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SUMMARY

SIRT1 is a NAD+-dependent protein deacetylase that
governs many physiological pathways, including
circadian rhythm in peripheral tissues. Here, we
show thatSIRT1 in thebraingovernscentral circadian
control by activating the transcription of the two ma-
jor circadian regulators, BMAL1 and CLOCK. This
activation comprises an amplifying circadian loop
involving SIRT1, PGC-1a, and Nampt. In aged wild-
type mice, SIRT1 levels in the suprachiasmatic
nucleus are decreased, as are those of BMAL1 and
PER2, giving rise to a longer intrinsic period, a more
disrupted activity pattern, and an inability to adapt
to changes in the light entrainment schedule. Young
mice lacking brain SIRT1 phenocopy these aging-
dependent circadian changes, whereas mice that
overexpress SIRT1 in the brain are protected from
the effects of aging. Our findings indicate that SIRT1
activates the central pacemaker to maintain robust
circadian control in young animals, and a decay in
this activity may play an important role in aging.

INTRODUCTION

In response to the daily 24 hr light-dark (LD) cycle, living organ-

isms have developed an evolutionarily conserved program that

allows appropriate physiology and behavior to be coordinated

with the environment. To achieve circadian regulation, genes

exist in cells for the generation of an oscillating transcriptional

network that coordinates the expression of pathways involved

in metabolism and physiology (Asher and Schibler, 2011). In

mammals, systemic circadian regulation is accomplished

through the central oscillator in the suprachiasmatic nucleus

(SCN) of the anterior hypothalamus. The SCN responds to LD cy-

cles and coordinates rhythms of all aspects of circadian control,

including locomotor activity, hormone secretion, body tempera-

ture maintenance, and feeding. Peripheral tissues, such as the

liver, use the same circadian oscillatory machinery. SCN-driven

processes are important for aligning peripheral tissues accord-

ing to phase, but these tissues can also respond to feeding-fast-

ing cycles (Welsh et al., 2010). Importantly, SCN implantation is
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able to restore circadian rhythms in SCN-lesioned animals or in

nonrhythmic genetic models (Lehman et al., 1987; Ralph et al.,

1990; Sujino et al., 2003). The restored period is determined by

the genotype of the SCN donor, not the SCN-lesioned host,

underscoring the dominating role of the SCN in circadian physi-

ology (Lehman et al., 1987; Ralph et al., 1990; Sujino et al., 2003).

The link of circadian genes and circadian regulation to health

has been recognized in many disease-associated fields,

including sleep disorders, diabetes, and cancer. A number of

pathologies can be triggered by circadian disruptions via genetic

or environmental perturbations (Sahar and Sassone-Corsi, 2009;

Takahashi et al., 2008), suggesting that proper maintenance of

circadian control is crucial to maintaining robust health.

The molecular mechanism for oscillation in both SCN and pe-

ripheral tissues is generated by a transcriptional autoregulatory

feedback loop (Bass and Takahashi, 2010; Dibner et al., 2010).

The network involves the core transcriptional activators

BMAL1 and CLOCK, which form a heterodimer to positively

regulate the expression of target genes Cryptochrome (Cry1

and Cry2) and Period (Per1, Per2, and Per3). When PER and

CRY protein accumulation reaches critical levels, they translo-

cate into the nucleus as dimers and repress the transcription ac-

tivity of CLOCK-BMAL1. Orphan nuclear receptors REV-ERBa

and REV-ERBb and RORa proteins are also targets of CLOCK-

BMAL1 and contribute to the transcriptional control of the

Bmal1 and Clock genes (Preitner et al., 2002; Sato et al.,

2004). REV-ERBa and REV-ERBb act coordinately and, recently,

were shown to be crucial in sustaining circadian behavior and

metabolism (Bugge et al., 2012; Cho et al., 2012). Posttransla-

tional events also regulate the molecular clock; i.e., the Skp1,

Cullin1, F box protein (SCF)/b-TrCP ubiquitin ligase complex tar-

gets PER and CRY proteins for degradation (Lamia et al., 2009).

These transcriptional and posttranslational events ensure the fi-

delity of the circadian cycle.

The circadian machinery has recently been linked to the SIRT1

NAD-dependent deacetylase (Asher et al., 2008; Nakahata et al.,

2008; Nakahata et al., 2009; Ramsey et al., 2009), illustrating one

way in which circadian control is coupled with metabolism.

SIRT1 is the mammalian homolog of yeast Sir2, an NAD-depen-

dent protein deacetylase that is involved in aging, stress

response, maintenance of genomic integrity, and energy meta-

bolism (Finkel et al., 2009). SIRT1 mediates the salutary meta-

bolic effects of caloric restriction, and its activity is critical in

the maintenance of health (Guarente, 2012). Besides histones,
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SIRT1 deacetylates a number of transcriptional regulatory pro-

teins that govern major arms of metabolism; i.e., FOXOs, LXR,

PPARg coactivator 1a (PGC-1a), HIF-1a, and NF-kB. SIRT1 is

also able to mitigate neurodegenerative diseases in mouse

model systems, such as Alzheimer’s, Huntington’s, and Parkin-

son’s disease (Donmez et al., 2012; Donmez et al., 2010; Jeong

et al., 2012; Jiang et al., 2012), andwas recently demonstrated to

couple diet and metabolism with mood and behavior (Libert

et al., 2011). SIRT1 can also regulate POMC and NF-Y neurons

in the hypothalamus for the regulation of feeding behavior (Ram-

adori et al., 2011; Ramadori et al., 2010; Satoh et al., 2010). Thus,

its effects on the brain are pervasive.

