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Abstract

Using the concept of brick-products, Alspach and Zhang showed in Alspach and Zhang
(1989) that all cubic Cayley graphs over dihedral groups are Hamiltonian. It is also conjectured
that all brick-products C(2n, m, r) are Hamiltonian laceable, in the sense that any two vertices at
odd distance apart can be joined by a Hamiltonian path. In this paper, we shall study the
Hamiltonian laceability of brick-products C(2n,m,r) with only one cycle (ie. m = 1). To be
more specific, we shall provide a technique with which we can show that when the chord length
r is 3,57 or 9, the corresponding brick-products are Hamiltonian laceable. Let
s = ged((r + 1)/2,n) and ¢ = ged((r — 1)/2, n). We then show that the brick-product C(2n, 1,r) is
Hamiltonian laceable if (i) st is even; (i) sis odd and rs = r + 1 + 3s{(mod 4n); or (ii1) ¢ is odd
and rt = r —1 — 3t(mod 4n). In general, when n is sufficiently large, say n > r? — r + 1, then the
brick-product is also Hamiltonian laceable.

1. Introduction

Let G be a group and S a generating subset of G such that the identity element 1 ¢ S
and x ! € § for each x € S. The Cayley graph X (G;S) on a group G has the elements
of G as its vertices and edges joining g and gs for all g € G and s € S. The question
whether or not all Cayley graphs are Hamiltonian still remains unsolved, though it
was shown in [3] that all Cayley graphs over Abelian groups which are neither
bipartite nor isomorphic to a cycle are Hamiltonian-connected (in the sense that any
two vertices can be joined by a Hamiltonian path). For the case when the groups
involved are not Abelian, the problem seems extremely difficult. Even for dihedral
groups D,, it was only shown in [2] that the Cayley graphs are Hamiltonian when
they are cubic. In the same paper, it was shown that when the Cayley graph is

* Corresponding author.

0012-365X/96/815.00 © 1996—Elsevier Science B.V. All rights reserved
SSDI 0012-365X(94)00077-V



20 B. Alspach et al. | Discrete Mathematics 151 (1996) 19-38

3 2

C(10,1,5) : 50 *0

(2,5)

C(10,2,4)

@y (35)  (3.6) (3,0

(10,3, 5)
Fig. 1.
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X (D,,S), where S is a minimal generating set of D, consisting of three elements of
order 2, it is isomorphic to a brick-product as defined below:

Definition. Let m,n and r be a positive integers. Let C,, = 012...(2n —1)0 denote
a cycle of order 2n. The (m, r)-brick-product of C,,,denoted by C(2n, m, r), is defined in
two cases as follows.

For m = 1, we require that r be odd and greater than 1. Then C(2n, m, r) is obtained
from C,, by adding chords 2k(2k + r), k = 1, ...,n, where the computation is per-
formed modulo 2n.

For m > 1, we require that m + r be even. Then C(2n,m,r) is obtained by first
taking the disjoint union of m copies of C,,, namely C,,(1), C2,(2),...,C1,(m),
where for each i=1,2,....m, C,,(i)=(,0)(i1)...(i,2n). Next, for each odd
i=1,2,....,m—1and each even k =0,1,...,2n — 2, an edge (called a brick edge) is
drawn to join (i, k) to (i + 1,k), whereas, for each eveni = 1,2,...,m — 1 and each odd
k=1,2,...,2n — 1, an edge (also called a brick edge) is drawn to join (i, k) to (i + 1, k).
Finally, for each odd k = 1,2,...,2n — 1, an edge (called a hooking edge) is drawn to
join (1,k) to (m k + r). An edge in C(2n,m,r) which is neither a brick edge nor
a hooking edge is called a flat edge.

Examples. The brick-products C(10, 1, 5), C(10, 2,4) and C(10, 3, 5) are given in Fig. 1.

