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Background:Growing evidence documents the potential ofmachine learning for developing brain based diagnos-
tic methods for major depressive disorder (MDD). As symptom severity may influence brain activity, we inves-
tigated whether the severity of MDD affected the accuracies of machine learned MDD-vs-Control diagnostic
classifiers.
Methods: Forty-five medication-free patients with DSM-IV defined MDD and 19 healthy controls participated in
the study. Based on depression severity as determined by theHamilton Rating Scale for Depression (HRSD),MDD
patients were sorted into three groups: mild to moderate depression (HRSD 14–19), severe depression (HRSD
20–23), and very severe depression (HRSD ≥24). We collected functional magnetic resonance imaging (fMRI)
data during both resting-state and an emotional-face matching task. Patients in each of the three severity groups
were compared against controls in separate analyses, using either the resting-state or task-based fMRI data. We
use each of these six datasets with linear support vectormachine (SVM) binary classifiers for identifying individ-
uals as patients or controls.
Results: The resting-state fMRI data showed statistically significant classification accuracy only for the very severe
depression group (accuracy 66%, p = 0.012 corrected), whilemild to moderate (accuracy 58%, p = 1.0 corrected)
and severe depression (accuracy 52%, p = 1.0 corrected) were only at chance. With task-based fMRI data, the au-
tomated classifier performed at chance in all three severity groups.
Conclusions: Binary linear SVM classifiers achieved significant classification of very severe depression with
resting-state fMRI, but the contribution of brain measurements may have limited potential in differentiating pa-
tients with less severe depression from healthy controls.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Major depressive disorder (MDD) is a complex brain disorder asso-
ciated with dysregulation of distributed neuronal networks involving
several cortical and limbic regions. This position is based on evidence
from the neuroimaging literature that has documented distinct struc-
tural and functional alterations in patients with MDD compared to
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healthy controls (Mayberg, 2003; Drevets et al., 2008; Price and
Drevets, 2012). However, these group-level inferences have had mini-
mal impact on clinical translation at the individual patient level – that
is, they do not directly lead to a way to determine whether a specific
subject has MDD or not. Recently, machine learning techniques have
been applied to neuroimaging data to draw inferences for individual
subjects, with the potential for improving patient-specific clinical diag-
nostic and treatment decisions (Orru et al., 2012; Kloppel et al., 2012).
Current diagnosis of mental disorders is based on diagnostic criteria
drawn from self-reported clinical symptoms without any objective bio-
markers. This has led to the search, in recent years, for a diagnostic sys-
tem that can use objective measurements from a subject's brain to
validate and improve the accuracy of psychiatric diagnosis.
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://core.ac.uk/display/82383672?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2016.07.012&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.nicl.2016.07.012
mailto:rramasub@ucalgary.ca
http://dx.doi.org/10.1016/j.nicl.2016.07.012
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/22131582
www.elsevier.com/locate/ynicl


321R. Ramasubbu et al. / NeuroImage: Clinical 12 (2016) 320–331
In the last decade, several neuroimaging studies have examined
the classification accuracy of machine learned classifiers in differen-
tiating patients with MDD from healthy controls. One major focus
has been the application of machine learning techniques to magnetic
resonance imaging (MRI) data, including both structural and func-
tion MRI (fMRI) data. Machine learning is a sub-area of artificial in-
telligence that applies statistical methods to training data, such as
high dimensional neuroimaging data, to find patterns that can dis-
tinguish patients from healthy controls. Authors reported classifica-
tion accuracy for MDD ranging from 67 to 90% using structural MRI
data (Costafreda et al., 2009; Gong et al., 2011; Mwangi et al.,
2012a), 94% using resting-state fMRI data (Zeng et al., 2012; Zeng
et al., 2014), 67–86% using task-related fMRI data (Fu et al., 2008;
Marquand et al., 2008; Hahn et al., 2011) and 76.3% using combined
structural and functional MRI data (Nouretdinov et al., 2011). High
accuracy prediction is clinically important, as MDD is heterogeneous
in symptom profile and prone to clinician bias with poor inter-rater
reliability (Regier et al., 2013). The identification of MDD subtypes
based on neural abnormalities or brain imaging methods might im-
prove classification accuracy, facilitate new drug discovery and
move toward stratified medicine.

Depression subtypes defined by symptom severity have several clin-
ical implications for the treatment and prognosis. For example, baseline
symptom severity is associated with drug-placebo differences in ran-
domized control trials (Kirsch et al., 2008) and antidepressants are rec-
ommended as the choice of treatment for severe depression whereas
psychosocial interventions as the choice of treatment for mild-
moderate subthreshold depression (NICE guidelines CG90, 2009). Addi-
tionally, epidemiological studies have shown the association of symp-
tom severity with functional impairment, co-morbidity and increased
risk of mortality (Kessler et al., 2003; Kessler et al., 2005; Rutledge
et al., 2006). In machine learning approaches, severity-related brain ab-
normalities have been shown to offer good discriminating potential in
the classification of MDD and healthy controls. In emotional task fMRI
data, Mourao-Miranda et al. (2011) found significant correlations be-
tween the distance of participants' feature vectors from the separating
hyperplane of a trained support vector machine, and those participants'
severity scores from the Hamilton Rating Scale for Depression (HRSD)
(Hamilton, 1960), which suggests a relationship between depression
severity and test predictions (Mourao-Miranda et al., 2011). Similarly,
another study using structural MRI data reported a strong relationship
between the fitted SVM weights and ratings of illness severity
(Mwangi et al., 2012b). These findings suggest that fitted machine
learned classifiers may capture patterns of brain abnormality in func-
tional and structural neuroimaging data related to MDD severity. A
model derived from a machine learned classifier may constitute an ob-
jective biomarker for depression severity. To date, noprevious study has
examined how the performance of machine learning algorithms in dif-
ferentiating MDD vs. health may differ as a function of MDD symptom
Table 1
Characteristics of three MDD patient groups and healthy controls.

Characteristic All MDD
patients

Mild-moderate
MDD

Severe
MDD

V
M

n 45 12 18 1
Sex (% female) 64% 42% 67% 8
Age (years) 37 ± 11 33 ± 11 38 ± 10 3
Age of onset (years) 24 ± 10 19 ± 5 26 ± 10 2
Illness duration (years) 12 ± 8 14 ± 11 13 ± 7 1
Duration of current episode (months) 59 ± 66 42 ± 54 72 ± 73 5
HRSD score 22 ± 4 17 ± 1 21 ± 1 2
HAM-A score 24 ± 5 19 ± 4 24 ± 3 2
CGI score 4.1 ± 0.9 3.1 ± 0.2 4.1 ± 0.2 5
MADRS scores 26 ± 6 20 ± 4 25 ± 4 3

Age, Age of onset, Illness duration, Duration of current episode, HRSD score, HAM-A score, and
values for tests comparing all patients vs. controls (t-test or proportion test as appropriate). Seco
(F-test or chi-squared test as appropriate).
severity. This research question has important clinical implications in
the context of whether machine learning approaches using fMRI data
can yield comparable accuracy in the classification of MDD at various
levels of severity.

