
DISCRETE 
MATHEMATICS 

ELSEVIER Discrete Mathematics 151 (1996) 19-38 

On a class of Hamiltonian laceable 3-regular graphs 

B r i a n  A l s p a c h " ,  C .C.  C h e n  b '*,  K e v i n  M c A v a n e y  c 

a Department of Mathematics and Statistics, Simon Fraser University, Burnaby, BC, Canada V5A IS6 
bDepartment of Mathematics, National University of Singapore, Kent Ridge, Singapore 0511 

c Department of Computing and Mathematics, Deakin University, Geelong, Australia 

Received 6 January 1992; revised 24 May 1993 

Abstract 

Using the concept of brick-products, Alspach and Zhang showed in Alspach and Zhang 
(1989) that all cubic Cayley graphs over dihedral groups are Hamiltonian. It is also conjectured 
that all brick-products C(2n, m, r) are Hamiltonian laceable, in the sense that any two vertices at 
odd distance apart can be joined by a Hamiltonian path. In this paper, we shall study the 
Hamiltonian iaceability of brick-products C(2n, m, r) with only one cycle (i.e. m = 1). To be 
more specific, we shall provide a technique with which we can show that when the chord length 
r is 3,5,7 or 9, the corresponding brick-products are Hamiltonian laceable. Let 
s = gcd((r + 1)/2, n) and t = gcd((r - 1)/2, n). We then show that the brick-product C(2n, 1, r) is 
Hamiltonian laceable if (i) st is even; (ii) s is odd and rs = r + 1 + 3s (mod 4n); or (iii) t is odd 
and rt = r - 1 - 3t (mod 4n). In general, when n is sufficiently large, say n >/r 2 - r + 1, then the 
brick-product is also Hamiltonian iaceable. 

1. Introduction 

Let G be a g roup  and S a genera t ing  subset  of G such tha t  the ident i ty  e lement  1 $ S 

and  x -  1 e S for each x e S. The  Cayley graph X(G;  S) on a g roup  G has the e lements  

of  G as its vertices and  edges jo in ing  g and  gs for all g e G and  s ~ S. The quest ion 

whether  or  no t  all Cayley  graphs  are Hami l t on i an  still remains  unsolved,  though  it 

was shown in [3-1 tha t  all Cayley  graphs  over  Abel ian  groups  which are  nei ther  

b ipar t i t e  no r  i somorph ic  to a cycle are  Hami l ton i an -connec t ed  (in the sense tha t  any  

two vertices can be j o ined  by  a H a m i l t o n i a n  path). F o r  the case when the groups  

involved are  not  Abel ian,  the p rob lem seems ext remely  difficult. Even for d ihedra l  

g roups  D, ,  it was only shown in I2-1 tha t  the Cayley  graphs  are  H a m i l t o n i a n  when 

they are cubic. In  the same paper ,  it was shown that  when the Cayley  g raph  is 
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X(D,,  S), where S is a minimal  generat ing set of  D, consisting of three elements of  
order  2, it is i somorphic  to a br ick-product  as defined below: 

Definition. Let m,n and r be a positive integers. Let C2n = 012 ... ( 2 n -  1)0 denote  
a cycle of  order  2n. The (m, r)-brick-product of C2,, denoted by C(2n, m, r), is defined in 

two cases as follows. 
For  m = 1, we require that  r be odd and greater  than 1. Then C(2n, m, r) is obta ined 

f rom C2, by adding chords 2k(2k + r), k = 1 . . . . .  n, where the computa t ion  is per- 

formed modu lo  2n. 
Fo r  m > 1, we require that  m + r be even. Then C(2n, m, r) is obta ined by first 

taking the disjoint union of m copies of  C2,, namely  C2n(1), C2n(2) . . . . .  C2n(m), 

where for each i = 1 , 2  . . . . .  m, C2,(i)=(i,O)(i, 1)...(i,2n). Next,  for each odd 

i = 1, 2 . . . . .  m - 1 and each even k = 0, 1 . . . . .  2n - 2, an edge (called a brick edoe) is 
d rawn to join (i, k) to (i + 1,k), whereas,  for each even i = 1, 2 . . . . .  m - 1 and each odd 
k = 1, 2 . . . . .  2n - 1, an edge (also called a brick edoe) is drawn to join (i, k) to (i + 1, k). 

Finally, for each odd k, = 1, 2 . . . . .  2n - 1, an edge (called a hookin9 edoe) is drawn to 
join (1,k) to (m, k + r). An edge in C(2n, m,r) which is neither a brick edge nor  

a hooking  edge is called a fiat edoe. 

Examples .  The  br ick-products  COO, 1, 5), COO, 2, 4) and C(10, 3, 5) are given in Fig. 1. 

Using the concept  of  br ick-products ,  Alspach and Zhang  show in [2] that  all cubic 
Cayley graphs  over  dihedral  groups  are Hamil tonian .  It is also conjectured that  all 
br ick-products  C(2n, m, r) are Hami l ton ian  laceable (in the sense that  any two vertices 
at odd distance apar t  can be joined by a Hami l ton ian  path). In [1], it was shown that  
the conjecture is true for m even. In this paper,  we shall s tudy the Hami l ton ian  
laceability of  br ick-products  with only one cycle (i.e. m = 1). To  be more  specific, we 

shall show that  when r is 3 or  5, the corresponding br ick-products  are Hami l ton ian  

laceable. The technique employed can also be used to show the Hamil tonian  laceability 
of  br ick-products  with r = 7 or 9. Let s = gcd((r + 1)/2, n) and t = gcd((r - 1)/2, n). 

We then show that  the br ick-product  C(2n, 1, r) is Hami l ton ian  laceable if(i) st is even; 
(ii) s is odd  and rs --- r + 1 + 3s (rood 4n); or  (iii) t is odd and rt -- r - 1 - 3t (rood 4n). 
In general, when n is sufficiently large, say n >~ r 2 - r + 1, then the br ick-product  is 

also Hami l ton ian  laceable. 