Using the concept of brick-products, Alspach and Zhang show in [2] that all cubic
Cayley graphs over dihedral groups are Hamiltonian. It is also conjectured that all
brick-products C(2n, m, r) are Hamiltonian laceable (in the sense that any two vertices
at odd distance apart can be joined by a Hamiltonian path). In [1], it was shown that
the conjecture is true for m even. In this paper, we shall study the Hamiltonian
laceability of brick-products with only one cycle (i.e. m = 1). To be more specific, we
shall show that when r is 3 or 5, the corresponding brick-products are Hamiltonian
laceable. The technique employed can also be used to show the Hamiltonian laceability
of brick-products with r = 7 or 9. Let s = ged((r + 1)/2,n) and ¢ = ged((r — 1)/2, n).
We then show that the brick-product C(2n, 1, r} is Hamiltonian laceable if (i) st is even;
(i) s is odd and rs = r + 1 + 3s(mod 4n); or (iii) t is odd and rt =r —1 — 3t (mod 4n).
In general, when n is sufficiently large, say n > r? — r + 1, then the brick-product is
also Hamiltonian laceable.

2. Cycles with chords of small length

Throughout this paper, we let G = C(2n,1,r) and denote the vertices of G by
{1,2,...,2n}. Note that the edges of G are 12, 23,...,(2n —1)(2n), (2n)1 and
(2k)2k + r)fork = 1,2, ...,n where 2k + r is computed modulo 2n. We shall call each
of the edges (2k)(2k + r) a chord edge and r the chord length of G.

In this section, we shall show that if the chord length r =3 or 5, then the
brick-products involved are Hamiltonian laceable. The technique used here can also
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be applied to prove the Hamiltonian laceability of G when the chord length r is 7 or
9 (but not for r > 11). First, we need to introduce the following terminologies.
Let m < 2n. For each vertex x of G, we shall write:

xP[m]=x(x+ 1)(x +2).--(x + m—1),
xP7 ' m]=x(x —1)(x =2)--(x —m+ 1),
xJ=x(x+r) forevenx, xJ '=x(x—r) forodd x.

Note that P[m] and P~ '[m] are paths of order m, whereas, xJ and xJ ~! are chord
edges. The symbols: xP?[m], x(JP~![m])?, etc. are self-explanatory.

A path Pin G from x to y is said to be gapless if there exists a, b € Z with a < b, such
that V(P) = [a,b](= {a,a + 1,a + 2,...,b}) and each chord edge of P is of the form
e(e + r) with both e,e + r € [a, b]. We shall call b the extremal vertex of P.

Note that a and b may be negative, as vertices of the form 2n — s may also be
denoted by —s.

The following three lemmas are straightforward.

Lemma 1. Let r = 3. Then 1(P~1[2]J)*P~'[2] is a gapless path in G of order 2k + 2
Sfrom 1 to 2k, where 2k + 2 < 2n (see the illustration in the following figure for k = 3).

Lemma 2. Let r=3. Then (P '[2]))YP[2]/)"P 'BY(J P12 U is
a gapless path in G of order 2k + 4m + 2 from 1 to 2k, where 2k + 4m + 2 < 2n and
m = 0 (see the illustration in the following figure for k = 3, m = 2).

01 23 45 6 7 8 910111213 15

Lemma 3. Letr = 3. Then 1(P~*[2]J)4P[2]J)"P[3}(J P '[2])"J ~lis a gapless
pathin G of order 2k + 4m + 4 from 1 to 2k, where 2k + 4m + 4 < 2n and m = 0 (see
the illustration in the following figure for k = 3, m = 2).

01 2 3 4 5 6 7 8 9 101112131415 17

Combining the above three lemmas, we see that there exists a Hamiltonian path in
G from 1 to 2k for each k < n. However, as G is a Cayley graph and so vertex-
transitive, we have the following theorem.
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Theorem 4. C(2n, 1, 3) is Hamiltonian laceable.
We shall now consider the case when the chord length r is 5.