We examined the accuracy of two-class machine learning classifica-
tion of three distinct groups of MDD patients, with different levels of
symptom severity based on the HRSD Scores, versus healthy controls.
The three groups of MDDwith severity gradation were: mild to moder-
ate depression (HRSD score 14–19), severe depression (HRSD 20–23),
and very severe depression (HRSD ≥24). (While there is no consensus
on cutoff scores on the HRSD for identifying MDD severity subtypes,
these severity ranges are consistent with several published recommen-
dations (Zimmerman et al., 2013; Rush et al., 2008; DeRubeis et al.,
1999)). We expected that the classifiers would achieve higher accuracy
for the patient groups with very severe depression compared to those
with severe depression or mild-moderate depression. For each range
of severity, we also considered two types of fMRI data – from either
resting-state or from an emotional-face matching task – hence, we ex-
amined classifier performance for 3 × 2 different situations.

2. Materials & methods

2.1. Participants

Ethics approvalwas obtained from the local review board. All partic-
ipantswere fluent in English and gave informed,written consent to par-
ticipate in the study. Forty-five patients meeting DSM-IV criteria for
MDD (Association AP, 2000) according to the Structured Clinical Inter-
view for DSM-IV Axis 1 Disorders (First et al., 2002a), were recruited
through advertisements. (See Table 1 for participant demographics).
Patients included 29 females and 16 males, all right-handed, in the
age range of 19–58 years (mean 37 ± 11 SD). The Edinburgh Handed-
ness Inventory was used to assess handedness (Oldfield, 1971). The se-
verity of depressive and anxiety symptoms was assessed using the
clinician-administered, 17-item Hamilton Rating Scale for Depression
(Hamilton, 1960), the Montgomery Asberg Depression Rating Scale
(MADRS) (Montgomery and Asberg, 1979), and the Hamilton Anxiety
Rating Scale (HAM-A) (Hamilton, 1959). Patients were also rated for
disease severity using the Clinical Global Impression (CGI) scale (Guy,
1976), which allows clinicians to provide a severity rating based on
their clinical experience. Patients were included in the study if they
met the following inclusion criteria: (1) acute episode of MDD of unipo-
lar subtype and a score of 14 or higher on the HRSD, and (2) free of psy-
chotropic medication for a minimum of three weeks at time of
recruitment. Exclusion criteria were: (1) Axis I disorders such as bipolar
disorder, anxiety disorder, or psychosis, (2) history of substance abuse
within six months of study participation, (3) borderline personality
disorder, (4) medical or neurological disorders, (5) severe suicidal
symptoms, (6) failure to respond to three trials of antidepressant
ery severe
DD

Healthy
controls

p-Value (patients vs.
controls)

p-Value (3 MDD groups omnibus
comparison)

5 19
0% 58% 0.31 0.09
7 ± 11 33 ± 10 0.18 0.39
7 ± 11 – – 0.10
0 ± 7 – – 0.50
7 ± 69 – – 0.48
6 ± 2 3 ± 3 10−27 10−15

7 ± 5 – – 10−6

.1 ± 0.4 – – 0.001
1 ± 4 0.001

CGI score rows show mean values ± standard deviations. First p-value column shows p-
ndp-value column showsp-values fromomnibus tests comparing the three patient groups
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medication, or (7) contraindications for MRI (metal implants, pregnan-
cy, etc.). Patients were divided into three MDD severity groups based
their HRSD scores. The mild-moderate group (HRSD 14–19) included
12 patients. The severe group (HRSD 20–23) included 18 patients. The
very severe group (HRSD 24+) included 15 patients.

Nineteenhealthy controls,matched for gender (11 females, 8males)
and age (20–52 years, mean 33 +/ 10 SD), were also recruited for the
study through advertisements. These participants were screened using
the Structured Clinical Interview for DSM–IV Axis I Disorders, non-
patient version, to ensure they did not have previous or current Axis I
psychiatric disorders (First et al., 2002b) nor any family history of Axis
I disorders, as determined by self-report. The control's HRSD scores
ranged from 0 to 7. The demographics of theMDD patients and healthy
controls are summarized in Table 1.

2.2. MRI data acquisition

MR images were collected using a 3 Tesla General Electric MR scan-
ner (Signa VHi; General Electric Healthcare, Waukesha, WI, USA)
equipped with an eight-channel, phased-array head coil. For each par-
ticipant, two resting-state fMRI scans of 220 s in durationwere acquired
using a single-shot gradient-recalled echo, echo planar imaging se-
quence (110 volumes, repeat time (TR) 2000 ms, echo time (TE)
30ms, flip angle 65°, field of view (FOV) 240 × 240mmsquared,matrix
size 64 × 64, in-plane resolution 3.75 mm, 30 axial slices, 4 mm slice
thickness). For the resting-state collection, participants were required
to remain in the MRI scanner with their eyes open and fixated on a
black crosshair at the center of a projection screen. The participants
were instructed to relax, not think about anything in particular, and
not to fall asleep. In addition, four emotional face task fMRI scans were
collected per scanning session (for each subject), lasting 300 s each
(150 volumes, TR 2000 ms, TE 30 ms, flip angle 65°, FOV
240 × 240 mm squared, matrix size 64 × 64, in-plane resolution
3.75mm, 30 axial slices, slice thickness 4mm). A T1-weighted structur-
al MRI (TR 9.2 ms, TE minimum, flip angle 20°, FOV 256 × 256 mm
squared,matrix size 512 × 512, in-plane resolution 0.5mm, 176 sagittal
slices, slice thickness 1 mm) was also acquired for anatomical registra-
tion of the fMRI data.

2.3. fMRI emotional-face matching task paradigm

While undergoing fMRI brain imaging, participants viewed triads ei-
ther of faces or of control geometrical designs during a series of trials
(Hariri et al., 2002). Each face had one of four emotional expressions:
angry, fearful, happy, or sad. For each face triad, participants used a but-
ton box to indicatewhich of two target faces depicted the same emotion
as the source face. Similarly, for control condition, participants
responded with button press to indicate which of two geometrical de-
signs matched with source geometrical design. Each fMRI run included
60 trials (12 for each of the four assessed emotions and the control con-
dition). The order of presentation was randomized and each individual
trial lasted 5 s (images: 3 s; inter-trial interval: 2 s). Stimulus onset
asynchrony between successive trials was jittered (5 s or more in ran-
dom increments of 0.5 s) to preserve fMRI signal variance (Burock
et al., 1998). Previous work has shown that this emotional face
matching task compared to control condition engages affective process-
ingmechanisms, and reliably activates the amygdala and other relevant
prefrontal and cingulate regions (First et al., 2002b).