2. Cycles with chords of small length 

T h r o u g h o u t  this paper,  we let G = C(2n, 1, r) and denote the vertices of G by 
{1,2 . . . . .  2n}. Note  that  the edges of G are 12, 2 3 , . . . , ( 2 n - 1 ) ( 2 n ) ,  (2n)l and 
(2k)(2k + r) for k = 1, 2 . . . . .  n where 2k + r is computed  modulo  2n. We shall call each 
of the edges (2k)(2k + r) a chord edge and r the chord length of G. 

In this section, we shall show that  if the chord  length r = 3 or  5, then the 
br ick-products  involved are Hami l ton ian  laceable. The  technique used here can also 
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be applied to prove  the Hami l ton ian  laceability of G when the chord  length r is 7 or  
9 (but not for r />  11). First, we need to introduce the following terminologies.  

Let m ~< 2n. For  each vertex x of  G, we shall write: 

xP[m]  = x (x  + 1)(x + 2 ) . . . (x  + m - l ) ,  

x P - l [ m ]  = x (x  - 1 ) ( x  - 2 ) . . . (x  - m + 1), 

x J = x ( x + r )  for e v e n x ,  x J - l = x ( x - r )  for o d d x .  

Note  that  P [m] and P -  ~ [m] are paths  of order  m, whereas, xJ  and x J  - ~ are chord 
edges. The  symbols:  xp2[m],  x ( J P - l [ m ] ) 3 ,  etc. are self-explanatory. 

A path  P in G from x to y is said to be gapless if there exists a, b e 7/with a ~< b, such 

that  V(P) = [ a , b ] ( =  {a,a + 1,a + 2 . . . . .  b}) and each chord  edge of P is of  the form 
e(e + r) with bo th  e, e + r ~ [a, b]. We shall call b the extremal vertex of P. 

Note  that  a and b m a y  be negative, as vertices of the form 2n - s may  also be 
denoted by - s .  

The following three l emmas  are straightforward.  

L e m m a  1. Let  r = 3. Then 1 (P - 1 [2] J )k p - 1 [2] is a 9apless path in G of  order 2k + 2 

f rom 1 to 2k, where 2k + 2 ~< 2n (see the il lustration in the following figure for k = 3). 

0 1 2 3 4 5 6 7 

L e m m a  2. Let  r =  3. Then I ( P - ~ [ 2 ] J ) R ( p [ 2 ] J ) m P - I [ 3 ] ( J - ~ P - I [ 2 ] ) m - I J  -~ is 

a gapless path in G o f  order 2k + 4m + 2 from 1 to 2k, where 2k + 4m + 2 <~ 2n and 

m >/0 (see the i l lustration in the following figure for k = 3, m = 2). 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 

L e m m a  3. Let  r = 3. Then 1 (P - 1 [2] J )k(p [2] J)m p [3] ( J - 1 p - 1 [2])mJ - 1 is a gapless 

path in G of  order 2k + 4m + 4 from 1 to 2k, where 2k + 4m + 4 <~ 2n and m >t 0 (see 
the il lustration in the following figure for k = 3, m = 2). 

v v 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 

Combin ing  the above  three lemmas,  we see that  there exists a Hami l ton ian  pa th  in 
G from 1 to 2k for each k ~< n. However ,  as G is a Cayley graph  and so vertex- 
transitive, we have the following theorem. 
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T h e o r e m  4. C(2n, 1, 3) is Hamiltonian laceable. 

We shall now consider the case when the chord length r is 5. 

L e m m a  5. Let c, d be vertices o f  G with c odd and d even. I f  there exists a ,qapless path 

P of  order m from c to d in G, then there exists a ,qapless path from c to d in G of  order 

m + k(r - 1), for  each non-ne,qative integer k with m + k(r - l) ~< 2n. 

Proof. Let b be the extremal vertex of P. Then P must contain the edge 
b(b - 1). Now, replacing the edge b(b - 1) in P by the path 
b(P [r - 1 ] J ) k P -  1 [r]  ( J -  1 p -  1 [r - 1] )k- 1 j -  l(b _ 1) yields a gapless path in G from 

c to d of order m + 2k(r - 1). On the other hand, replacing the edge b(b - 1) in P by the 
path b(P[r  - l ] J ) k p [ r ] ( J  - 1 P - l [ r  -- l ])kJ - l(b -- 1) yields a gapless path in G from 

c to d of order m + (2k + 1)(r - I). [] 

Lemma 6. I f  there exists a ,qapless path Q of  order m from 1 to 2u in G with extremal 

vertex 2s + l, where 2s + l - 2u < r, then for  each k with m + k(r + l) ~< 2n, there 

exists a .qapless path in G o f  order m + k(r + l) from 1 to 2u + k(r + 1). 

Proof .  Let q = r - (2s + 1 - 2u). Then the required gapless path is 

Q ( J P - ~ [ q ] J P - I [ 2 s  + 2 --2U]) k. [] 

Let 2u, 2v be integers. The pair (2u, 2v) is said to be an attainable pair if there exists 
a gapless path of order 2u in G from 1 to 2v. Thus, by definition, if(2u, 2v) is attainable 
and the order of G is 2u, then G contains a Hamiltonian path from l to 2v. 

As an immediate consequence of Lemma 5, we have the following corollary. 

Corol lary  7. I f  (2u, 2v) is attainable, then (2u + k(r - l), 2v) is also attainable for  any 

non-negative integer k such that 2u + k(r - l) ~< 2n. 

Also, as an immediate consequence of Lemma 6, we have the following corollary. 

Corol lary  8. I f  there exists a gapless path o f  order m from 1 to 2u in G with extremal 

vertex 2s + 1, where 2s + l - 2u < r, then for  each k with m + k(r + l)-N< 2n 

(m + k(r + 1), 2u + k(r + 1)) is attainable. 

T h e o r e m  9, G = C(2n, l, 5) is Hamiltonian laceable. 

Proof. As G is vertex transitive, we need only to show that there exists a Hamiltonian 
path in G from 1 to 2k for any k ~< n. By virtue of the corollaries to Lemmas 5 and 6, 
we need only to establish the following nine claims. 