Lemma 5. Let ¢, d be vertices of G with c odd and d even. If there exists a gapless path
P of order m from c to d in G, then there exists a gapless path from ¢ to d in G of order
m + k(r — 1), for each non-negative integer k with m + k(r —1) < 2n.

Proof. Let b be the extremal vertex of P. Then P must contain the edge
b(b —1). Now, replacing the edge bb—-1) in P by the path
b(P[r—1]J¥P '[rWJ P~ '[r—1])"'J (b —1) yields a gapless path in G from
ctod of order m + 2k(r —1). On the other hand, replacing the edge b(b — 1) in P by the
path b(P[r —11J)P[r)(J " 'P~'[r —1])*J "' (b —1) yields a gapless path in G from
c to d of order m + (2k + 1)(r —1). O

Lemma 6. If there exists a gapless path Q of order m from 1 to 2u in G with extremal
vertex 2s + 1, where 2s + 1 — 2u < r, then for each k with m + k(r + 1) < 2n, there
exists a gapless path in G of order m + k(r + 1) from 1 to 2u + k(r + 1).

Proof. Let ¢ = r — (25 + 1 — 2u). Then the required gapless path is
QUJP '[q]lJP '[2s + 2 —2u])- O
Let 2u, 2v be integers. The pair (24, 2v) is said to be an attainable pair if there exists
a gapless path of order 2u in G from 1 to 2v. Thus, by definition, if (2u, 2v) is attainable

and the order of G is 2u, then G contains a Hamiltonian path from 1 to 2v.
As an immediate consequence of Lemma 5, we have the following corollary.

Corollary 7. If (2u,2v) is attainable, then (2u + k(r — 1), 2v) is also attainable for any
non-negative integer k such that 2u + k(r — 1) < 2n.

Also, as an immediate consequence of Lemma 6, we have the following corollary.

Corollary 8. If there exists a gapless path of order m from 1 to 2u in G with extremal
vertex 2s + 1, where 2s+ 1 —2u<r, then for each k with m+ k(r +1) < 2n
(m + k(r + 1), 2u + k(r + 1)) is attainable.

Theorem 9. G = C(2n, 1, 5) is Hamiltonian laceable.

Proof. As G is vertex transitive, we need only to show that there exists a Hamiltonian
path in G from 1 to 2k for any k < n. By virtue of the corollaries to Lemmas 5 and 6,
we need only to establish the following nine claims.

Claim 1. There exists a Hamiltonian path in G from 1 to 2. Indeed, a required path is
12n)(2n —1)--- 32,
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Claim 2. There exists a Hamiltonian path in G from 1 to 6. Indeed, a required path is
12345(2n)(2n —1)--- 76.

Claim 3. (8,4) is attainable. Indeed, a required path is 123(— 2)(— 1)054.
Claim 4. (10, 4) is attainable. Indeed, a required path is 10(—1)(— 2)327654.

Claim 5. (12,8) is attainable. Indeed, a required path is 1P '[4]JP '[2]JP ![4]
JP~1[2] (as shown below).
-2 1 2 3 4 7 8 9
Claim 6. (14,8) is attainable. Indeed, a required path is 1P[3]J 'P[3]JP ![2]
JP[3]J 'P[3] (as shown below).
-2 0 1 3 4 5 6 8 9 11
Claim 7. (16, 12) is attainable. Indeed, a required path is 1P[3]J 'P[3]JP '[2]
JP[3}J 'P[3])JP '[2] (as shown below).
-2 0 1 3 4 5 6 8 9 11 12 13
Claim 8. (18,12) is attainable. Indeed, a required path is 1P[3]J *P[3]JP'[2]
JP~1[4]JP~1[2]JP '[4] (as shown below).
-2 01 3 4 5 6 9 10 11 12 15

Claim 9. There exists a Hamiltonian path in G from 1 to 2n — 2.