2.4. Pre-processing

We considered two fMRI datasets, each involving all of the subjects,
both control and MDD: one for resting-state, and another for the emo-
tional face task. Each dataset was preprocessed using SPM8 (Wellcome
Trust Centre for Neuroimaging, London, UK) and in-house code written
in MATLAB (The MathWorks, Inc., Natick, MA, USA). The preprocessing
steps for fMRI data included: (1) 6 parameter rigid bodymotion correc-
tion of fMRI volumes in SPM8, (2) non-linear spatial warping to MNI
EPI template at 4 × 4 × 4 mm cubed resolution (43 × 51 × 37 voxels
grid) in SPM8, and (3) 8 mm full width at half maximum (FWHM)
Gaussian spatial smoothing of fMRI volumes in SPM8. The pre-
processed registered fMRI data were masked to exclude voxels outside
the brain using a hand-built mask. This mask retained 26,904 voxels
(1,513,406 mm3) out of the 81,141 voxels in the interpolated fMRI
volume space.

2.5. Dataset notation

To facilitate description of our analysis, we define a simple notation.
We performed six analyses, using resting-state fMRI data or emotional
face task fMRI data from one of the three patient severity groups
(mild-moderate MDD, severe MDD, and very-severe MDD) as well as
controls. We will use the phrase “dataset S” to refer to the dataset
used in a given analysis. Therefore, dataset S consisted of either
resting-state or emotional face task fMRI data from the patients in a
given severity group as well as controls.

2.6. Overview of machine learning approach

We ran six analyses, each testing the ability of machine learning
to produce classifiers that could effectively differentiate between
healthy controls andMDD patients from one of the threeMDD sever-
ity groups, using either resting-state fMRI or emotional face task
fMRI data. For each, we ran the LearnFMRI process, which selected
one out of five different feature extraction algorithms as well as the
regularization parameter value for the linear SVM learning algorithm
(all described below). LearnFMRI then ran this particular choice of
algorithm and regularization parameter value on all of the training
data to produce a classifier, which could then be used to diagnose a
future subject; see Fig. 1.

We now provide a detailed explanation of the LearnFMRI procedure.
To reduce the dimensionality of the fMRI data, our LearnFMRI system
selects one of five different feature extraction algorithms for each of
the 6 datasets S (each hand-coded in MATLAB): (1) independent com-
ponents analysis (ICA) whole brain map feature extraction, ICA-
Whole-FE; (2) ICA significant cluster feature extraction, ICA-Clust-FE;
(3) pair-wise correlation feature extraction, PairCor-FE; (4) general lin-
ear model (GLM) analysis whole brain map feature extraction, GLM-
Whole-FE; and (5) GLM significant cluster feature extraction, GLM-
Clust-FE. (LearnFMRI considered only ICA-Whole-FE, ICA-Clust-FE and
PairCor-FE for resting-state fMRI data, and all five for task-based
datasets.) Feature extraction algorithms ICA-Clust-FE and GLM-Clust-
FE used statistical testing between patients and controls to extract fea-
tures (voxel clusters) that were significantly different between the
groups. To reduce the potential for overfitting, it performed statistical
comparisons only between patients and controls in training sets (see
Classifier performance section below). Therefore, different sets of par-
ticipants (i.e. only the training set participants) contributed to these sta-
tistical tests in different folds of the nested cross-validation described
below. Statistical maps differed between folds. These differences are il-
lustrated in Supplementary Fig. 1. The ICA-Whole-FE, PairCor-FE and
GLM-Whole-FE algorithms did not use statistical testing between pa-
tients and controls to generate features. Details of feature extraction al-
gorithms are provided below.

For each task, LearnFMRI also tested the linear support vector ma-
chine (SVM) learning algorithm with regularization parameter values
0.1, 0.3, 1.0, 3.0, or 10.0 and selected the best-performing parameter
value.

Testingmultiple combinations of feature extraction and classifier al-
gorithms on the test data and then presenting only the algorithms that
perform best on that data may create a substantial danger of overfitting,
where an algorithm works well because it is matching the specific



Fig. 1. Illustration of the LearnFMRI machine learning algorithm. The learning algorithm takes as input a dataset of labeled data, then performs several steps. As shown in the dark blue
bubble on the left, it first partitions the data into a Training Set (“1 … 30”) and a validation set (“31 … 40”), and then uses the Training Set to select the Feature Extractor and select
the SVM regularization parameter, based on their performance on the Validation Set. (This actually involves 4 iterations, with 4 different internal [Training Set, Validation Set] splits -
not shown here.) As shown on the right in the pale blue bubble, after identifying the optimal Feature Selector (FE*) and regularization parameter C, LearnFMRI then runs FE* on the
entire set of labeled data (“1 … 40”), then runs the SVM learner with regularization parameter C* on the resulting set of features (over the data), to produce the classifier SVM*, which
is returned.
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pattern of noise that happens to be present in the dataset tested. This
good performance does not generalize to new data with different
noise patterns. (Note that this overfitting is in terms of the choice of al-
gorithm; this is still a problem even when cross-validation is used to
protect against overfitting in terms of the algorithms' learned weight
values.) LearnFMRI therefore used internal cross-validation to protect
against overfittingwith respect to (1) the choice of feature extraction al-
gorithm, (2) the extracted features (feature extraction used the patient/
control labels), (3) the choice of regularization parameter value for the
linear SVM learning algorithm and (4) the weights chosen by the linear
SVM learning algorithm.