Claim 1. There exists a Hamiltonian path in G from 1 to 2. Indeed, a required path is 

l(2n)(2n - 1).-. 32. 
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Claim 2. There exists a Hamiltonian path in G from 1 to 6. Indeed, a required path is 

12345(2n)(2n - 1)-.. 76. 

Claim 3. (8, 4) is attainable. Indeed, a required path is 1 2 3 ( -  2 ) ( -  1)054. 

Claim 4. (10, 4) is attainable. Indeed, a required path is 1 0 ( - 1 ) ( - 2 ) 3 2 7 6 5 4 .  

Claim 5. (12, 8) is attainable. Indeed, a required path is 1P - 1 [4] J P -  1 [2] J P  - 1 [4] 

J P - I [ 2 ]  (as shown below). 

- -2  1 2 3 4  7 8 9  

Claim 6. 04 ,8 )  is attainable. Indeed, a required path is 1 P [ 3 ] J - 1 P [ 3 ] J P - I [ 2 ]  
J P [ 3 ]  J 1p[3]  (as shown below). 

v 
- -2  O 1  3 4 5 6  8 9  11 

Claim 7. (16, 12) is attainable. Indeed, a required path is 1 P [ 3 ] j - 1 p [ 3 ] J P  112] 
J P [ 3 ]  J -  1 P [ 3 ] J P  1 [2] (as shown below). 

w w v w 

- -2  0 1 3 4 5 6 8 9 11 12 13 

Claim 8. (18, 12) is attainable. Indeed, a required path is 1 P [ 3 ] J - 1 P [ 3 ] J P - I [ 2 ]  
j p  - 1 [4] J P  - 1 [2] J P  - 1 [4] (as shown below). 

- -2  0 1 3 4 5 6 9 10 11 12 15 

Claim 9. There exists a Hamiltonian path in G from l to 2n - 2. 

Again, by virtue of the corollary to Lemma 6, we need only to establish the 
following four subclaims. 

Subclaim 1. (8, 6) is attainable. Indeed, a required path is 10543276. 

Subclaim 2. (10, 8) is attainable. Indeed, a required path is 1056723498. 
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Subclaim 3. (18, 16) is attainable. Indeed, a required path is 1056723498(13)(14)(15) 
(10)(11)(12)(17)(16). 

Subclaim 4. I f  G is of order 12, then there exists a Hamiltonian path in G from 1 to 
2n - 2. Indeed, a required path is 123450( -  1 ) ( - 6 ) ( -  5 ) ( - 4 ) ( -  3 ) ( -  2). 

By using a similar argument  as that  for Theorem 9, we can continue to show that 
C(2n, 1, 7) and C(2n, 1, 9) are Hamil tonian  laceable. However,  the number  of cases we 
need to consider increases considerably. Also, the same approach is no longer valid 
when the chord length is more  than 9. In the next two sections, we shall study the 
Hamil tonian  laceability of C(2n, 1, r) when the chord length r is larger than 5. 

3. Decomposable brick-products 

Let G = C(2n, l , r )  whose vertices are labeled 1,2 . . . . .  2n, as mentioned before. 
Let G' and G" denote,  respectively, the sequence 12(2 + r)(2 + r + 1)(2 + 2r + 1) × 
( 2 + 2 r + 2 ) . . - ( 2 + ( n - l j r + ( n - 2 ) ) ( 2 + ( n - 1 ) r + ( n - 1 ) )  and the sequence 
1(1 - r)(2 - r)(2 - 2r) . . .  (n - (n - l)r)(n - nr). If G' and G" are both Hamil tonian 
cycles of G, then we say the graph G is indecomposable. Otherwise, G is said to be 
decomposable. 

Lemma 10. Let G = C(2n, 3, 1). Then, for any odd y with 1 < y < 2n, the subgraph of 
G induced by G(y) = {(x, k) 1 ~< k ~< y} - {(1, 1)} contains a Hamiltonian path from 
(2, y) to (1,y). 

Proof.  If y = 3, then a required path is 

P(3) = (2, 3)(3, 3)(3, 2)(3, 1)(2, 1)(2, 2)(1,2)(1,3). 

I f y  = 5, then a required path is P(5) = (2, 5)(3, 5)(3,4)(P(3))- 1(2, 4)(1, 4)(1, 5). I f y  = 7, 
then a required path is P(7) = (2, 7)(3, 7)(3, 6)(P(5))- 1(2, 6)(1, 6)(1, 7). The result now 
follows by induction on y (see the illustration in the figure below). [] 

(1,2) O,a) (1,4) (1,5) (1,6) (1,7) 

(2,1) I 

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) 

Lemma l l .  Let G =  C(2n, 3,1). For any odd y with 1 < y < 2n and any positive 
integer k with y +4k<~  2 n +  1, the subgraph of G induced by { ( i , j ) l i =  1,2,3; 
y <~j < y + 4k) contains a Hamiltonian path from (1,y) to (2,y). 
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Proof. We shall prove by induction on k. If k = 1, a required path is (1,y)(1,y + 1) 
(2,y + 1)(2,y + 2)(2,y + 3)(1,y + 3)(1,y + 2)(3,y + 3)(3,y + 2)(3,y + 1)(3, y)(2, y). 

Assume that the result hold for k = N and consider the case when k = N + 1. By 
inductive hypothesis, there exists a Hamiltonian path P in the subgraph of G induced 
by {( i , j ) l i= 1,2,3; y + 4 < ~ j < y + 4 k }  from ( 1 , y + 4 )  to (2 ,y+4) .  Then, (1,y) 
(1 ,y  + 1)(2, y + 1)(2, y + 2)(2, y + 3 ) P - ' ( 1 ,  y + 3)(1,y + 2)(3, y + 3)(3, y + 2) 
(2, y + 1)(3, y)(2, y) will be a required Hamiltonian path (see the figure shown below 
for k = 2). [] 

(1,~) (1,y+4) (1,~+7) 

-- i ~ i * • ......... .. ......... .. :: 
- • . . . . . . . . .  e . . . ~ ' :  . . . . .  • 

(3,y) (3, [/-.I- 7) 

Lemma 12. C(2n, 2m + 1, 1) is Hamihonian laceable. 

