shadowing in

dB is employed to model effects of shadowing. Therefore, taking into account the shadowing effects, the path loss of a

transmitted signal at an arbitrary distance d in the far field region of the transmitter (d > d f ) is expressed as follows7.

PL(d) = PL(d0) + 10n log

(
d
d0

)
+ Xσ (2)

where, PL(d0) is the path loss in dB at a reference distance d0, n is the path loss exponent, and Xσ is a zero-mean

Gaussian distributed random variable with standard deviation σ
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With the multipath fading model, we use the Rician, which is applicable when one of the signal paths, typically a

line-of-sight signal dominates the others. The Rician distribution is given as follows7

pd f (r) =

{
r
σ2 exp(− r2+A2

2σ2 )I0( Ar
σ2 ) (A ≥ 0, r ≥ 0)

0 (r < 0)
(3)

where, r is the received signal envelope voltage; the parameter A denotes the peak amplitude of the dominant signal

and I0(.) is the modified Bessel function of the first kind and zero-order. The Rician distribution is often described in

terms of a parameter K which is defined as the ratio between the deterministic signal power and the variance of the

multipath. K is given in terms of dB as follows.

K = 10 log
A2

2σ2

3. A New Link Metric for Selecting a Next Hop Node in Location-based Routing Protocol

3.1. Link Quality Estimation

In order to measure the quality of a link, we want to obtain the expected transmission count (ETX) defined as the

expected number of transmissions to successfully deliver one data packet to a receiver on the given link. Since data

transmission is successful only if a sender receives acknowledgement (ACK) from a receiver after transmitting data

packet, we need to consider the bidirectional stability of a link.

Let ET X(x, y) denote the ETX of a link between node x and node y. Then, ET X(x, y) is given as follows.

ET X(x, y) =

∞∑
i=1

i × p f (x, y)i−1 × ps(x, y) =
1

(1 − p f (x, y))2
× ps(x, y) =

1

ps(x, y)
=

1

d f (x, y) × dr(x, y)
(4)

where, d f × dr is the measured success probability of data transmission, d f is the forward delivery ratio that is defined

as the ratio of the number of Hello’s that node y has received successfully to the number of Hello’s that node x has

transmitted, and dr is the reverse delivery ratio on the same link.

In this paper, d f and dr are measured using the Hello message that each node broadcasts at regular intervals, which

is structured as follows.

Hello = (NodeId, Pos,Speed, Dir, HHT(x)): HHT(x), the hello history table of node x, indicates the number of

Hello messages that node x has received from each of its neighbors within the specified time window. Pos, Speed and

Dir indidate the postion, the speed, and the moving direction of a sender node, respectively.

Each node counts the number of Hello’s received from its neighbors during the last w seconds. In the Hello

message, HHT = {i, y, nHellos(t − w, t) | y ∈ N[i], i � y} where, nHellos(t − w, t) or shortly nHellos[w] indicates the

number of Hello’s that node i has received from node y within the last w seconds. In figure 1, HHT(2) = {(2, 1, 7), (2,

3, 8)}. Then, every node i can maintain a hello history table, HHT = {x, y, nHellos(t−w, t) | x ∈ N[i], y ∈ N[x], x � y}.
From this table, we can obtain d f and dr at time t as follows.

dk =
nHellos(t − w, t)

w/τ
, k = f or r (5)

where, τ is the time interval of Hello. Fig. 1 gives an example of HHT’s in the network of four nodes when τ = 1

second. Based on the counted values, node 1 can obtain ETX(1, 2)=1.587, ETX(2, 3)=1.785 and so on.

3.2. Predicted Forwarding Progress Distance

In order to minimize the number of hops data packet will travel to a destination, we also consider the forwarding

progress distance of a node when selecting a next hop. Given a transmitting node x, the forwarding progress distance

of a candidate node y to destination D is defined as the projection onto the line connecting x and D. The packet is

forwarded to a neighbor whose progress is maximal. However, in order to adapt the high node mobility in vehicular
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Fig. 1. An example of hello history tables
Fig. 2. The street map of New York City

environment we compute the predicted forwarding progress distance (PPD) of a candidate node based on its predicted

position at the moment of data forwarding.

PPD(x, y) =

{
0 , d(x,D) − dpre(y,D) > r
d(x,D)−dpre(y,D)

r , otherwise

where, d(x,D) and dpre(y,D) denote the distance between node x and destination D, and the distance between the

node y and destination D based on the predicted position of node y, r is the transmission range of a node.

Here, we apply the mobility prediction model proposed in6. Assuming that node i records some motion information

such as the coordinate (x j, y j), the speed v j, and the moving direction θ j of node j at time t, then node i can predict

the coordinate (x
′
j, y

′
j) of node j after Δt = t

′ − t as follows.

x
′
j = x j + Δt × v j × cos θ j and y

′
j = y j + Δt × v j × cos θ j

3.3. A Link Quality Prediction Metric

In order to cope with the rapidly varying mobility (i.e., high acceleration and deceleration) of vehicles as well as

the effects of shadowing and multipath fading, we introduce a new formula to evaluate the link quality of a link (x, y)

when node x has to choose a next forwarding node among its neighbors as follows

LQ(x, y) = f (ET X(x, y), PPD(x, y)) = α × LQp(x, y) + (1 − α) × LQ f (x, y) (6)

where, 0 ≤ LQp(x, y), LQ f (x, y) ≤ 1. LQp(x, y) indicates the past link quality, while LQ f (x, y) indicates the future link

quality. α is the weight factor between the past and future link quality. Thus, LQ(x, y) is given the arithmetic mean of

both link qualities. From previous discussion, we get LQp(x, y) and LQ f (x, y) as follows.