In peripheral tissues such as the liver, it has been shown that

SIRT1 can influence circadian rhythm in a cell-autonomous

fashion by multiple mechanisms. It can deacetylate BMAL1 to

affect its activity (Nakahata et al., 2008) or PER2 to alter its sta-

bility (Asher et al., 2008). Interestingly, one of the metabolic

output targets of CLOCK-BMAL1 is Nampt, an enzyme required

for the biosynthesis of the SIRT1-essential cofactor NAD+, which

ensures the rhythmic accumulation of NAD+ and SIRT1 activity

(Nakahata et al., 2009; Ramsey et al., 2009). Given that all studies

on SIRT1 regulation of circadian rhythm to date have been con-

ducted in these cell-autonomous systems, we were interested in

investigating a role of SIRT1 in central circadian control of phys-

iology and behavior. Here, we show that altering SIRT1 levels in

the brain can exert moderate changes in the intrinsic circadian

periods of mice. Moreover, SIRT1 appears to be at the center

of aging-dependent decline in central circadian function. Our

findings trace a circadian regulated loop in the brain involving

Nampt, SIRT1, and PGC-1a and may lead to strategies for the

treatment of aging-dependent decline in circadian function.

RESULTS

Brain SIRT1 Regulates the Central Circadian Clock
We wished to test whether SIRT1 regulates the central clock in

the brain and whether it could thus alter circadian behaviors

in vivo. It is known that the suprachiasmatic nucleus (SCN) at

the anterior hypothalamus is the central circadian pacemaker in

the brains of mammals (Bass and Takahashi, 2010; Welsh

et al., 2010).Our strategy involves knocking out andoverexpress-

ing SIRT1 in the brain by primarily using Nestin-Cre, given that an

SCN-specific system is not available. Therefore, we cannot rule

out the possibility that some of the phenotypes we describe

below may have contributions from brain regions besides the

SCN. All experiments use C57BL/6, wild-type (WT), and brain-

specific SIRT1 knockout (BSKO) mice (Cohen et al., 2009) and

transgenic lines that overexpress brain SIRT1 2-fold (Sir2d) (Bor-

done et al., 2007) or 10-fold (BSTG) (Firestein et al., 2008).

Western blots of punch-out biopsies of the SCN region in the

anterior hypothalamus showed that SIRT1 protein was deleted in

BSKO and appropriately overexpressed in transgenic mice (Fig-

ure 1A). RNA in situ hybridization of the SCN also showed that

SIRT1 RNA was undetectable in SCN of BSKOmice and overex-

pressed in SCN of BSTGmice (Figure 1B). To determine whether

SIRT1 activity in the SCN was affected in genetically altered

mice, we carried out immunohistochemistry (IHC) using an anti-

body specific to acetylated Lys537 of BMAL1, a validated SIRT1
substrate in peripheral tissues (Nakahata et al., 2008). This assay

revealed increased BMAL1 acetylation in SCN of BSKO in com-

parison to WT mice and decreased acetylation in SCN of BSTG

mice (Figure 1C), even though we later show that total BMAL1

protein levels are lower in BSKO SCN and higher in BSTG SCN.

Activity assays for circadian period or actograms employed

cohorts of eight to ten littermates, which were entrained on a

12 hr LD cycle and then placed in an all dark (DD) environment

for 30 days. Their intrinsic periods were revealed by monitoring

free-running activity on running wheels, which normally would

occur during the DD cycle. Actograms show that WT mice had

intrinsic periods of 23.6 hr (Figures 1D and 1E), which was close

to the reported values for C57BL/6 mice (Valentinuzzi et al.,

1997). In contrast, BSKO mice had an elongated period or

23.9 hr. We also scored the activity of animals, as indicated by

the density of black ticks in the actograms, and found that

BSKO mice showed reduced activity (Figure 1F), also indicated

by the interrupted running pattern evident in the actograms.

Next, we tested the two SIRT1 overexpression strains and

found effects that were reciprocal to the BSKO mice for both

period and activity. The Sir2d mice had a period of 23.4 hr and

the BSTG of 23.1 hr, in comparison to 23.7 hr for WT mice (Fig-

ures 1D and 1E). In addition, the activity level of BSTG mice was

significantly higher than that of WTmice, whereas the Sir2dmice

showed a trend in that direction (Figure 1F). The fact that SIRT1

BSKO and overexpressing mice showed opposite effects on

period and activity in comparison to WT mice, along with the

dosage-dependency of the effects of two overexpressing

strains, strongly supports the notion that SIRT1 in the brain gov-

erns central circadian rhythm.

Brain SIRT1 Governs Aging-Dependent Decline in
Circadian Function
The increase in intrinsic period from 23.6 to 23.9 hr in our young

BSKOmicewas similar towhat was reported in aged (22months)

WT C57BL/6 mice animals (Valentinuzzi et al., 1997), raising the

possibility that, like yeast Sir2p (Dang et al., 2009), SIRT1 func-

tion in the brain declines in aged mice. Critically, Valentinuzzi

et al. (1997) also observed a decline in circadian function in

aged mice, as measured by the ability to adapt to an abrupt

change in the entrainment cycle. Young mice adapted to an

abrupt advancement in the light cycle within 1–2 days, whereas

agedmice took at least 8 days to adapt (Valentinuzzi et al., 1997).