Proof. We shall first show that the result is true for m = 1. As C(2n, 3, l) is a Cayley 
graph and so vertex transitive, we need only to show that there exists a Hamiltonian 
path from x = (1, 1) in the first cycle C2.(1 ) to any other vertex y at odd distance apart 
from x. 

Case 1: y is in the third cycle C2,(3). 
In this case, y = (3, k) where k is even. If k = 2 then a required Hamiltonian path is 

(1, 1)(1, 2n)(2, 2n)(1, 2n - 1)... (2, 3)(3, 3)(3, 4)-.. (3, 2n)(1, 2n - 1)(1, 2n - 2).. .  (1,2) 
(2, 2)(2, 1)(3, 1)(3, 2) (see the illustration in the following figure). 

(1,1) ~---" I ~ N ~  (1'2n) 

i I 
(3,1) (3,2) (3,3) (3,2n) 

If k = 2n, then a required Hamiltonian path is 

(1, 1)(3, 2)(3, 1)(2, 1)(2, 2)(1, 2)(1, 3)... (1, 2n)(2, 2n)(2, 2n -- 1)... 

(2, 3)(3, 3)(3, 4)... (3, 2n) 

(see the illustration in the following figure). 
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( 1 , 1 ) ~  l(1,2n) 

_ _ I t (2,2n) * 

(3,1) (3,2) (3,3) (3,2n) 

Now, let 2 < k < 2n. By Lemma 10, there exists a Hamil tonian path P in the 
induced subgraph G(k -1 )  from (2, k - 1 )  to (1, k -1 ) .  We then have a Hamiltonian 
path in G from (1, 1) to (3, k) given by (1, 1)(1, 2n)(2, 2n)(2, 2n - 1)... (2, 2k - 1) x 
P(1, k - 1)(1, k). . .  (1, 2n - 1)(3, 2n) (3, 2n - 1) ... (3, k) (see the illustration in the fol- 
lowing figure). 

. . . . . . . . . . . . . . . . . . . . .  : 

• . . . . . . . . .  , p ~ ",, -~ (2,2.) 

,~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ,~ : \(3,2.)_ 
(3,1) (3,k) 

Case 2: y is in the first cycle C2.(1). 
In this case, y = (1, k) where k is even. 
If k = 2, then a required Hamil tonian path is (1, 1)(1, 2n)(2,2n)(2,2n -1 ) . . .  (2, 1) 

(3, 1)(3, 2). . .  (3, 2n)(1, 2n - 1)(1, 2n - 2).-. (1, 2). 
If k = 2n, then a required Hamil tonian path is (1, 1)(3, 2)(3, 1)(3, 2n)(3, 2n - 1)-.. 

(3, 3)(2, 3)(2, 4). . .  (2, 2n)(2, 1)(2, 2)(1, 2)(1, 3)--- (1, 2n). 
Now, let 2 < k < 2n. Then by Lemma 10, the induced subgraph G(k - 1) contains 

a Hamil tonian path P from (2, k - 1) to (1, k - 1). Then a required Hamil tonian path 
in G from (1,1) to (1,k) is given by (1,1)(1,2n)(2,2n)(2,2n -1 ) . . .  (2, k - 1 )  
P(1, k - 1)(3, k)(3, k + 1)... (3, 2n)(1, 2n - 1)(1, 2n - 2).-. (1, k). 

Case 3. y lies in the second cycle C2,(2). 
In this ease y = (2, k) where k is odd. 
If k = 1, then a required Hamil tonian path is (1, 1)(3,2)(3, 1)(3 ,2n)(3 ,2n-  1)... 

(3, 3)(2, 3)(2, 4). . .  (2, 2n)(1, 2n)(1, 2n - 1)... (1, 2)(2, 2)(2, 1). 
If k -- 3, then a required Hamil tonian path is 

(1,1)(3,2)(3,3)(3,4)(1,3)(1,2)(2,2)(2, 1)(3, 1) (3 ,2n)(3 ,2n-1) . . .  

• .. (3, 5)(2, 5)(2, 6).. .  (2, 2n)(1, 2n)(1, 2n - 1)... (1, 4)(2, 4)(2, 3). 

If k = 5, then a required Hamil tonian path is 

(1, 1)(1, 2n)(1, 2n -- 1)... (1, 4)(2, 4)(2, 3)(3, 3)(3, 2)(3, 1)(3, 2n)(3, 2n - 1)... 

(3, 4)(1, 3)(1, 2)(2, 2)(2, 1)(2, 2n)(2, 2n - 1).-- (2, 5). 
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Hence we may now assume that k > 5. Now, if 2n - k - 1 is divisible by 4, then by 
Lemma 11, there exists a Hamil ton(an path P from (1,k + 2) to (2, k + 2) in the 
subgraph of G induced by {(i,j)pi = 1, 2, 3; k + 2 ~< j ~< 2n}. A required Hamil ton(an 
path in G is: (1, 1)(1, 2). .-(1,  k - 1)(2, k - 1)(2, k - 2). . .  (2, 1)(3, 1)(3, 2)--. (3, k + 1) x 
(1, k)(1, k + 1) P(2, k + 1)(2, k) (see the illustration in the following figure). 

(1,1) (1,k) (1 ,k+2)  (1 ,2n)  

i _ , P ! 
• . . . . . . . . . . . . . . . . .  4 

(3,1) ( 3 , k + l )  (3 ,2n)  

Finally, if 2 n -  k -  3 is divisible by 4, then again by Lemma 11, there exists 
a Hamil ton(an path P in the subgraph of G induced by {(i , j)l i= 1,2,3; 
k + 2 ~ j ~< 2n - 2 }  from (1, k + 2) to (2, k +2). A required Hamil ton(an path in G is 
(1, 1)(1,2n)(1,2n - 1)(3, 2n)(3, 2n - 1)(2, 2n - 1)(2, 2n)(2, 1)(3, 1)(3, 2)(3, 3)(3, 4)(1, 3) 
(1, 2)(2, 2)(2, 3)(2, 4 ) (1 ,4 ) (1 ,5 )  ... (1, k - 1)(2, k - 1)(2, k - 2). .-  (2, 5)(3, 5)(3, 6) .-- 
(3,k + 1)(l,k)(1, k + 1)P(2,k + 1)(2,k). 