LQp(x, y) =
1

ET X(x, y)
and LQ f (x, y) = PPD(x, y)

Based on the link quality prediction metric LQ, a forwarding node will select a node among its neighbors with the

highest link quality as a next forwarding node.

4. Performance Evaluation

4.1. Simulation Setup

We used a commercial network simulator, QualNet 5.02 to evaluate the performance of the proposed approach.

The traffic model was generated by traffic simulator VanetMobiSim, which produces the mobility traces for some
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Table 1. Simulation Parameters

Parameter Value Parameter Value Parameter Value

Dimension 1500×1500 m2 Fading Rician (K=3) Data rate 5 pkts/s

Simulation time 600 seconds MAC protocol 802.11b Path loss 2-Ray

Transmission range 250 m Wireless bandwidth 2 Mbps Shadowing Log-normal

Data type CBR Maximum speed 40 m/s Number of Nodes 150 nodes

Data packet size 512 bytes Desired speed 20 m/s Hello interval 1 second

Fig. 3. Broken link ratio of GPSR LPD and GPSR MP

with varying Xσ
Fig. 4. Normalized control overhead of GPSR LPD

and GPSR MP with varying Xσ

Fig. 5. Packet delivery ratio of GPSR LPD and

GPSR MP with varying Xσ
Fig. 6. End-to-end delay of GPSR LPD and

GPSR MP with varying Xσ

network simulators such as Qualnet, ns-2 and GlomoSim. We also used the real map of the urban area of 1500 x 1500

(m2) as shown in figure 2.

The proposed link prediction metric was applied to routing protocol GPSR3, named GPSR LPD, and then was

compared with GPSR MP which was an improvement of GPSR when applied the mobility prediction8. We assessed

the performance of protocols under different effect level of shadowing and fading by changing the value zero-mean

Gaussian distributed random variable Xσ (in dB) defined in Eq.2 in shadowing model from 4 to 8 dB. Due to the space

limitation we can not show all simulation results to verify variations of α, thus the value of α = 0.6, giving the best

performance, is fixed in the simulation to compare with GPSR MP. The rest of simulation parameters are listed in

table 1. In addition, the performance metrics such as Packet Delivery Ratio, End-to-end delay, Broken Link Ratio and

Normalized Control Overhead, are used for evaluation. We note that control packets include Hello message, RTS,

CTS and ACK.

4.2. Simulation Results

Figure 3, 4, 5 and 6 show the broken link ratio, the normalized control overhead, the packet delivery ratio and the

end-to-end delay with varying the value of Xσ. In general, the broken link ratio of two protocols increases according to

the increase in Xσ which is shown in figure 3 since the more value of Xσ is, the more shadowing effects the transmitted
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signal suffers from. However, GPSR MP incurs more broken link ratio than GPSR LPD. This is because in GPSR MP

a node chooses next node based on the predicted physical distance without taking the link quality into account. The

increase in broken link ratio translates to the increase in normalized control overhead. The explanation for this is that

for any successful data packet retransmission, it requires the resending of RTS from a sender and CTS and ACK from

a receiver, thereby increasing the normalized control overhead (figure 4)

It can be seen that GPSR LPD achieves better packet delivery and end-to-end delay than GPSR MP with the

increase in shadowing effect (figure 5 and figure 6). The improvement can be explained as follows. According to the

IEEE 802.11 MAC protocol, after a sender sends a packet to a receiver, the sender waits for ACK from the receiver

to certify the successful transmission. If it does not receive ACK for some time, it retransmits the packet and gives

up the attempt when reaching the maximum number of retransmissions. The packet retransmission not only increases

contention delay, processing delay, transmission delay and propagation delay, but also wastes the wireless bandwidth

since some control messages such as RTS, CTS and ACK in MAC protocol are retransmitted. Consequently, the more

retransmissions a packet experiences, the more end-to-end delay it incurs. Therefore, GPSR LPD with less number

of packet retransmissions achieves better end-to-end delay and packet delivery ratio than GPSR MP.

5. Conclusion

In this paper, we proposed a link quality prediction metric for next hop selection in the location based routing

protocol under shadowing and fading effects in VANETs. The link quality prediction metric combines both past and

future link quality in which past link quality is evaluated through Expected Transmission Count, while the future

link quality is assessed via the Predicted Forwarding Progress Distance. Simulation results demonstrated that the

proposed metric applied to GPSR can reduce control overhead and broken link ratio, and improve the packet delivery

ratio and the end-to-end delay considerably.
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