Our LearnFMRI system is summarized in Fig. 1. Given the set of la-
beled training data for each dataset S, LearnFMRI considers each
combination of feature extractor and regularization parameter and
returns the best-performing choice of feature extraction algorithm
as well as a linear SVM classifier trained using the best regularization
parameter value. To estimate the generalization performance of the
chosen feature extraction algorithm and trained linear SVM classifi-
er, we used a five-fold cross-validation process, repeated ten times,
with different random partitioning of participants into the five
folds. Note that different cross-validation folds found different best
combinations of feature extraction/regularization parameter. This
cross-validation process estimates the accuracy not of a single ma-
chine learned classifier but of the entire process of selecting the fea-
ture extraction algorithm and regularization parameter value and
training the linear SVM classifier.
2.7. Feature extraction preliminaries – cluster growing algorithm

The ICA-Clust-FE and GLM-Clust-FE feature extraction algorithms
each identify significant clusters in statistical parametric maps (details
provided below). Each uses the following automated region-growing al-
gorithm to identify clusters: Given a 3D statistical parametric map, (t-
map generated by comparing patients vs. controls in terms of ICA
maps values or GLMbetaweight values), the cluster-growing algorithm
grows a cluster around each positive or negative statistical peak (local
extremum) in the map. Specifically, it uses each peak voxel as a seed
of the cluster, and then adds neighboring, statistically significant voxels
to the growing cluster one-at-a-time, until the algorithm encounters ei-
ther non-significant neighbor voxels or significant voxels that have al-
ready been added to another growing cluster. If two statistical peaks
are too close together (within 10 mm of each other), the less-
significant peak is not used as a cluster seed. This prevents large “hills”
of significant voxels that happen to have two or more peaks that are
close together from being divided into multiple smaller clusters.

2.8. Independent components analysis (ICA) feature extraction – ICA-
Whole-FE, ICA-Clust-FE

Our ICA feature extraction algorithms, ICA-Whole-FE and ICA-Clust-
FE, are both based on the ICA procedure of Erhardt et al. (2011). Briefly,
15 ICA “connectivity maps” are computed. ICA-Whole-FE simply com-
bines a given participant's ICA map values into one long feature vector
for that participant. ICA-Clust-FE extracts significant voxel clusters by
comparing patients vs. controls for each of the 15 ICA maps. Note that
ICA-Whole-FE does not use the participant labels (patient or control),
whereas ICA-Clust-FE does use the labels. We applied ICA-Whole-FE
or ICA-Clust-FE to resting-state or task-based fMRI data separately. De-
tails of the algorithms are provided in Appendix A.

2.9. Pair-wise correlation feature extraction – PairCor-FE

The Harvard-Oxford atlas includes 26 prefrontal regions involved in
executive control and/or emotion regulation (see Table 2); Previous lit-
erature suggest that changes in these regions have been associatedwith
major depressive disorder (Fitzgerald et al., 2008). PairCor-FE defined
each participant's feature vector as the 325 pair-wise correlations
among those regions' time courses, and al computed these correlation
features separately for either the resting-state or task-based fMRI data,
as follows. All fMRI data runs for the participant were concatenated
along the time axis (two runs for resting-state data, four runs for task-
based data). The mean fMRI activation time course was computed for
each region (mean across voxels in the region). The Pearson correlation
coefficient was computed for each pair of time courses among all 325



Table 2
Region information for pair-wise correlation features.

# Name X Y Z Volume

1 Left Frontal Pole −26 54 8 55,697
2 Right Frontal Pole 25 53 9 64,809
3 Left Insular Cortex −37 2 1 10,648
4 Right Insular Cortex 36 4 1 10,801
5 Left Superior Frontal Gyrus −15 20 57 23,412
6 Right Superior Frontal Gyrus 14 19 58 21,309
7 Left Middle Frontal Gyrus −39 19 43 23,430
8 Right Middle Frontal Gyrus 38 20 44 22,069
9 Left Inferior Frontal Gyrus pars triangularis −51 29 10 5197
10 Right Inferior Frontal Gyrus pars triangularis 51 29 9 4306
11 Left Inferior Frontal Gyrus pars opercularis −52 16 16 6170
12 Right Inferior Frontal Gyrus pars opercularis 51 16 17 5504
13 Left Precentral Gyrus −34 −11 50 35,587
14 Right Precentral Gyrus 34 −10 51 34,191
49 Left Frontal Medial Cortex −6 44 −17 3641
50 Right Frontal Medial Cortex 4 44 −18 4045
53 Left Subcallosal Cortex −6 21 −14 4434
54 Right Subcallosal Cortex 4 22 −14 4423
55 Left Paracingulate Gyrus −7 38 22 11,677
56 Right Paracingulate Gyrus 6 38 23 11,322
57 Left Cingulate Gyrus anterior division −5 19 25 10,022
58 Right Cingulate Gyrus anterior division 4 20 25 10,649
65 Left Frontal Orbital Cortex −31 25 −16 13,538
66 Right Frontal Orbital Cortex 28 24 −15 11,619
81 Left Frontal Operculum Cortex −41 19 6 2819
82 Right Frontal Operculum Cortex 40 20 6 2494

Regions used in pair-wise correlation feature extraction. Regions are from the Harvard-
Oxford atlas. # denotes region numbering from the atlas. X, Y, Z denote region centroid co-
ordinates in mm. Volume is in mm^3.
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pairs of different regions; this 325-tuple of correlation values was the
feature vector for the participant, which were used by the classifier;
see the Machine learning algorithm – LearnFMRI section below.
2.10. GLM analysis feature extraction for task-based data –GLM-Whole-FE,
GLM-Clust-FE

The GLM-Whole-FE and GLM-Clust-FE feature extraction algorithms
were used with emotional-face task fMRI data only. Both involve the
standard General Linear Model (GLM) analysis, based on the following
statistical contrasts:

• localizer contrast (sum of all five trial types),
• emotional faces - geometric stimuli,
• positive - negative emotional faces (happy - other emotional faces),
and

• negative faces - geometric stimuli (where negative faces included
angry, fearful, and sad faces).

GLM-Whole-FE combines the four (first-level) contrast maps for a
given participant into one long feature vector for that participant.
GLM-Clust-FE compares contrast maps in terms of patients vs. controls
and extracts significant clusters for each map. See Appendix B for
details.
2.11. Base-learner: linear SVM

Our LearnFMRI learning algorithm uses the linear support
vector machine (SVM) learning algorithm to create trained linear SVM
classifiers. We used the LIBSVM implementation of the linear SVM
learning algorithm and classifier, along with in-house MATLAB code
for all data manipulation, cross-validation book-keeping, and accuracy
computations.
2.12. Machine learning algorithm – LearnFMRI

Given a labeled training dataset, LearnFMRI will produce a classifier
that can accurately classify novel participants. As shown in Fig. 1,
LearnFMRI first selects one feature extraction algorithm (which is one
of ICA-Whole-FE, ICA-Clust-FE, PairCor-FE, GLM-Whole-FE or GLM-
Clust-FE) as well as the linear SVM regularization parameter
C∈{0.1,0.3,1.0,3.0,10.0}. LearnFMRI uses an internal cross-validation
to find the appropriate feature selection and regularization parameter;
see Fig. 1. This involves trying each specific feature selector and regular-
ization parameter on a portion of the training data and evaluating the
performance on the remaining subset. (This is repeated four times;
see “Illustration” section below.) After finding the best choice of feature
selector and regularization parameter, LearnFMRI then uses these “set-
tings” to train the classifier, using all of the training data. It then returns
that resulting trained classifier.