This proves that the result is true for m = 1. 
As in [1], Hamil tonian paths in C(2n, 3,1) can be extended to those in 

C(2n, 2m + 1, 1) for any positive integer m (see the illustrations in Figs. 2-7, where 
Hamil tonian  paths in Figs. 2 -4  are extended to Hamil tonian paths in Figs. 5-7, 
respectively). Hence C(2n, 2m + 1, l) is Hamil tonian laceable. [] 

, .......... :'-.. ........ i ............. ::::::::::::::::::::::: ...... !:::X ..... ...... ~ ...... =================================== ..... 

Fig. 2. A Hamilton(an path in C(10,3, 1) from (1, 1) to (2,9). 

~-..~...--:-::::::z:'-- ............ :::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ""'"-::::-:~'~ 

) 

Fig. 3. A Hamilton(an path in C(10,3, 1) from (1, 1) to (3,4). 
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Fig. 4. A Hamiltonian path in C(10,3, 1) from (1, 1) to (1,4). 
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Fig. 5. A Hamiltonian path in C(10, 5, 1) from 11, 1) to 12,9). 

Fig. 6. A Hamiltonian path in C(10,5, 1) from (1, 11 to (5,4). 

It  is easy to see that  a b r i ck -p roduc t  C(2n, 1, r) is d e c o m p o s a b l e  if and  only  if 

gcd(( r  + 1)/2, n) > 1 or  gcd((r  - 1)/2, n) > 1. We  have 

Theorem 13. Let  G be the brick-product C(2n, 1,r). Let  s = gcd((r  + 1)/2, n) and 

t = gcd(( r  - 1)/2, n). I f  st is even, then G is Hamiltonian laceable. 

Proof. W i t h o u t  loss of  generali ty,  we m a y  assume that  s is even. Then  

C = 12(2 + r)(2 + r + 1)(2 + 2r + 1)(2 + 2r + 2) . . .  (2 + kr + k - 1) is a cycle, where  

k = n/s. F r o m  the cons t ruc t ion  of  C and  the fact tha t  the m a p p i n g  f f rom G to 
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Fig. 7. A Hamiltonian path in C(10,5, 1) from (1, 1) to (1,4). 

G defined by f ( x )  = x + 2 is an au tomorph ism of G, 2h + C is a cycle which is either 
disjoint with C or  identical to C, for each positive integer h. There are exactly s such 

cycles. In fact, G is isomorphic  to C(2k, s, r~) for some even rl ,  and is thus Hamil tonian 

laceable by a result in [1], since s is even. [] 

Theorem 14. Let G be the brick-product C(2n, l,r). Let s = gcd((r + 1)/2, n) and 

t = g c d ( ( r -  1)/2, n). Then G is Hamiltonian laceable if any one of the following 

condition holds: 
(i) s is odd and rs - r + 1 + 3s(mod4n);  

(ii) t is odd and rt - r - 1 - 3t (mod 4n). 

Proof. From the given conditions, it is easy to see that both s, t are greater than 1. Using 

the automorphism f of G as given in the proof of Theorem 13, it can be shown that if (i) is 

satisfied, then G can be decomposed into s cycles and G~-C(2n/s,s,  rl) with 

(r - 3)s - (r + 1)rl (mod 4n). However, as rs - r + 1 + 3s (mod 4n), we have rl = I. Hence 

G is Hamiltonian laceable, by Lemma 12. Similarly, if(ii) is satisfied, then G ~- C(2n/t, t, rl) 

with (r + 3)t - ( r -  1)rl (mod 4n). Again, the condition rt = r -  1 - 3 t  (mod 4n) ensures 
that r~ = 1 and so G is Hamiltonian laceable, by Lemma 12. [] 

Corollary 15. All C(2n, 1, r) are Hamiltonian laceable when n is even. 

Proof. This follows from Theorem 13 and the fact that  either (r - 1)/2 or  (r + 1)/2 is 

even. [] 

4. Hamiltonian laceability of sufficiently large brick-products 

A path of the form x J P -  1 [m] is called a loop and will be denoted by [m], whereas, 

a path of  the form x J P [ m ] J - I P [ k ] ,  with m + k = r + 1 is called an (k,m) - twist (or 
simply a twist) and will be denoted by [klm].  

The tail-digraph T[r] is defined as follows. 
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There  are r - 2  vertices, labeled by [2 ] , [4 ]  . . . . .  [ r - l ]  and [ r - 2 1 3 ] ,  
[r  - 415] . . . . .  [31r - 2]. Every vertex labeled by [u]  is joined to a vertex labeled by [v] 
if u + v = r + 1; each vertex labeled by [u]  is joined to a vertex labeled by [wlv ] if 
u + w = r; each vertex labeled by [u I v] is joined to a vertex labeled by [w] if 
v + w = r; whereas,  each vertex labeled by [ulv] is joined to a vertex labeled by [wly ]  
if u - w = 2 (or y - v = 2) (see the following figures). 

[r-213] [r-4151 

, - 3  (mod 4) 

[31r-21 [51r-41 

[r-2131 [r-415] 

T[~]: 

r--1 (mod 4) [~ 

[3[r-21 15[r-4] 

Remark .  As shown in the figures above,  there are essentially two kinds of tail- 
d igraphs  T i t ] ,  depending on whether  r is congruent  to 1 or  3 modu lo  4. For  example,  
the tai l-digraphs T I l l ]  and T[13]  are given in the following figures. 