Thus, we tested young (6 months) or aged (21 months) WT,

BSKO, and BSTG mice in this so-called ‘‘jet lag’’ experiment

by advancing the light entrainment abruptly by 4 hr and following

adaptation (Figure 2). Like Valentinuzzi et al. (1997), we also

found that aged WT mice took much longer to adapt than young

WT mice. Strikingly, young BSKO mice partially phenocopied

aged WT mice, doubling the time required for re-entrainment

(4.0 ± 0.6 days versus 2.1 ± 0.3 days) (Figure 2B). In 22-month-

old BSKO mice, re-entrainment times were longer, but the per-

centage difference in re-entrainment times between WT and

BSKO mice was reduced in comparison to young mice (Fig-

ure S2). More strikingly, we observed a partial rescue of the abil-

ity to adapt in 21-month-old BSTG mice in comparison to aged

WT mice (4.0 ± 0.6 days versus 7.9 ± 0.3 days) (Figure 2B).

This rescue was even evident in very old mice (30 months of
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Figure 1. Circadian Phenotypes of Brain-Specific Sirt1 Knockout and Transgenic Mice

(A) Immunoblot of SIRT1 in the anterior hypothalamus and hippocampus from the brain-specific Sirt1 knockout (BSKO), Sirt1whole-body transgenic (Sir2d), and

brain-specific Sirt1 transgenic (BSTG) mice. Tubulin was probed as a loading control.

(B) Typical in situ hybridization images and relative signal intensities for Sirt1 mRNA in the SCN. Sections were prepared from 3-month-old mice that were

sacrificed at ZT2 and ZT14 (nR 3mice per genotype). Signal intensities were quantitated and are shown relative toWTmice (R6 sections). DAPI-stained images

were shown to indicate SCN in the BSKO sections.

(C) Typical immunohistochemical staining results and relative signal intensities for acetylated BMAL1-K537 in the SCN. Sections were prepared from 3-month-old

mice that were sacrificed at ZT2 and ZT14 (n = 3 mice per genotype). Signal intensities of protein levels were quantitated and are shown relative to WT mice (six

sections).

(legend continued on next page)
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Figure 2. Aging-Induced Deficit in Re-

entrainment Is Suppressed in Brain-Specific

Sirt1 Transgenic Mice

(A) A jet lag experiment depicting actograms of 6-

month-old WT (n = 7) versus BSKO (n = 7) (left)

mice and 21-month-old WT (n = 6) versus BSTG

(n = 7) (right) mice subjected to a 4 hr phase

advance. Red lines indicate the start of the new LD

cycle.

(B) Days required for re-entrainment of animals.

(C) Total wheel revolutions per day of animals.

Values in (B) and (C) represent the mean ± SD.

**p < 0.01; t test.

See also Figures S1 and S2.
age) (Figure S1). Old BSTG mice also showed rescue of the ag-

ing-dependent decline in activity observed in WT mice, whereas

young BSKO mice again showed less activity in comparison to

young WT mice (Figure 2C). These findings indicate that a loss

of SIRT1 in the brain partially mimics the jet lag phenotype of

old mice, whereas SIRT1 overexpression rescues the defect.

These findings are both consistent with the hypothesis that a

loss of SIRT1 function in the brain is responsible for at least

part of the decline in central circadian robustness in old animals.

SIRT1 Positively Regulates Circadian Genes in the SCN
and Declines with Aging
Given that the SCN is the primary determinant of central circa-

dian control in mammals (Bass and Takahashi, 2010; Welsh

et al., 2010), we determined whether SIRT1 expression levels

in the SCN could determine expression levels of circadian ma-

chinery components. Anterior hypothalamus samples that

were enriched for SCN were collected at 4 hr time intervals.

Quantitative real time PCR analysis of punch-out SNC biopsies

revealed that all circadian-controlled genes tested, including

the core transcription factor BMAL1 and CLOCK, were signifi-

cantly downregulated in BSKO mice (Figure 3A). Conversely,
(D) Actograms showing wheel-running activity in constant darkness after 2 weeks of LD entrainment. Repres

and the littermate WT control mice (n = 10) are shown in the left panel. Sir2d (n = 6) and BSTG (n = 7) compare

Red lines indicate the starting day for constant darkness.

(E) Bar graphs of innate periods of animals during the initial 3 weeks in constant darkness.

(F) Total wheel revolutions performed per day in animals.

Values in (B), (C), (E), and (F) represent the mean ± SD. **p < 0.01; t test.
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the expression of the circadian genes

was markedly upregulated in BSTG

mice (Figure 3A). The expression of these

genes varied over Zeitgebers time (ZT)

was circadian. To confirm that the

expression differences in the real-time

PCR assays reflected expression specif-

ically in the SCN, we carried out in situ hy-

bridization of Bmal1 and Per2messenger

RNA (mRNA) in coronal brain slices

through the SCN. Deletion of Sirt1 in

BSKO mice resulted in a clear decrease

in both Bmal1 and Per2 RNA levels in

SCN, whereas SIRT1 overexpression in
BSTGmice increased the levels of both RNAs (Figure 3B). These

findings are consistent with the idea that SIRT1 is a positive regu-

lator of the Bmal1 and Clock genes in the SCN.

Next, having established a functional link between SIRT1 and

circadian gene expression, we addressed the possibility, which

was raised above, that SIRT1 function declines in aged mice.