2.13. Classifier performance

For each dataset S, our goal is a single classifier (SVM*) that can ac-
curately diagnose novel participants – that is, participants who were
not in the training set. To estimate the expected out-of-sample (gener-
alization) accuracy of this classifier SVM* – the result of running
LearnFMRI on all of the training data from a given dataset S – we used
five-fold cross-validation; see Fig. 2. For each of the five folds, approxi-
mately one fifth of the participants was held out as a test set, with the
remaining four-fifths comprising the training set. Test and training
sets were balanced as closely as possible for proportions of patients ver-
sus controls. Five-fold cross-validation was repeated ten times with dif-
ferent random assignments of participants to the five folds. Note that
this cross-validation ran the entire LearnFMRI learning algorithm for
each fold, which in turn used internal cross-validation steps inside it –
i.e. nested cross-validation inside the outer five-fold cross validation.
The use of nested cross-validation was important for protecting against
overfitting in the selection of the feature extraction algorithm, cluster
selection from statistical testing (patients vs. controls), and choice of
regularization parameter for the linear SVM base-learner.

We quantified the performance of these classifiers using multiple
measures: accuracy, sensitivity, specificity, balanced accuracy, positive
predictive value, and negative predictive value (all measures were
based on cross-validation). As described above, there were six analyses:
mild-moderate MDD (respectively, severe MDD or very severe MDD)
patients vs. controls, using either resting-state or task-based fMRI
data. For each of these analyses, each of the participants used in that
analysis was present in the (outer) test set in precisely one iteration of
outer cross-validation, on each of the ten repetitions (see above).
Thus, each participant's data underwent ten classification attempts.
For each participant, we computed the proportion of correct classifica-
tion attempts. Accuracy was computed as the mean proportion of cor-
rect classification attempts across all participants. Sensitivity was
computed as the mean proportion of correct classification attempts for
patients (true positives), and specificitywas computed as themeanpro-
portion of correct classification attempts for controls (true negatives).
Balanced accuracy was computed as the mean of sensitivity and speci-
ficity. Positive predictive value (and negative predictive value, respec-
tively) was computed as the proportion correct among positive
(respectively, negative) predictions.

For each of the six analyses, mean accuracy values were compared
against chance accuracy using one-tailed bootstrap statistical tests on
participants' proportion of correct classification attempts values. Chance
accuracywas derived from randomly guessing the participant class (pa-
tient/control) weighted by the relative proportions of patients and con-
trols in the given analysis. Specifically, let r = proportion of patients =
#patients / (#patients + #controls), which is in the range [0,1]. Then
randomaccuracy= r2+ (1− r)2, which is in the range [0,1]. Chance ac-
curacy values ranged from 50 to 53% depending on the numbers of
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Fig. 2. Illustration of the five-fold cross-validation procedure for evaluating the performance of running LearnFMRI on the labeled data S. This process first runs LearnFMRI on all of S, to
produce the classifier SVM* – see left path. It then does 5 timesmore work, solely to estimate the actual performance of SVM* – i.e. howwell SVM* will perform on unseen data, from the
underlying distribution D.We denote the accuracy of SVM* on the underlying distribution D as accD(SVM*). This process divides S into 5 partitions. The procedure then runs LearnFMRI on
4/5 of the data (S1) to produce a classifier SVM1. It then evaluates this SVM1 on the remaining data (S − 1) – i.e. on the data that was not used to train SVM1. This produces the accuracy
number accS1(SVM1). It does this 4more times, on 4 other partitions [S− i, Si] of S, to produce 4 other estimates.We then use the average of these five {accSi(SVMi)} values as our estimate
of SVM*'s accuracy. Notice each of 5 “cross-validation” steps also requires running LearnFMRI, which note (from Fig. 1) has its own internal (4 fold) cross-validation steps, to find the best
feature extractor and base learner. Hence, this involves “in fold” feature selection, etc.
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patients and controls used in each analysis. The alpha-value (false pos-
itive rate under the null hypothesis of chance accuracy) was set a 0.05.
Multiple comparison correction was performed using the Bonferroni
method (i.e. multiplying the individual p-values by the number of
tests; 6 in this case).

2.14. Illustration of the overall learning + evaluation process

We provide a detailed illustration, for a given run of five-fold cross-
validation (i.e. set of all five iterations of five-fold cross-validation). See
Fig. 2. Here, we first divided the participants into five folds, approxi-
mately balanced for proportion of patients and controls. On the i-th iter-
ation of outer cross-validation, we held out the i-th fold as the test set
(i.e. outer test set). All participants not in fold i were used as the training
set for that iteration (i.e. outer training set input to the learning algo-
rithm LearnFMRI). LearnFMRI then computed accuracy scores for each
combination of feature extraction algorithm and regularization param-
eter. To do so, the learning algorithm employed a four-fold cross valida-
tion (inner cross-validation) analysis for each possible combination. For
a given combination, on the j-th iteration of inner cross-validation, we
held out the j-th fold as the inner test set. All participants not in folds j
or i were used as the inner training set for that inner iteration. Statistical
comparisons between patients and controls during feature extraction
were performed only on participants from the inner training set. The
Table 3
Classification performance.

MDD patient
subgroup

Accuracy Chance
accuracy

p-Value
(uncorrected)

p-Value
(corrected)

Sens

Resting state fMRI data
Mild-moderate 58% 53% 0.23 8%
Severe 52% 50% 0.36 44%
Very severe 66% 51% 0.002 0.012 59%

Task-based fMRI data
Mild-moderate 55% 53% 0.35 10%
Severe 45% 50% 0.91 44%
Very severe 51% 51% 0.49 21%

Results for two-class classification of patients vs. controls for three patient groups using two di
derived from guessing the class (see main text).
resulting statistical differences were used to extract features for the
inner test set participants without using those participants' labels (pa-
tient versus control). The classifier was trained on the inner training
participants (those not in either fold j or i) and tested on the inner
test participants (in fold j). Accuracy results were averaged over the
four inner cross-validation folds. In this way, (inner) cross-validated ac-
curacy scores were computed for each combination of feature extrac-
tion and regularization parameter. LearnFMRI then chose the best
combination, defined as that combination yielding the highest accuracy
(proportion of correctly classified participants) over the four-fold inner
cross-validation tests. That best combination specified the feature ex-
traction algorithm and regularization parameter, which were then ap-
plied to all the participants in the outer training set (i.e. all
participants not in fold i), resulting in a trained linear SVM classifier.
The choice of feature extraction method and the trained classifier are
the output of the learning algorithm. Their performancewas then tested
on participants in the outer test set (i.e. participants in fold i).