T[13]:  

T[ I1] :  [1o] ~ -~ 

[913] [7[5] 

[319] [517] 

[1113J [gls] 

[ 17l 

[3111] [519] 
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The weight w(x) of each vertex x in T[r] is defined by 

m if x = [m], 
w(x) = 

r + 1 otherwise (i.e. if x = [aib] for some a,b). 

A sequence 5 e = sis2 ... sm of vertices of  T[r] is called a trail if each si is joined to 

si+ 1 by an arc for each i = 1, 2 . . . . .  m - 1. The length f ( 5  a) of the trail 5e is defined as 

t(6e) = ~ w(si). 
i = l  

By interpret ing each vertex [a[b] in 5P as a twist and each vertex Ira] 
either as P - l [ m ]  if [m] = s~ or as a loop J P - l [ m ]  otherwise, it is easy to see that  

a trail 5 a of  length k ~< 2n will induce, in the natural  way, a gapless path  x5 p of 
order  k in G with initial vertex x, where x is any odd vertex in G. For  example,  let 

50 = [2] [ 11 ] 3] [ 10] [3 [ 11 ] [2] [ 11 [ 3] [9 [ 5] [8] be a trail in T [  13]. Then the length of 

5e is 2 +  1 4 +  1 0 +  1 4 + 2 +  1 4 + 1 4 + 8 = 7 8  and the pa th  induced by 5 a with 
initial vertex 13 is 

(13)(12)(25)(26)(27)(14)(15)... (24)(37)(36)... 

• .-(28)(41)(42) ... (51)(38)(39)(40)(53)(52)(65)(66)(67)(54)(55)-.. 

• ..(64)(77)(78)... (81)(68)(69)... (76)(89)(88)... (82). 

Note  that, except for the first vertex [2], the trail Se can be uniquely determined by the 
symbol  

[2] tltlttl 

where each t is a twist and each l is a loop. We shall adop t  this abbrevia t ion  

th roughou t  the following discussion. 

L e m m a  16. For any two vertices [a]  and [b] in T[r]  and any even nonnegative integer 

i~< r -  1, there exists a trail 6 a = [a]sls  2 ... sk[b ] in T[r] such that the length f of  

sis2 ...SR is at most (r- -  3)(r + l) + 4 and f - i ( m o d r  + 1). 

Proof. We shall only consider the case r = 3(mod4) .  The  other  case where 
r = 1 (mod 4) is similar. 

Let e = (r - 3)/2, L = {2, 4, . . . ,  e} and R = {e + 2, e + 4, .. . ,  r - 1}. For  any element 
a in L w R, we shall write a T (resp. a ~ ) to mean  that  a e L (resp. a e R). Also, for any 
a, b e L w R, we shall write (a --* b) if any of the following condit ions hold: 

(1) a T , b T  and a ~< b; 
(2) aT,b+ a n d a ~ < r - l - b ;  

(3) a+,bT a n d r - l - a < b ;  
(4) a + , b ~  a n d b ~ < a .  
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F u r t h e r m o r e ,  for  a n y  a, b E L w R wi th  (a ~ b), we shal l  def ine II a --* b II as follows: 

(1) if a T, b T, a n d  (a -~ b), then  II a ~ b II . . . .  

(2) if a T, b ~, and  (a ~ b), then  [I a ~ b II - - -  

(3) if a ~, b T, a n d  (a --* b), then  II a ~ b II = 

(4) if a +, b +, a n d  (a --* b), then  II a - - .  b 11 . . . .  

b a 
+ 1; 

2 2 

r - I  - b  a 

2 2 

b r - 1  - a  

2 2 

a b 
+ 1 .  

2 2 

+ 1 ;  

- - + l ;  

N o w ,  let a, b, i ~ L w R. W e  shal l  give be low a requ i red  trail  in T[r] f r o m  [ a ]  to  [b]  

sa t i s fying the  g iven  cond i t ions ,  for  each  of  the  fo l lowing  poss ib le  cases.  

Case 1: aT,bT a n d  i T. R e q u i r e d  trail: 

[ a ]  t'l a -  e IIt Ili - e it [ i l t  Ili ~ e 11 t IIb ~ e II [b] .  

Case 2.1: a T, b T, i ~ ,  (a ~ i) and  (b--* i). R e q u i r e d  trail: 

[ a ]  t II " ' `  II [ i ]  t l ib" 'll [ b ] .  

Case 2.2: a T, b T, i J,, (a --, i) a n d  (i --* b). Re qu i r ed  trail: 

[ a ]  t ;I" ~ "  - 2),I [ i  - 2 ]  t II 2 ~ .  - 2)II [ 2 ]  t 112 ~ e,I t II ~ - . ,  [ b ] .  

Case 2.3: a T, b T, i J., (i --, a) a n d  (b ~ i). R e q u i r e d  trail: 

[ a ]  t iI. ~e N t II 2 ~ e, [2]  t It 2 ~ ,  - 2), [i --  2]  t IIb ~ ,  - 2), [b] .  

Case 2.4: a T, b T, i +,  (i --, a), (i ---, b) a n d  i ¢ (r + 5)/2. R e q u i r e d  trail: 

[ a ]  t" a - ~ . ,  t" 2 - - e  II [ 2 ]  t 112 - - .  - 4), [ i  - 4 ]  t It 2 ~ ,  - 4) 11 [ 2 ]  t It E ~ e  It t" b - e ,  [ b ] .  

Case 2.5: a T, b T, i $,  (i ~ a), (i -~ b) a n d  i = (r + 5)/2. R e q u i r e d  trail: 

[ a ]  t Ila ~ell [i  - 2]  filE ~ e l l  [2]  fiE ~ e l l t l l b  ~ e l l  [b] .  

Case 3.1: aT,b~,  iT a n d  ( i ~  b). R e q u i r e d  trail: 

[ a ]  t Ila- ,ll tll,~ ell [ i ]  t l l i-  bll [b] .  

Case 3.2: a T, b ~, i T a n d  (b ~ i). R e q u i r e d  trail: 

[ a ]  t II a - -  e 11 t ]l (i - -  2)  ~ e  II [ i  - -  2] t" (' - E ) - .  il t" :  ~ "" [2]  t" 2 ~ b II [b]  

o r  

[a]tll"~e"tllE~'ll[i][b] i f / = E a n d b = r - 1 .  