Sections of brainwere obtainedbycryostat slicing toallow immu-

nohistochemical staining in the SCN. In SCNs of WT C57BL/6

mice that were sacrificed at ZT4, and a significant decline in

SIRT1 staining was observed in 22-month-old mice in compari-

son to 5-month-old mice (Figure 4A). Similarly, there was a large

decline in the expression of the circadian proteins BMAL1 and

PER2, which was consistent with the conclusion above that

SIRT1 is a positive regulator of the genes encoding these pro-

teins. Because there appears to be some variation in circadian

behavior among different mouse strains, we repeated this anal-

ysis in young and aged 129sv mice and made very similar obser-

vations (Figure 4B). To be certain that these expression differ-

ences were not due to a circadian phase difference between

genotypes, we repeated the experiment sampling more time

points around the circadian period (ZT2, ZT8, ZT14, and ZT20).

Again, the deletion of SIRT1 reduced BMAL1 and PER2 protein
entative results of 6-month-old male BSKO (n = 10)

d to WT control mice (n = 7) are shown on the right.

0, June 20, 2013 ª2013 Elsevier Inc. 1451
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Figure 3. SIRT1 Upregulates Circadian Gene RNA Levels in the SCN

(A) Quantitative real-time PCR analysis of CLOCK-BMAL1-controlled genes. We sacrificed 6-month-old mice for brain samples at 4 hr intervals across the

12:12 hr LD cycle (n = 3–4 mice per genotype per time point). SCN-enriched anterior hypothalamus samples were later isolated for RNA preparation from frozen

brain samples with needle-punch collection. Target gene expression levels are shown relative to the ribosomal protein reference gene rpl19.

(B) Typical in situ hybridization images and relative signal intensities for Bmal1 and Per2mRNA in the SCN. Sections were prepared from 3-month-old mice that

were sacrificed at ZT2 and ZT14 (nR 3mice per genotype). Signal intensities of protein levels were quantitated and are shown relative toWTmice (R6 sections).

Values in (A) and (B) represent the mean ± SD. *p < 0.05; **p < 0.01; t test.
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Figure 4. SIRT1 Upregulates Circadian Proteins in the SCN and Declines with Aging

(A) Typical immunohistochemical staining results and relative signal intensities for BMAL1, PER2, and SIRT1 proteins in the SCN. Sections were prepared from

C57BL/6 backgroundmice that were sacrificed at ZT4 (nR 3mice per genotype). AgedWTmice (22months) are compared to young BSKO,WT, and BSTGmice

(5 months). Signal intensities of protein levels were quantitated and are shown relative to WT mice (R6 sections).

(B) Typical immunohistochemical staining images and relative signal intensities of BMAL1 and SIRT1 proteins in the SCN. Sections were prepared from aged (21-

month-old) or young (4-month-old) 129 sv backgroundmice that were sacrificed at ZT4 (nR 3). Signal intensities of protein levels were quantitated and are shown

relative to young animals (R6 sections).

(C) Temporal analysis of BMAL1, PER2 and SIRT1 proteins in the SCN. SCN sections were prepared from 3 month-old mice that were sacrificed at the indicated

time (n R 3 mice/genotype/time point). DAPI-stained images were shown to indicate SCN in the BSKO sections. Signal intensities of protein levels were

quantitated and are shown relative to WT mice (R6 sections).

Values in (A), (B), and (C) represent the mean ± SD. *p < 0.05; **p < 0.01; t test.
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Figure 5. SIRT1 Regulates Endogenous

Circadian Gene RNA and Protein Levels in

Neuroblastoma N2a Cells

(A) Quantitative real-time PCR analysis of CLOCK-

controlled genes. Mouse N2a cells (WT) and Sirt1

shRNA knockdown cells were synchronized with

50% horse serum and time points were taken at

4 hr intervals. Results are shown relative to WT

after normalization to ribosomal reference gene

rpl19. Values represent the mean ± SD. *p < 0.05;

**p < 0.01; t test.

(B) Immunoblots of SIRT1 and components of the

circadian machinery. Time points were taken at

6 hr intervals after serum shock.
levels in SCN in comparison to WT mice, whereas the overex-

pression of SIRT1 increased protein levels in a setting where

we could observe the entire cycle of expression (Figure 4C).

SIRT1Regulates CircadianGeneExpression in Neuronal
Cells
To study the mechanism of how SIRT1 regulates expression of

BMAL1 and CLOCK in SCN, we employed N2a murine neuro-

blastoma cells, which are frequently used to support in vivo

studies. Importantly, we found that N2a cells can be synchro-

nized by horse serum treatment for subsequent circadian

studies; i.e., after horse serum shock, we found that numerous

circadian transcripts (Bmal1, Clock, Cry1, Per2, Rev-Erba, and

Rora) were regulated in a circadian manner (Figure 5A). Then,

we examined the effect on the circadian regulation of SIRT1

depletion by small hairpin RNA (shRNA). Like that in the SCN,

SIRT1 depletion reduced levels of all of these transcripts. Protein

analysis confirmed that SIRT1was knocked down and that levels

of all the circadian proteins were also reduced (Figure 5B). These

findings suggest that N2a cells faithfully recapitulate the regula-

tion of circadian proteins by SIRT1 observed in vivo.

Next, we began to search for the mechanism by which SIRT1

regulates circadian gene expression.Bmal1 transcription is posi-

tively regulated by the nuclear receptor RORa, and this activa-
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tion requires PGC-1a (Liu et al., 2007).