Again, by virtue of the corollary to Lemma 6, we need only to establish the
following four subclaims.

Subclaim 1. (8, 6) is attainable. Indeed, a required path is 10543276,

Subclaim 2. (10, 8) is artainable. Indeed, a required path is 1056723498.
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Subclaim 3. (18, 16) is attainable. Indeed, a required path is 1056723498(13)(14)(15)
(10)(1 1)(12)(17)(16).

Subclaim 4. If G is of order 12, then there exists a Hamiltonian path in G from 1 to
2n — 2. Indeed, a required path is 123450(— 1)(—6}(—5)(—4)}(—3)(—2). O

By using a similar argument as that for Theorem 9, we can continue to show that
C(2n,1,7) and C(2n,1,9) are Hamiltonian laceable. However, the number of cases we
need to consider increases considerably. Also, the same approach is no longer valid
when the chord length is more than 9. In the next two sections, we shall study the
Hamiltonian laceability of C(2n, 1,r) when the chord length r is larger than 5.

3. Decomposable brick-products

Let G = C(2n,1,r) whose vertices are labeled 1,2,...,2n, as mentioned before.
Let G’ and G” denote, respectively, the sequence 12(2 + r)(2 + r + 1)(2 + 2r + 1) x
2+2r+2)-RL+n—-Nr+n-2))2+m—-1)r +(n—1)) and the sequence
1 =2 —-r2—=2r)---(n—(n— r}n—nr). If G’ and G” are both Hamiltonian
cycles of G, then we say the graph G is indecomposable. Otherwise, G is said to be
decomposable.

Lemma 10. Ler G = C(2n,3,1). Then, for any odd y with 1 < y < 2n, the subgraph of
G induced by G(y) = {(x,k)|1 < k < y} — {(1,1)} contains a Hamiltonian path from
(2,y) to (1, y).
Proof. If y = 3, then a required path is

P(3) =(2,3)(3,3)(3,2)(3, 1)(2, 1)(2,2)(1,2)(1, 3).

If y = 5, then a required path is P(5) = (2,5)(3,5)(3,4)(P(3)) " '(2,4)(1,4)(1,5). If y = 7,
then a required path is P(7) = (2,7)(3,7)(3,6)(P(5))~ (2, 6)(1,6)(1,7). The result now
follows by induction on y (see the illustration in the figure below). O

(2,1) . -'7-" et g(27)

@ e BO00O000000 .
]

@,1) (32) (3:3) (34) (35) (3:8) (3.7)

Lemma 11. Ler G = C(2n,3,1). For any odd y with 1 <y < 2n and any positive
integer k with y + 4k < 2n + 1, the subgraph of G induced by {(i,j)|i=1,2,3;
y €j < y + 4k} contains a Hamiltonian path from (1,y) to (2, ).
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Proof. We shall prove by induction on k. If k = 1, a required path is (1, y)(1,y + 1)
2,y + D2y + 22,y +3)(Ly+ 3Ly + 23,y + 33,y + 2B,y + DG y)2 ).

Assume that the result hold for k = N and consider the case when k = N + 1. By
inductive hypothesis, there exists a Hamiltonian path P in the subgraph of G induced
by {(,j)i=1,23; y+4<j<y+ 4k} from (1,y +4) to 2,y + 4). Then, (1,y)
(Ly+ D2,y + D2,y +2)2,y+ )P ',y +3)(1,y+2)3,y+ 3)3,y+ 2)
2,y + 13, y)2,y) will be a required Hamiltonian path (see the figure shown below
fork=2). O

Uy Lyt 0 ,.aD
I P \ [ ITTTIT '™ . .
¢ P N [ YRTrrrp O ieecee @eneeneenn.
3,y) (3,y+7)

Lemma 12. C(2n,2m + 1,1) is Hamiltonian laceable.