Case 4.1: aT  , b + ,  i ~ ,  (a--* i) a n d  i ¢ (r + 1)/2. R e q u i r e d  trail: 

[ a ]  t II a - -  (i - -  2) ll [ i  - -  2] t "E ~ ( i  - E), [2]  t IIE ~ b [I [b]  
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o r  

[ a ]  t I l a ' " -2 ) l l  [ i  - 2 ] t  ll2~"-2)11 [ 2 ]  t-b] i f  b = r - 1. 

C a s e  4.2: a T, b +, i +, (a ~ i) and  i = (r + 1)/2. R e q u i r e d  t ra i l :  

t - a - ]  t It a - - e  II t [-i - -  2]  t t II 2 ~ ,  II [2-] t" 2 ~ b, I-b] 

o r  

[ a ] t l l a ' ' l l t [ i  - -  2 - ] t t l lZ ' e l l [2]  [ b ]  i f  b = r - 1. 

C a s e  4.3: a T,  b ~ ,  i +,  (i ~ a)  a n d  i 4: (r  + 5)/2. R e q u i r e d  t ra i l :  

[-03 t 11 a - - e  It t 112 - - e  11 [23 t [12 " (i -- 4)1[ [ i  - 4" ]  t 112 " (i - 4)11 [ 2 ]  t [12 " b 11 [ b " ]  

o r  

[ a l  t ila ~ e  II t  112 --*e l[ [-2-] t []2 - (i - 4) 1] [ i  - 4] t 1 ] 2 -  0 - 4) 11 [2-] [b] i f  b = r - 1. 

C a s e  4.4: a T,  b ~ ,  i ~ ,  (i --* a )  a n d  i = (r + 5)/2. R e q u i r e d  t ra i l :  

[ a ]  t I l a ' '  II [ i  - 2]  t 112 - - e  ]1 I - 2 ]  t 112 --* b II t -b"]  

o r  

[ a ]  t " " "  ell I-i - -  2 ]  t "2"  ell [2"] [ b ]  if  b = r - 1. 

C a s e  5.1: a +,  b T,  i T a n d  (i ~ a). R e q u i r e d  t ra i l :  

[ a ]  t I1'" a, [ i ]  t " ' ' " t  t , b -  ,11 [b"]. 

C a s e  5.2: a ~ ,  b T, i 1" a n d  (a ~ i). R e q u i r e d  t ra i l :  

[ a ]  t 112 - . ,  [ 2 ]  t I, 2 - .  II t II. - 2 ) - .  II [ i  - 2]  t"" - 2 ) - .  II t II b - .  II [ b ]  

o r  

o r  

o r  

o r  

[ a ]  [-2] t " :  - e ,  t II (~ - 2 ) - ,  II [ i  - 2]  t II, - 2) ~ ,  It t II b ~e  It I-b] i f  a = r - -  1, i # 2; 

[ a ] [ 2 ] t l l 2 " ' l l t " b ' e l t [ b ]  i f  i = 2. 

C a s e  6.1: a J , , b T  , i ~ ,  (b--* i) a n d  i 4: (r + 1)/2. R e q u i r e d  t ra i l :  

[ a ] t l l 2 - a , [ 2 ] t l t 2 - ( i - 2 ) l r [ i  _ 2-] t l lb -  0-2)11 [ b l .  

C a s e  6.2: a ~ ,  b T, i ~ ,  (b ~ i) a n d  i = (r  + 1)/2. R e q u i r e d  t ra i l :  

[ a ]  t 112" a II [ 2 ]  t IIz- ellt [ i  - -  21 t t lib-- ell [b-] .  

C a s e  6.3: a J., b T, i ~. a n d  (i ~ b). R e q u i r e d  t ra i l :  

[ a ]  t "2"  a, [ 2 ]  t "2"  o -4)11 [ i  - 4 ]  t It2~ o -4),  [ 2 ]  t "2"  ,It t ,b - . , l l  [ b ]  

[ a " ] t "2 "a lb [2] t "2~O- 2 ) l l [ i  - -  2 ] [ b ]  i f  b = r - i + 3; 

I-a] t II 2-. ail [2"] t" 2 ~ (i -- 2), [ i  - -  2"] t [b"] i f  b = r - i + 1. 
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Case 7.1: a~ , b ~ , i T ,  ( i ~  a) a n d  i :~ 2. Requ i red  trail: 

I 'a]  t I1(, - 2) ~ ~ II [i - 2-1 t It (, - 2) ~ ,  II t II 2 -  e II [2 ]  t It 2 ~ b It rb-]. 

Case 7.2: a ~, b ~., i T, (i ~ a) a n d  i = 2. Requ i red  trail: 

[ a ]  t"2 ~ o II [2-] t 112 -. b, [b] .  

Case 7.3: a ~., b J,, i T, (a ~ i) a n d  (i ~ b). Requi red  trail: 

[a]t"2"a"[2]tll2-*elltW-2)~e"[i -- 2] t " " -  2~  bit [b ]  

Case 7.4: a ,L, b ~, i T, (a ~ i), (b --* i) and  i ~ 4. Requi red  trail: 

[a]tll2"all[2]tll2-*elltll(i--4)~ell[i --4-]tll(i-4)~elltll2~ell[2-]tll2~bll[b-] 
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[ a ]  t II 2 ~ a, [ 2 ]  t II 2 -. e, t "(i - 2) ~e IL [i --  2] t [b]  if b = r + 1 - i. 

Case 7.5: a ~,, b ~,, i ] ' ,  (a ~ i), (b ~ i) and  i = 4. Requ i red  trail: 

[ a ]  t [12 ~ a ]1 [ 2 ]  t" 2 -~e  II t II 2 ~ e  [I [2"] t l{2 ~ b [[ [ b ] .  