Moreover, PGC-1a knockout mice show

a similar shift in intrinsic period to the

one observed in BSKO mice (Liu et al.,

2007), and PGC-1a is one of the most

well-characterized SIRT1 substrates

(Rodgers et al., 2005). Thus, it seemed

possible that the mechanism by which

SIRT1 regulates the circadian cycle in

the SCN may involve PGC-1a. We

queried whether PGC-1a knockdown in

N2a cells would recapitulate the effect

of SIRT1 knockdown on Bmal1 expres-

sion level and its downstream circadian

genes. Indeed, knockdown of PGC-1a

by shRNA resulted in a decreased level

of circadian targets in both 24 and 36 hr

time points after serum shock, similar to

knocking down SIRT1 (Figures 6A and
S3). Conversely, overexpression of PGC-1a enhanced circadian

gene expression in a manner similar to SIRT1 overexpression. It

is noteworthy that the enforced expression of SIRT1 also drove

higher expression of Pgc-1a, suggesting that the activities of

these two proteins are highly coupled in neurons.

To further support these findings, we tested whether SIRT1

could regulate a luciferase reporter driven by the Bmal1 or

Per2 promoters (Nagoshi et al., 2004; Travnickova-Bendova

et al., 2002). By transiently transfecting 250 or 500 ng of Sirt1

plasmid in N2a cells followed by horse serum shock, we found

that Bmal1- or Per2-luciferase were enhanced in a dose-depen-

dent manner (Figure 6B). The effects of the transfection of a vec-

tor expressing PGC-1a on Bmal1- and Per2-luciferase were very

similar to that of SIRT1. Finally, the depletion of either SIRT1 or

PGC-1a caused a roughly 70% to 80% reduction in Bmal1- or

Per2-luciferase (Figure 6B). Similar but milder effects were

observed without serum shock (Figure S4). Altogether, these

findings indicate that SIRT1 and PGC-1a function in an interde-

pendent manner to activate circadian genes in neurons.

Cooperative Binding of SIRT1 and PGC-1a to the Bmal1

Promoter
Given that both in vivo and cell-culture experiments indicated

that SIRT1 activates the expression of circadian genes, including
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Figure 6. SIRT1 and PGC-1aMutually Regu-

late Circadian Gene Expression in N2a Cells

(A) Quantitative real-time PCR analysis of CLOCK-

controlled genes. Sirt1 or Pgc-1a shRNA

knockdown cells and transient Sirt1 or Pgc-1a

overexpression cells were synchronized with 50%

horse serum 24 or 36 hr before harvesting for total

RNA.Results are shown relative to a vector control.

(B) Reporter assays with Bmal1- or Per2-luciferase

under the indicated knockdown or overexpression

conditions. N2a cells were harvested for luciferase

assays 24 hr after horse serum shock. Results are

shown relative to a vector control.

Values in (A) and (B) represent the mean ± SD. *p <

0.05; **p < 0.01; t test.

See also Figures S3 and S4.
Bmal1, we hypothesized that it functioned at the Bmal1 pro-

moter. Thus, we conducted a chromatin immunoprecipitation

(ChIP) assay in N2a cells to test whether SIRT1 binds to the ROR-

a-binding sites (RORE) at the proximal Bmal1 promoter region. It

has been demonstrated that PGC-1a binds to these sites

through a synergistic action with RORa (Liu et al., 2007). Our

ChIP results confirmed that PGC-1a binds to this Bmal1 pro-

moter region spanning from �25 to +114, containing two

RORE consensus sequences (Preitner et al., 2002) (Figure 7A).

Interestingly, another set of primers revealed binding to the

�698 to �502 region, but it is not clear whether this fragment

has novel binding sites or whether it is scoring positive because

of its linkage to the �25 to +114 sites. Importantly, primers in a

control region in the Bmal1 30 untranslated region (30UTR)
showed no binding.

A second ChIP experiment was performed with SIRT1 anti-

bodies, and it revealed similar binding at Bmal1 promoter sites

but not at the 30UTR (Figure 7B). This finding indicates that
Cell 153, 1448–146
SIRT1 binds in close proximity to PGC-

1a. Remarkably, knockdown of PGC-1a

markedly reduced SIRT1 binding to the

Bmal1 promoter (as well as binding of it-

self), and knockdown of SIRT1 reduced

binding of PGC-1a (and itself) (Figure 7B).

Furthermore, overexpressing either

SIRT1 or PGC-1a increased the occu-

pancy on the Bmal1 promoter, and, due

to the overexpression of one protein

(i.e., SIRT1), the enhanced binding was

abolished by shRNA knockdown of the

other (i.e., PGC-1a) (Figures 7C and 7D).

These studies show that neuronal SIRT1

and PGC-1a bind cooperatively and in

close proximity at the Bmal1 promoter

and suggest that the positive regulation

of circadian genes occurs by the direct,

cooperative action of SIRT1 and PGC-

1a at the Bmal1 promoter.

Finally, to trace the SIRT1-mediated

regulatory circuit back to the SCN, we

measured Sirt1, Pgc-1a, and Nampt
RNA levels in vivo, as shown in Figure 3A (Figure 7E). We found

that all three genes were expressed in a phased, circadian

manner, and SIRT1 positively regulated the level of Pgc-1a tran-

scription, as observed in N2a cells. This latter effect may have

been due to a heightened PGC-1a coactivation of FOXO at the

Pgc-1a promoter when the coactivator has been deacetylated

by SIRT1 (Borniquel et al., 2010). All told, our in vivo and

in vitro data suggest that an amplifying regulatory loop in the

SCN comprising Nampt, SIRT1, and PGC-1a drives the expres-

sion of circadian genes in an aging-sensitive fashion (Figure 7F).