2.15. Visualization of machine learning analysis

To gain insight into the automated diagnosis process, we analyzed
the classifier weights for various fMRI-based features. The linear SVM
learning algorithm produces a “weight” for each feature, which recall
corresponds to a value extracted from one voxel or region or the
itivity Specificity Balanced
accuracy

Positive predictive
value

Negative predictive
value

89% 49% 32% 61%
59% 52% 51% 53%
72% 66% 62% 69%

84% 47% 28% 60%
45% 45% 43% 46%
56% 48% 40% 54%

fferent fMRI datasets. p-Values are for bootstrap tests of accuracy against chance accuracy



Fig. 3. Regions used to classify participants as having very-severe MDD or being healthy controls are shown in colour, superimposed on one participant's anatomical scan. Neurological
convention is used (left side of brain on left of image). Slice z-coordinate in mm in MNI atlas space given in upper left. Yellow regions are less-heavily weighted, while red regions are
more-heavily weights. Weights were derived from applying the learning algorithm LearnFMRI to all patients in the very-severe MDD group as well as all healthy controls. LearnFMRI
selected the pair-wise correlation feature extraction algorithm and the logistic classifier. The pair-wise correlation feature extraction algorithm computed the correlations among 325
pairs of regions, from the list of 26 regions in Table 2. The trained logistic classifier assigned a weight to each correlation feature. Note that a given region thus participated in 25
different features. The colours in the figure denote the total absolute weight each region was assigned. That is, the colour of a given region was the sum of the absolute values of the
weights for the 25 pairs that included that given region.
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correlations between two regions (see descriptions of feature extraction
algorithms above). The weights for this classifier are presented in the
Discriminating brain regions section of the Results.
To visualize which brain regions a classifier used, we created a
weight map by weighting each relevant region by the absolute value
of its appropriate weight value. We did this only for the analysis of



Table 4
Learned weights for pair-wise correlation features.

Region Left
Frontal
Pole

Right
Frontal
Pole

Left
Insular
Cortex

Right
Insular
Cortex

Left
Superior
Frontal
Gyrus

Right
Superior
Frontal
Gyrus

Left
Middle
Frontal
Gyrus

Right
Middle
Frontal
Gyrus

Left
Inferior
Frontal
Gyrus pars
triangularis

Right
Inferior
Frontal
Gyrus pars
triangularis

Left
Inferior
Frontal
Gyrus pars
opercularis

Right
Inferior
Frontal
Gyrus pars
opercularis

Left
Precentral
Gyrus

Left Frontal Pole
Right Frontal Pole 1.63
Left Insular Cortex 1.49 2.42
Right Insular Cortex 1.73 1.91 1.06
Left Superior Frontal Gyrus 1.16 2.02 −1.53 −1.34
Right Superior Frontal Gyrus 0.74 2.07 −0.9 −0.36 −0.79
Left Middle Frontal Gyrus 1.83 2.2 −1.55 −1.1 −0.28 −0.11
Right Middle Frontal Gyrus 2 1.52 0.69 0.24 −0.7 0.69 −0.08
Left Inferior Frontal Gyrus pars triangularis 0.52 2.56 −0.29 0.4 −0.01 −1.55 −1.86 −0.9
Right Inferior Frontal Gyrus pars triangularis −0.22 0.15 1.18 1.33 −1.82 −2.5 −2.5 −3.3 0.61
Left Inferior Frontal Gyrus pars opercularis 0.25 1.99 −1.74 −1.2 −0.3 −1.81 −2.2 −1.46 0.93 0.3
Right Inferior Frontal Gyrus pars opercularis 2.5 2.33 1.78 1.62 1.2 1.47 −0.52 −0.13 2.47 0.16 −0.44
Left Precentral Gyrus 2.29 3.52 0.02 0.17 0.65 0.77 0.99 2.13 −0.41 0.51 −0.66 1.23
Right Precentral Gyrus 3.35 3.15 1.43 1.23 0.52 0.81 1.5 1.5 1.36 0.06 0.91 0.36 0.74
Left Frontal Medial Cortex −0.57 −1.51 −0.97 −2.25 −1 −0.22 −0.27 −0.48 −2.93 −1.45 −1.94 −2.1 0.04
Right Frontal Medial Cortex 0.87 1.13 −1 −2.16 −1.05 0.08 0.08 0.29 −1.97 −1.13 −2.01 −1.47 0.73
Left Subcallosal Cortex 2.4 1.62 −0.68 −4.05 0.48 0.98 1.92 1.15 −1.67 −2.26 −0.7 −1.13 1.82
Right Subcallosal Cortex 3.49 3.26 −0.03 −2.86 1.09 1.69 2 2.32 −1.39 −1.74 −1.02 −0.74 2.5
Left Paracingulate Gyrus 2.3 1.58 −0.74 0.15 −0.11 −0.06 0.33 1.22 −0.28 −0.7 −1 1.86 1.9
Right Paracingulate Gyrus 3.31 1.99 −0.16 0.87 0.02 0.53 0.63 1.59 −0.15 −0.71 −1.14 1.83 2.17
Left Cingulate Gyrus anterior division 0.89 1.46 −1.67 0.84 −0.51 −0.52 −0.86 1.21 −1.13 0.63 −2.21 2.22 0.9
Right Cingulate Gyrus anterior division 2.27 2.36 −1.43 1.07 −0.29 −0.21 −0.89 1.02 −0.31 0.41 −1.64 2.26 1.04
Left Frontal Orbital Cortex 2.74 3.54 −1.3 −1.54 −0.51 −0.22 −0.94 0.64 −0.83 −0.36 −1.55 0.98 0.56
Right Frontal Orbital Cortex 1.39 0.35 −0.32 −0.64 −2.35 −1.75 −3.04 −2.35 −1.4 −2.33 −1.92 −0.55 −0.75
Left Frontal Operculum Cortex 1.58 3.71 −1.18 1.07 −0.57 −0.25 −1.27 1.55 1.24 3.17 −0.59 2.75 0.94
Right Frontal Operculum Cortex 1.43 2.38 0.43 0.43 −0.84 0.07 −1.57 −0.54 1.98 0.63 −1.15 0.93 0.54

Learned weights from the trained logistic classifier for 325 pair-wise correlation features from analysis of very severe MDD patients vs. healthy controls using resting state fMRI data. A weight is shown for each pair of non-identical regions, each of
which contributed one element (one correlation value) to the feature vector. Offsetweightwas 6.18. Patients and controlswere labeled+1and−1, respectively.Weightswith absolute value ≥0.8 are highlighted in bold font. Notes that interpretation
of learned classified weights, as shown here, must be done with caution. See Haufe et al. (2014) for discussion.
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Table 4 (continued)