Case 8.1: a ~., b +, i ~. a n d  i > (r + 5)/2. Requ i red  trail: 

[ a " ]  t pl 2 ~ a ,  [ 2 " ]  t "~ ~ (' - ~)" [ i  - -  4"] t "2 ~ (' - ~)" [2 -1  t"  ~ "  ~'l [ b - ] .  

Case 8.2: a &, b ~, i $ a n d  i ~< (r -t- 5)/2. Requi red  trail: 

[a"]tll2~all[2]tll2~elltll(i-4)~ell[i __4"]tlt(i-4)"elltll2~ell[2"]tll2~bll[b"]. [] 

R e m a r k .  N o t e  tha t  when  a = r - 1, b = 2 and  i = 4, then the requi red  trial is 

[ r  - 1] [2 ]  t "2" e , t ,2- . , ,  [2 ]  t "2-" ell t ,2~ ell[2], 

which  a t ta ins  the m a x i m a l  length (r - 3)(r + 1) + 4 as s tated in L e m m a  16. 

By vir tue of  L e m m a  16 and  the fact tha t  each  trail  in T[r"] induces  a gapless pa th  in 

G with a given initial vertex, we have  the fol lowing corol lary .  

C o r o l l a r y  17. For any two paths x P - 1  [m]  and yP[k-I in G, where m, k ~ L ~) R, and 

x is an odd integer and y an even inte#er such that y - x >t (r - 3)(r + 1) + 4, there 

exists a gapless path P in G with initial vertex x, terminal vertex y and 

V(P)  = {x - m  + 1,x  - m  + 2 . . . . .  y + k - l } .  

T h e o r e m  18. Let  r be an odd integer with r >1 7. I f  n >1 r 2 - r + 1, then G = C(2n, 1, r) 

is Hamiltonian laceable. 
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Proof.  We  first in t roduce  some sequences of  pa ths  and vertices in G as follows. 

Let s ~  { - 3 , - 5  . . . . .  - r  + 2 } .  We define, recursively, three sequences of  pa ths  

Pi, P'i, P'i', i = 1, 2 . . . . .  as follows: 

e~ = OP[2] ,  

P'I = P I J - 1 P [  s + r], 

P'[ = P ' , J - ' P [ - s  - I ] ;  

and  for k > 1, we put  

Pk = Vi ' -  l J -  I p [ 2 ] ,  

P'k = P k J -  I P [  s +r-I ,  

e'k' = P ' k J - ' P [ - s  - 1 ] .  

Next,  for each k = 1, 2 . . . . .  we let 

Xk = end vertex of  Pk, 

x~, = end vertex of  P;,, 

t t  

Xk = end vertex of  P~,', 

Yk = Xk -- 2, 

y~ = x ~ - s - r ,  

y~,' = x~' + s + 1. 

....... :<  ..... ! i 

It can be shown tha t  for any  negative odd  integer  x ~> - 2n, there  exist s and  i such 

that  x ~ {xi,x' i ,x ' i ' ,  yi, y'i, y'i'}. 

As G is vertex transi t ive,  we need only to show that,  for any odd  vertex x in G, there 

exists a H a m i l t o n i a n  pa th  from 0 to x. We have the fol lowing two cases to consider .  

Case  1 : 0  < x ~< n. In this case, by the a rgument  used in the p roo f  of" L e m m a  5, 

there exists a gapless  pa th  P from 0 to some posi t ive odd  vertex y < r such tha t  

V(P)  = {0, 1 . . . . .  z}, where z is an odd  posi t ive vertex with x - z < r (see the i l lustra-  

t ion in the fol lowing figure, where r = 7, x = 29, y = 3, z = 27). 

_" . . . . . . .  O 0  
0 2 Y 8 9 14 20  z z 
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By the corollary to Lemma 16, there exists a path Q from x to 2n + y - r ,  
where V(Q) = {z + 1, z + 2 . . . . .  2n - 1}. Then PQ-  ~ will be a Hamiltonian path in 
G from 0 to x. (Note here that ( 2 n + y - r ) - x t > ( 2 n + y - r ) - n = n + y - r ~ >  
r 2 - -  r q- 1 + y -- r > r 2 - 2r + 1 = (r - 3)(r + 1) + 4.) 

Case 2: - n  ~< x < 0. As mentioned above, there exists x l ,  s and i such that 

x e {xi, x'i,x'[,yi,Y'i,y'i'}. I f x  = xi, then let P be the gapless path 

P'/- 1S - 1p -  ~ [ _  s]( j p - 1  [s + r ] S P -  1 [2] J P -  1 [_  s - 1]) ' -  ' 

from 0 to x ' l + l  with V ( P ) = { x ' ~ + l , x ' ~ + 2  . . . . .  xl}. By the corollary to 
Lemma 16, G contains a gapless path Q from x ' l + l + r  to y i + 2 - r  with 

V(Q) = {xl + l , x l  + 2 . . . . .  2n + x'i}. Then VQ(yi + 2)(yi + 3)... xi will be a 
Hamiltonian path in G from 0 to x~. 

The cases x = x'~ or x ' / c an  be settled in like manner. 
If x = y~, then let P be the gapless path 

PiJ -1P[s  + r + 1 ] ( J P - l [ s  + r ] J P - l [ 2 ] J P - 1 [ - s - 1 ] )  i-1 

from 0 to x ' ~ + l  with V ( P ) = { y ' i + l , y ' i + 2  . . . . .  x~}. By the corollary to 
Lemma 16, G contains a gapless path Q from x'l + l + r  to x ' i+  2 - r  

with V ( Q ) = { x l + l , x ~ + 2  . . . . .  2n+y'~}. Then PQ(x'i+2)(x'~+3)...y~ will be 
a Hamiltonian path in G from 0 to y~. 

The cases x = y'~ or y ' / c a n  be settled in like manner. [] 

5. A final remark 

Although the results in the paper show that most C(2n, 1, r) are Hamiltonian 

laceable, with which it is possible to deduce the Hamiltonian laceability of some 
classes of C(2n, t, r) for odd t, the general problem whether or not all brick-products 
are Hamiltonian laceable remains open. 
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