DISCUSSION

In this report, we show that SIRT1 regulates central circadian

control in the brains of mice to determine the period, activity

levels, and ability to adjust to re-entrainment. SIRT1 directly ac-

tivates the transcription of Bmal1 via PGC-1a to increase the

amplitude of expression in the SCN of BMAL and other circadian
0, June 20, 2013 ª2013 Elsevier Inc. 1455
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Figure 7. Cooperative Binding of SIRT1 and PGC-1a at the Bmal1 Promoter

(A) A schematic view of primer locations. Primers that flank two RORE sequences (Set 2) and another upstream region (Set 1) at the Bmal1 promoter are showed.

Control primers were designed at the 30UTR of the Bmal1 gene (see Table S1).

(B–D) Chromatin immunoprecipitation (ChIP) assays in N2a cells. Cells were transfected with a vector control or shRNA knockdown constructs for SIRT1 or PGC-

1a (B). Overexpression of SIRT1 (C) and PGC-1a (D) were ChIP assayed as in (B) with the indicated knockdown of PGC-1a or SIRT1, respectively. Rabbit IgG was

used as an immunoprecipitation control. Assays were performed 24 or 36 hr after synchronization with 50% horse serum. ChIP results were analyzed by qPCR.

(legend continued on next page)

1456 Cell 153, 1448–1460, June 20, 2013 ª2013 Elsevier Inc.



regulatory proteins. The components of this amplifying loop,

SIRT1 and PGC-1a, and the NAD+ synthetic enzyme Nampt

are circadian in the SCN. Thus, this regulatory loop influences

the intrinsic period of mice, which is shortened in transgenic

mice with increased SIRT1 levels in the brain and elongated in

brain-specific SIRT1 knockout mice.

Moreover, our findings provide amolecular explanation of why

robust central circadian control declines with aging. Aged mice

exhibit a decrease in SIRT1 levels in the SCN and concomitant

decreases in BMAL1 and other circadian regulatory proteins in

this brain region. Thus, aged mice display an increase in their

intrinsic period and an inability to adjust to abrupt light re-

entrainment regimens, termed jet lag. Young mice lacking brain

SIRT1 partially phenocopy old WT mice for period dilation and

decline in ability to re-entrain. Critically, old mice overexpressing

brain SIRT1 are partially protected from the aging-associated

decline in ability to re-entrain. These findings suggest that

SIRT1 may be a linchpin in the aging-sensitive decline of central

circadian function.

Mechanistic Implications
Studies in liver cells and mouse embryo fibroblasts revealed two

mechanisms by which SIRT1 impinges on the circadian machin-

ery in peripheral tissues. In the first mechanism, SIRT1 deacety-

lated the CLOCK-BMAL1 target PER2 in order to facilitate its

ubiquitination and degradation by the proteosome (Asher et al.,

2008). Thus, SIRT1 functioned as a positive regulator of

BMAL1 and circadian components (Asher et al., 2008), as we

observed in the SCN. In the second study, SIRT1 was shown

to deacetylate BMAL1 and histones at circadian gene promoters

in order to facilitate repression by inhibitory components of the

oscillator, thereby functioning as a negative regulator (Nakahata

et al., 2008).

Our findings in SCN incorporate aspects of both of these

mechanisms but also appear to have distinct features. Namely,

SIRT1 appears to deacetylate Lys 537 of BMAL1 in the SCN,

as observed in peripheral tissues by Nakahata et al. (2008), but

the effect of SIRT1 on the amplitude of the central circadian

clock is positive, as observed in peripheral tissues by Asher

et al. (2008). Thus, we wondered whether an alternative mecha-

nism in SCN might reconcile all of these observations. One clue

was that the deletion of the validated SIRT1 substrate PGC-1a in

mice increased the intrinsic period from 23.5 to 24 hr (Liu et al.,

2007), just as we observed for deleting SIRT1. Indeed, our

studies in N2a neuroblastoma cells showed that SIRT1 and

PGC-1a cooperatively bound to the Bmal1 promoter and func-

tioned to activate transcription. Thus, we suggest that SIRT1

and PGC-1a function together in SCN to drive Bmal1 gene

expression and the amplitude of the circadian machinery. We

cannot rule out the possibility that deacetylation of BMAL1 by

SIRT1 may play an additional role in regulating the central clock.
(E) Oscillation of Sirt1, Pgc-1a, and Nampt in the SCN. SCN-enriched samples w

cycle (n = 3–4 mice per genotype per time point). Target gene expression levels

(F) A schematic model of SIRT1-mediated circadian gene activation in the SCN.

CLOCK, and their targets. Age-associated decline of SIRT1 results in circadian p

Values in (B), (C), and (E) represent the mean ± SD. *p < 0.05; **p < 0.01; t test.

See also Figure S5.
In the liver, the CLOCK-BMAL1 factor also drives circadian

transcription of the NAD+ biosynthetic enzyme Nampt (Nakahata

et al., 2009; Ramsey et al., 2009), which thus renders SIRT1

activity circadian. We find that SIRT1 and Nampt are also ex-

pressed in a circadian manner in the SCN, and SIRT1 activity ap-

pears necessary to drive normal PGC-1a levels. The Nampt/

SIRT1/PGC-1a loop in the SCN is circadian most likely because

it is driven by CLOCK-BMAL1, which themselves are subject to

negative feedback by PER2, etc. We suggest that this Nampt-

SIRT1-PGC-1a loop is what amplifies the expression of

BMAL1 and other circadian proteins and, thus, plays a critical

role in the SCN central pacemaker (Figure 7). Consistent with

thismodel, we observed that the expression of Nampt is reduced

in SCN of aged mice (Figure S5), similar to what we found for

SIRT1 and BMAL1.