Proof. We shall first show that the result is true for m = 1. As C(2n, 3,1) is a Cayley
graph and so vertex transitive, we need only to show that there exists a Hamiltonian
path from x = (1, 1) in the first cycle C,,(1) to any other vertex y at odd distance apart
from x.

Case 1: y is in the third cycle C,,(3).

In this case, y = (3, k) where k is even. If k = 2 then a required Hamiltonian path is
(1, (1, 2n)(2,2n)(1,2n — 1) --- (2, 3)(3,3)(3,4) --- (3, 2n)(1, 2n - 1)(1,2n - 2) --- (1, 2)
(2,2)(2, 1)(3, 1)(3, 2) (see the illustration in the following figure).

(1,1)e—4—— \I(l,zn)
\ ¢ (2,2n)
AN

G0 (3.2) (3,3) (3,2n)

If k = 2n, then a required Hamiltonian path is
(1, D3E,2)3E, DR, D)2,2)(1,2)(,3)---(1,2n)(2,2n)(2,2n —1) - -+
(2,3)3,3)(3,4) -+ (3,2n)

(see the illustration in the following figure).
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(l,l)\ (1,2n)
(2,2n)

(3,1) (3.2) (33) (3,2n)

Now, let 2 < k < 2n. By Lemma 10, there exists a Hamiltonian path P in the
induced subgraph G(k —1) from (2,k —1) to (1,k —1). We then have a Hamiltonian
path in G from (1,1) to (3,k) given by (1, 1)(1,2n)(2,2n)(2,2n —1)--- (2,2k — 1) x
P(Lk—1(1,k)---(1,2n —1)(3,2n) (3,2n —1)--- (3,k) (see the illustration in the fol-
lowing figure).

Case 2: y is in the first cycle C,,(1).

In this case, y = (1, k) where k is even.

If k = 2, then a required Hamiltonian path is (1, 1)(1,2n)(2,2n)(2,2n —1)---(2,1)
(3,13,2)---(3,2n)(1,2n —1)(1,2n —-2) --- (1, 2).

If k = 2n, then a required Hamiltonian path is (1, 1)(3,2)(3, 1)(3,2n)(3,2n —1) ---
(3,3)(2,3)(2,4)--- (2,2n)(2, 1)(2, 2)(1, 2)(1, 3) --- (1, 2n).

Now, let 2 < k < 2n. Then by Lemma 10, the induced subgraph G(k — 1) contains
a Hamiltonian path P from (2,k —1) to (1, k — 1). Then a required Hamiltonian path
in G from (1,1) to (1,k) is given by (1, 1)(1,2n)(2,2n)(2,2n —1)--- 2,k 1)
P(l,k —1)@3,k)3,k+1)---(3,2n)(1,2n —1)(1,2n —2) --- (1, k).

Case 3. y lies in the second cycle C,,(2).

In this case y = (2, k) where k is odd.

If k=1, then a required Hamiltonian path is (1, 1)(3,2)(3, 1)(3,2n)(3,2n —1)---
(3,3)2,3)(2,4)--- (2,2n)(1,2n)(1, 2n — 1) --- (1, 2)(2, 2)(2, 1).

If k = 3, then a required Hamiltonian path is

(1, D3, 2)(3, 3)(3,4)(1, 3)(1, 2)(2, 2)(2, 1)(3, 1)(3, 2n)(3,2n = 1) - -
-3, 5)(2,9)(2,6) -+~ (2,2n)(1,2n)(1,2n —1) --- (1, 4)(2, 4)(2, 3).
If k = 5, then a required Hamiltonian path is
(1, 1)1, 2n)(1,2n —1) --- (1,4)(2,4)(2,3)(3,3)(3, 2)(3, 1)(3, 2n)(3,2n — 1) ---

(3,491, 3)(1,2)(2,2)(2, 1)(2,2n)(2,2n — 1) --- (2, 5).
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Hence we may now assume that k > 5. Now, if 2n — k — 1 is divisible by 4, then by
Lemma 11, there exists a Hamiltonian path P from (1,k +2) to (2,k + 2) in the
subgraph of G induced by {(i,j)li =1,2,3; k + 2 < j < 2n}. A required Hamiltonian
path in G is: (1,1)(1,2)---(1,k =12,k —1)(2,k —2) -+ (2, I)(3, 1)(3,2) --- (3, k + 1) x
(Lk)(1,k + 1) P2,k + 1)(2, k) (see the illustration in the following figure).