Region Right
Precentral
Gyrus

Left
Frontal
Medial
Cortex

Right
Frontal
Medial
Cortex

Left
Subcallosal
Cortex

Right
Subcallosal
Cortex

Left
Paracingulate
Gyrus

Right
Paracingulate
Gyrus

Left
Cingulate
Gyrus
anterior
division

Right Cingulate
Gyrus
anterior
division

Left
Frontal
Orbital
Cortex

Right
Frontal
Orbital
Cortex

Left
Frontal
Operculum
Cortex

Right
Frontal
Operculum
Cortex

Left Frontal Pole
Right Frontal Pole
Left Insular Cortex
Right Insular Cortex
Left Superior Frontal Gyrus
Right Superior Frontal Gyrus
Left Middle Frontal Gyrus
Right Middle Frontal Gyrus
Left Inferior Frontal Gyrus pars triangularis
Right Inferior Frontal Gyrus pars triangularis
Left Inferior Frontal Gyrus pars opercularis
Right Inferior Frontal Gyrus pars opercularis
Left Precentral Gyrus
Right Precentral Gyrus
Left Frontal Medial Cortex 0
Right Frontal Medial Cortex 0.69 −0.71
Left Subcallosal Cortex 1.38 1.27 −0.67
Right Subcallosal Cortex 1.93 2 −0.15 −1.06
Left Paracingulate Gyrus 1.97 −2.41 −2.96 −0.57 −0.04
Right Paracingulate Gyrus 1.85 −2.95 −2.99 −0.29 0.14 −0.28
Left Cingulate Gyrus anterior division 1.59 −4.4 −3.91 −1.9 −1.67 −0.91 −0.72
Right Cingulate Gyrus anterior division 1.31 −4.26 −3.62 −1.62 −1.58 −1.25 −0.91 0.33
Left Frontal Orbital Cortex 1.49 1.03 0.09 −2.62 −1.19 −0.59 0.01 −2.21 −2.45
Right Frontal Orbital Cortex −0.44 −2.88 −2.57 −3.38 −1.92 −1.73 −1.25 −1.68 −2.22 1.28
Left Frontal Operculum Cortex 2.77 −1.36 −0.44 −1.04 −1.12 −1.08 −0.34 −0.8 −0.64 −2.16 −0.41
Right Frontal Operculum Cortex 0.61 −2.31 −2.08 −2.13 −2.5 0.3 0.47 1.37 1.01 −0.74 −1.77 2.48
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patients with very-severe MDD vs. controls using resting-state fMRI
data, as this was the only analysis that performed significantly above
chance.

3. Results

3.1. Demographics

There were no significant differences between healthy controls and
MDD patients in sex or age (Table 1). There were no significant differ-
ences among the three patient groups (mild-moderate MDD, severe
MDD, and very-severe MDD) in terms of sex, age, age of MDD onset, ill-
ness duration, or duration of currentMDD episode (Table 1). As expect-
ed, there were group differences in HRSD scores between patients and
controls and among the three patient groups. There were also signifi-
cant differences in MADRS scores, HAM-A scores, CGI scores among
the three patient groups, which is consistent with severity categories
defined by HRSD scores.

3.2. Classification results

Based on ten repetitions of five-fold cross-validation, classification
using resting-state fMRI data comparingMDD patients with very severe
depression vs. controls achieved a sensitivity of 59%, specificity of 72%
and accuracy of 66% (Table 3). This accuracy value was significantly
above chance (p= 0.012, Bonferroni corrected for the 6 tests). Classifi-
cation analyses using resting-state fMRI data with patients in the mild-
moderate and severe depression groups did not achieve accuracies sig-
nificantly above chance (Table 3). Interestingly, accuracieswere not sig-
nificantly above chance for classification using the emotional face task
fMRI data for any of the three patient groups (Table 3).

3.3. Discriminating brain regions

We applied LearnFMRI to resting-state fMRI data from all patients
with very-severe MDD and healthy controls to derive one model. In
this case, the learning algorithm selected pair-wise correlation feature
extraction and the SVM regularization parameter value of C = 0.1. The
regions considered for pair-wise correlation features come from the
Harvard-Oxford atlas and are listed in Table 2. Fig. 3 shows these re-
gions, colour-coded based on the learned classifier weights and
superimposed on one participant's anatomical scan. Table 4 shows the
learned weights from the trained linear SVM classifier for all 325 pair-
wise correlation features from the analysis of very severe depression
vs. healthy controls using resting-state fMRI data. (There are subtleties
in interpreting weight values from trained classifiers. See Haufe et al.
(2014) for discussion.

4. Discussion

In this study, we evaluated the performance of two-class automated
classification (healthy controls vs. patients) for three groups of patients
with MDD: mild-moderate MDD, severe MDD, and very-severe MDD.
The main finding is that using pattern analysis of resting-state fMRI ac-
tivity, the accuracy of learned classifier was significantly better than
chance at classifying very severe depression versus healthy controls.
However, the performance of the classifiers for distinguishing healthy
versus mild-moderate depression and healthy versus severe depres-
sion, were only at the chance level. Another important finding is that
fMRI activation patterns evoked by the emotional face processing task
failed to show significant classification performance, for any of the
MDD severity groups. Given the small sample size, our results should
be considered as preliminary.

The finding of higher classification accuracy for very severe depres-
sion is consistent with previous machine learning studies that showed
significant correlations between prediction scores and symptom
severity scores using structural and functional data. The classification
accuracy of 66% for very severe depression is comparable to that of pre-
vious studies using working memory neural correlates and structural
data (Costafreda et al., 2009; Fu et al., 2008). However, contrary to our
results, those previous studies, using similar supervised SVM learners,
could significantly distinguish controls fromMDDwithmoderate sever-
ity (mean HRSD: 21–22) (Costafreda et al., 2009; Fu et al., 2008;
Marquand et al., 2008). The inconsistencies in results could be partly ex-
plained by variations in methodology andMRI data, as we used resting-
state fMRI data whereas those previous studies used structural MRI and
emotional recognition task-dependent fMRI data. Given the lower accu-
racies for the classification of less severe depression groups, our results
suggest that less severe forms of MDD may be heterogeneous and is
likely to capture mild forms of depressive states such as dysthymia
and anxiety or personality weighted conditions. As less severe forms
of depression may be associated with mild brain abnormalities, it
might be harder for the learning algorithm to find a meaningful bound-
ary between these groups and controls in a small dataset. Wemay need
larger sample to improve the power and enable the classifiers to distin-
guish these groups from healthy controls. Considering that the need for
machine learning methods in the diagnosis of milder depression would
be greater in clinical practice than that of more severe form of depres-
sion, the poor accuracy in the classification of milder depression byma-
chine learningmethods shown in this studymay limit its use as a tool in
the early detection of milder or subthreshold depression. However, re-
sults based on small sample size precludes any conclusions on clinical
utility. In addition, although our current classifier yielded significant
classification for very severe depression, the clinical utility of this cur-
rent system may be limited by its modest specificity (72%). Again, this
needs to be tested in larger and independent samples.