Implications for Aging
Mutations in circadian genes have been associated with prema-

ture aging, cancer, and other health maladies in mice (Fu et al.,

2002; Kondratov et al., 2006; Marcheva et al., 2010). Many

studies in humans also indicate that severe disruptions in circa-

dian patterns are deleterious to health (Gallego and Virshup,

2007; Sehgal and Mignot, 2011). Two recent studies indicate

that, in rodents, having an intrinsic period close to 24 hr is

strongly associated with a long lifespan (Libert et al., 2012;

Wyse and Coogan, 2010). This was interpreted as an indication

that animals with innate periods different from 24 hr were forced

to re-entrain daily in the 12 hr light:12 hr dark (12:12 hr LD) cycle

of the laboratory, and this imposed a life-shortening metabolic

stress. However, most humans must re-entrain to daily changes

in the diurnal cycle, which occur around the calendar. Were loss

of SIRT1 and circadian proteins in the SCN to occur in aging hu-

mans, as we observe here in mice, it might trigger metabolic

disruption and a decline in health due to an inability to re-entrain.

Any intervention for maintaining expression of SIRT1 and

circadian proteins in the SCN during aging would therefore be

salutary. Given the central nature of this regulation, it will be

important to determine whether the role of SIRT1 in the SCN is

even more important for healthy aging than other functions of

this sirtuin in other tissues.

Linking Circadian Control to Diet and Drugs
Our findings suggest that dietary and pharmacological inter-

ventions that affect SIRT1 activity may also impinge on central

circadian control. Many studies indicate that calorie restriction

increases SIRT1 levels, whereas a high-fat diet decreases

SIRT1 levels in peripheral tissues. Were this to apply to the

SCN, one would predict dietary effects on intrinsic periods and

ability to adjust to changes in entrainment. For example, the pro-

gression through metabolic syndrome to diabetes might be ex-

pected to lengthen the intrinsic period and foster deterioration
ere isolated from 6-month-old male mice at 4 hr intervals across the 12:12 LD

are shown relative to a ribosomal reference gene rpl19.

The model depicts an oscillating loop that amplifies the expression of BMAL1,

henotypes, such as prolonged period and a defect in re-entrainment.
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in circadian function (Kohsaka et al., 2007). Conversely, calorie

restriction or drugs that cause an increase in SIRT1 activity might

have opposite effects. In this regard, it is noteworthy that resver-

atrol was recently reported to shorten the free-running circadian

period in primates (Pifferi et al., 2011), which is consistent with

our findings here. Several SIRT1 activators have been tested

recently and show repressive activity on circadian expression

in an osteosarcoma cell line and in the liver (Bellet et al., 2013),

suggesting again that there are differences between central

and peripheral circadian control. It will be interesting to test the

in vivo effects of SIRT1 activator and inhibitor compounds on

central circadian control.

It is also interesting to reconsider a role for melatonin, which

is produced in the pineal gland, declines with aging, and can

re-entrain the central circadian clock (Dibner et al., 2010; Kon-

dratova and Kondratov, 2012; Sack et al., 1986). Melatonin

was initially reported to increase the lifespan in C57BL/6 mice

(Pierpaoli and Regelson, 1994), but this finding was later dis-

counted because C57BL/6 mice were shown to have relatively

low melatonin levels (Grace et al., 1999). Interestingly, melatonin

was more recently reported to preserve SIRT1 expression in hip-

pocampus of sleep-deprived rats (Chang et al., 2009). Thus, it

may be of interest to investigate whether falling melatonin levels

in normal aging play any role in the decline of SIRT1 in the SCN.

Conclusions
Sirtuins play many roles in adapting organisms to the two critical

features of calorie restriction: metabolic reprogramming and

stress resistance. Our findings indicate a function of SIRT1 in

the brain in coupling metabolic processes faithfully to circadian

control and maintaining central circadian function during aging.

SIRT1 is part of a regulatory loop that is circadian and amplifies

circadian gene expression. Our finding that SIRT1 in the SCN de-

clines in aged animals helps explain the known aging-sensitive

decline in circadian function and is consistent with the idea

that the uncoupling of metabolic processes from a diurnal cycle

may be central in the aging process. Therefore, strategies that

can maintain SIRT1 function in the SCN may slow the onset

and progression of diseases of aging.

EXPERIMENTAL PROCEDURES

Animals

SIRT1 BSKO mice were generated by crossing the loxP-flanked exon 4 Sirt1

allele mice (Cheng et al., 2003) with the brain-specific Nestin-Cre-expressing

mice (Cohen et al., 2009). For SIRT1 BSTG, a Sirt1STOP strain that harbors a

loxP-flanked transcriptional STOP element between the CAGGS promoter

and the Sirt1 complementary DNA (cDNA) was used to breed with Nestin-

Cre mice for achieving a brain-specific excision of the STOP sequence

(Firestein et al., 2008). A Sir2d strain was obtained frommice that were hetero-

zygous for the Sirt1-KI transgene (Bordone et al., 2007). Additional details for

strains are listed in Table S2. All mice were maintained in the C57BL/6 back-

ground and were housed in a standard animal maintenance facility under a

12:12 hr LD cycle. All animal procedures were performed in accordance with

the MIT animal care committee. WT littermate controls were used throughout.