(1,1) (1,k) (1,k+2) (1,2n)
; P
N T .
(3,1) (3,k+1) (3,2n)

Finally, if 2n —k — 3 is divisible by 4, then again by Lemma 11, there exists
a Hamiltonian path P in the subgraph of G induced by {(ij)li=1,23;
k+2<j<2n—2}from(l,k +2)to (2,k +2). A required Hamiltonian path in G is
(1, 1)(1,2n)(1,2n —1)(3,2n)(3,2n — 1)(2,2n — 1)(2, 2n}(2, 1)(3, 1)(3, 2)(3, 3)(3,4)(1, 3)
(1,2)(2,2)(2,3)(2,4)(1,4)(1,5) - (1, k = D)2,k —1)(2,k —2) --- (2, 5)(3, 5)(3,6) ---
Gk +D(LENLE+1)P(2, k +1)(2,k).

This proves that the result is true for m = 1.

As in [1], Hamiltonian paths in C(2m,3,1) can be extended to those in
C(2n,2m + 1,1) for any positive integer m (see the illustrations in Figs. 2-7, where
Hamiltonian paths in Figs. 2-4 are extended to Hamiltonian paths in Figs. 5-7,
respectively). Hence C(2n,2m + 1,1) is Hamiltonian laceable. O

Fig. 3. A Hamiltonian path in C(10,3, 1} from (1, 1) to (3,4).
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Fig. 6. A Hamiltonian path in C(10,5, 1) from (1,1) to (5,4).

It is easy to see that a brick-product C(2n,1,r) is decomposable if and only if
ged((r + 1)/2,n) > 1 or ged((r —1)/2,n) > 1. We have

Theorem 13. Let G be the brick-product C(2n,1,r). Let s = gcd((r + 1)/2,n) and
t = ged((r —1)/2,n). If st is even, then G is Hamiltonian laceable.

Proof. Without loss of generality, we may assume that s is even. Then
C=1R2Q+nNR+r+DR+2r+ DNQR+2r+2)---(2 + kr + k —1) is a cycle, where
k = n/s. From the construction of C and the fact that the mapping f from G to
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Fig. 7. A Hamiltonian path in (10,5, 1) from (1, 1) to (1,4).

G defined by f(x) = x + 2 is an automorphism of G, 2h + C is a cycle which is either
disjoint with C or identical to C, for each positive integer h. There are exactly s such
cycles. In fact, G is isomorphic to C(2k, s, r,) for some even r,, and is thus Hamiltonian
laceable by a result in [1], since s is even. [J

Theorem 14. Let G be the brick-product C(2n,1,r). Let s = ged((r + 1)/2,n) and
t = ged((r —1)/2,n). Then G is Hamiltonian laceable if any one of the following
condition holds:

(i) s is odd and rs = r + 1 + 3s(mod 4n);

(ii) ¢ is odd and rt = r — 1 — 3t (mod 4n).

Proof. From the given conditions, it is easy to see that both s, ¢ are greater than 1. Using
the automorphism f of G as given in the proof of Theorem 13, it can be shown that if (i) is
satisfied, then G can be decomposed into s cycles and G = C(2n/s,s,r;) with
(r— 3)s =(r + Dr, (mod 4n). However, as rs =r + 1 + 3s(mod 4n), we have r, = 1. Hence
G is Hamiltonian laceable, by Lemma 12. Similarly, if (ii) is satisfied, then G =~ C(2n/t,t,r,)
with (r + 3)t = (r — 1)r, (mod 4n). Again, the condition rt = r — 1 — 3t (mod 4n) ensures
that r;, = 1 and so G is Hamiltonian laceable, by Lemma 12. O

Corollary 15. All C(2n, 1,r) are Hamiltonian laceable when n is even.