The brain regions that contributed to the classification of very severe
depression included the various prefrontal and limbic regions listed in
Table 2. These regions have been reported to have abnormal structure
and function in group-level analyses between patients with MDD and
healthy control (Mayberg, 2003; Drevets et al., 2008; Fitzgerald et al.,
2008).Moreover, the resting-state functional connectivity between pre-
frontal, insula and anterior cingulate regions was found to be positively
correlated with severity of depression in univariate analysis (Avery
et al., 2014; Horn et al., 2010), which is consistent with our findings,
and suggests the greater contribution of these networks in the classifi-
cation of very severe depression from healthy controls.

Although previous fMRI studies using univariate analysis showed
significant correlation between severity of depressive symptoms and al-
teration in regional brain activity due to emotional tasks or stimuli, our
results failed to show significant accuracy in distinguishing healthy con-
trols from depression patients, grouped at three levels of severity. Of
course, this may be due to the different objectives, as univariate correla-
tions (at the class level) are neither sufficient nor necessary for effective
classification performance. In addition, this behavior could be due to
low reliability of the task or poor variance of task-related activation be-
tween the three depression groups and the control group. Alternatively,
this may be due to the small sample sizes here, coupled with the com-
plexity of the emotional task. Although this is the first study to use an
emotional-face matching task in fMRI machine learning analysis, sever-
al studies used this paradigm to elicit responses in neural regions and
circuits implicated in emotional processing (Frodl et al., 2011; Frodl
et al., 2009). Previously published fMRI machine learning studies (Fu
et al., 2008; Nouretdinov et al., 2011) used an emotional face recogni-
tion task that is more cognitively/perceptually demanding than the
emotional facematching task used here. In conclusion, ourfindings sug-
gest that the pattern of resting-state fMRI BOLD signals produced better
classification of severeMDD than the fMRI patterns evoked by the emo-
tional face matching task.

The reasons for the better performance of the classifier using resting-
state data than task related data remains speculative and could be relat-
ed to the abnormalities of the default mode network (DMN) in MDD.
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DMN refers to spontaneously organized brain activities from a network
of brain regions including anterior cingulate cortex, medial prefrontal
cortex, posterior cingulate cortex, precuneus, and inferior parietal lob-
ule (Raichle et al., 2001), which is activated during rest and deactivated
during active tasks (Raichle et al., 2001). Previous studies of MDD
showed increased resting-state functional connectivity of the DMN
areas especially in anterior cingulate and medial prefrontal regions
(Sheline et al., 2010) and decreased functional connectivity in bilateral
prefrontal areas of DMN during emotional processing tasks (Shi et al.,
2015). Furthermore, higher levels of rumination about depressive
symptoms was found to be correlated with higher DMN dominance
(Hamilton et al., 2011) and severe depressive symptoms (Kuehner
andWeber, 1999). It is therefore possible that the increased levels of ru-
mination and associated increased DMN activity during the resting
stagemay have contributed for the greater performance of the classifier
for very severe depression,whereas the lack of activation in DMNdue to
reduction in rumination during the engagementwith the taskmay part-
ly explain the poor performance of the classifier with task related data.

4.1. Methodological issues

As mentioned above, a major limitation of the study is the small
sample size, which might have influenced our results. Although previ-
ous machine learning studies in MDD achieved higher accuracies
using small datasets (Fu et al., 2008; Marquand et al., 2008;
Nouretdinov et al., 2011), yet larger studies in two independent samples
are needed to develop and test predictive models that are sufficiently
stable to use in clinical practice. Recent machine learning studies using
structural MRI have recommended participant groups with 130 partici-
pants or more per group to learn an effective classification for schizo-
phrenia versus healthy controls (Nieuwenhuis et al., 2012). However,
there are no clear guidelines on required sample sizes for machine
learning studies using resting and task-related fMRI data in patients
with MDD. Additionally, owing to our unbalanced sample between
MDD (N = 45) and healthy controls (N = 19), we did not examine
the accuracy of classification of MDD as a single group vs. healthy con-
trols. Another major methodological issue is the categorization of
MDD severity groups based on HDRS scores. As mentioned previously,
there is no consensus on the validity of cutoffs on HDRS for defining
the severity categories. The American Psychiatric Association (APA)
Handbook of Psychiatric Measures recommended the following thresh-
olds to define grades of severity on HRSD:mild tomoderate ≤18, severe
19–22, very severe ≥23 (Rush et al., 2008). In contrast, others have used
20 as the cutoff to distinguish severe depression frommild to moderate
(DeRubeis et al., 1999) and 24 or 25 as the cutoff to distinguish severe
from very-severe depression (Knesevich et al., 1977; Montgomery and
Lecrubier, 1999). As there is very limited empirical research in this
area, we used other severity measures such as MADRS and CGI scores
to corroborate the severity categories defined by HDRS (see Table 1).
A third potential issue is that we used linear SVMclassifiers.We focused
on this algorithm because it offers the advantage that one can examine
the learned weights and attempt to interpret how the classifier is using
the input features to produce a classification prediction. It is possible
that other machine learning classifiers such as the non-linear radial
basis function (RBF) SVMwill yield better accuracy in this context. Un-
fortunately, it is difficult to provide a simple, straightforward interpreta-
tion of how algorithms such as RBF SVM produce predictions for a given
individual. This difficulty of interpretation presents a barrier to deploy-
ment in the clinic, asmedical practitioners place a high degree of impor-
tance on being able to interpret and evaluate the predictions of any
automated clinical decision-making system.

5. Conclusions

Resting-state brain activity provides a statistically significant classi-
fication of healthy controls vs. patients with very severe MDD (HRSD
scores ≥24) but not for less severe depression. Moreover, even the clas-
sification accuracy that our approach achieved for very severe MDD is
not sufficient from a clinical perspective. The negative results of our
study help to focus the future efforts of our community, on considering
larger sample sizes. We anticipate this may lead to better results that
may provide clinically meaningful classification results for MDD based
on severity.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2016.07.012.
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