Plasmids

Constructs for Bmal1, Per2, and Sirt1 probes for in situ hybridization were

cloned into pCR-Blunt II TOPO backbone with the primers listed in Table S1.

Bmal1 (1.1 kb) and Per2 (1.7 kb) promoter fragments were PCR amplified
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from mouse genomic DNA and cloned into pGL3 firefly luciferase vector

(Promega) as previously described (Nagoshi et al., 2004; Travnickova-Bend-

ova et al., 2002; Table S1). pAd-Track mSirt1 and pLKO Pgc-1a for transient

overexpression were kindly provided by P. Puigserver. Pgc-1a shRNA con-

structs were purchased from Sigma-Aldrich (Table S1).

Cell Culture and Transfections

N2a cells that stably knock down for Sirt1 with shRNA were as previously

described (Libert et al., 2011; Table S1). For time point experiments, N2a cells

at 5 3 105 cells per10 cm dish density were seeded and grown for 5 days in

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal

bovine serum (FBS), 100 units/ml penicillin, 100 mg/ml streptomycin, 2 mM

glutamine, and 25 mM HEPES (pH 7.2) and cultured at 37�C in a humidified

incubator with 5% CO2 until confluent. Then, cells were synchronized with

50% horse serum for 2 hr followed by replacement with low FBS (1%) contain-

ing DMEM for the subsequent 24 to 44 hr time points. For transient overex-

pression experiment, Sirt1, Pgc-1a, and reporter constructs were transfected

on day 4 and allowed for expression for 24 hr before serum shock. All transient

transfections were carried out with FuGENE HD Transfection Reagent (Roche)

according to the manufacturer’s instructions.

Locomotor Activity

Wheel-running activity was assessed with wireless running-wheel systems

(MED Associates, ENV-044) and recorded by a sensor hub (MED Associates,

DIG-804) according to the manufacturer’s instructions. At the indicated ages,

male WT, SIRT1 BSKO, BSTG, and sir2d mice were used for the voluntary ac-

tivity assays. First, mice were maintained at 12:12 hr LD cycle and recorded for

their activities for at least 3 weeks followed by release into 12:12 hr DD free-

running condition (Siepka and Takahashi, 2005). We performed 4 hr phase

shifts as previously described (Valentinuzzi et al., 1997). Actograms and a

chi-square periodogram were analyzed and generated by wheel manger soft-

ware (MED Associates, SOF-860) and online circadian software (www.

circadian.org).

Tissue Collection and RNA Analysis by Quantitative Real-Time PCR

Brain samples were quickly harvested at the indicated time points and kept

in OCT compound (Tissue-Tek) at �80�C until use. To obtain the SCN-

enriched sample, we cut anterior hypothalamus at the optic chiasm level coro-

nally into two 150 mm thick sections with a cryostat (Leica CM 1510S). Then,

SCN was visualized under a phase contrast microscope and collected with

a syringe needle. SCN samples from three to four mice were pooled for RNA

extraction with an RNeasy Mini Kit (QIAGEN). cDNAs were generated with a

RETROscript Kit (Ambion) according to the manufacturer’s instructions. real-

time PCR reactions were performed on a LightCycler 480 II (Roche) with iQ

SYBR Green Supermix (Bio-Rad). The relative abundance of transcripts was

calculated by normalizing to a ribosomal subunit gene, rpl19. Primers are listed

in Table S1.

Immunohistochemistry

Mice were housed in all dark for 48 hr prior to the ZT collection experiments.

Whole-brain samples were quickly harvested at the indicated time points un-

der red dim light and fixed in 4% phosphate-buffered paraformaldehyde solu-

tion for overnight. After cryoprotected in 30% sucrose for 30 hr, fixed tissues

were embedded in OCT (Tissue-Tek) and stored at �80�C until staining.

Detailed methods can be found in the Extended Experimental Procedures.

In Situ Hybridization

Digoxigenin-labeled antisense and sense RNA probes were made with linear-

ized plasmids as templates and transcribed with T7 or SP6 RNA polymerases,

respectively (Roche). Brain sections were fixed in 4% paraformaldehyde per-

meabilized with 5 mg/ml proteinase K for 10 min before an acetylation step in

triethanolamine and acetic anhydride solution. Detailed methods can be found

in the Extended Experimental Procedures.

Reporter Assays

N2a cells were seeded into six-well dishes at a 1.53 106 cells per well density

24 hr before transfections. Sirt1 and Pgc-1a overexpression constructs,

http://www.circadian.org
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reporter constructs, and internal control Renilla-luciferase plasmid were trans-

fected at the ratio of 0.5 (or 0.25):0.2:0.1 mg per well. Then, cells were synchro-

nized with 50% horse serum for 2 hr followed by replacement with low FBS-

containing DMEM for 24 hr before being harvested for luciferase assays.

Cell lysis and luciferase measurements were performed according to the

Promega Dual-Luciferase Reporter Assay System instructions.

ChIP Assays

N2a cells were cultured, transfected, and synchronized with 50% horse serum

as described. Next, 24 or 36 hr after synchronization, cells were fixed in 1%

formaldehyde and collected for chromatin preparation according to Simple-

ChIP Enzymatic Chromatin IP Kit instructions (Cell Signaling Technology). Pu-

rified DNA was subjected to real-time PCR with the primers listed in Table S1.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, five

figures, and two tables and can be found with this article online at http://dx.
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