Proof. This follows from Theorem 13 and the fact that either (r —1)/2 or (r + 1)/2 1s
even. [

4. Hamiltonian laceability of sufficiently large brick-products

A path of the form xJP ~![m] is called a loop and will be denoted by [m], whereas,
a path of the form xJP[m]J ~! P[k], with m + k = r + 1 is called an (k, m) — twist (or
simply a twist) and will be denoted by [k|m].

The tail-digraph T[r] is defined as follows.
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There are r—2 vertices, labeled by [2],[4],...,[r—1] and [r—2|3],
[r —4|5],...,[3|r — 2]. Every vertex labeled by [u] is joined to a vertex labeled by [v]
if u+ v=r+1; each vertex labeled by [u] is joined to a vertex labeled by [w|v] if
u+w=r; each vertex labeled by [u|v] is joined to a vertex labeled by [w] if
v + w = r; whereas, each vertex labeled by [u|v] is joined to a vertex labeled by [w|y]
if u—w=2(or y —v=2) (see the following figures).

(r—213] [r—4}5) (232252
Tr):
r—1 2 r—3 1
r=3 (mod 4)[ boa (= ]
[3lr-2] [5]r—4] [251)242)
b e
Tl ‘
r=1 (mod 4)[,--1] = |'—1’—‘]
[8ir-2] [5|rj4] o (2521248

Remark. As shown in the figures above, there are essentially two kinds of tail-
digraphs T[r], depending on whether r is congruent to 1 or 3 modulo 4. For example,
the tail-digraphs T[11] and T[13] are given in the following figures.

(93] _ s
T(1): (o 2 ST .
Bls] 517
[11}3] _ [sps)

T[13): TOREET 10] |4 m]

(Bl [519)
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The weight w(x) of each vertex x in T[r] is defined by

i) = {m if x=[m],

r+1 otherwise (ie. if x = [alb] for some q,b).

A sequence ¥ = s;5; ... s, Of vertices of T[r] is called a trail if each s; is joined to
si+1 byanarcforeach i = 1,2,...,m — 1. The length £(¥) of the trail & is defined as

m

(L) =) wis).
i=1

By interpreting each vertex [a[b] in &% as a twist and each vertex [m]
either as P~ ![m] if [m] = s, or as a loop JP ~![m] otherwise, it is easy to see that
a trail & of length k < 2n will induce, in the natural way, a gapless path x% of
order k in G with initial vertex x, where x is any odd vertex in G. For example, let
& = [2][11)3][10] [3|11][2][11]3][9]5][8] be a trail in T[13]. Then the length of
& is2+144+10+14+2+ 14+ 14 + 8 = 78 and the path induced by & with
initial vertex 13 is

(13)(12)(25)(26)(27)(14)(15) --- (24)(37)(36) ---
-+ (28)(41)(42) --- (51)(38)(39)(40)(53)(52)(65)(66)(6T)(54)(55) ---
- (64)(77)(78) --- (81)(68)(69) --- (76)(89)(88) --- (82).

Note that, except for the first vertex [2], the trail & can be uniquely determined by the
symbol

[2]tltleel

where each ¢ is a twist and each [ is a loop. We shall adopt this abbreviation
throughout the following discussion.

Lemma 16. For any two vertices [a] and [b] in T[r] and any even nonnegative integer
i< r—1, there exists a trail & = [a]s,S;...5¢,[b] in T[r] such that the length ¢ of
$182...8cisatmost r —3)(r+ 1)+ 4 and £ = i(modr + 1).

Proof. We shall only consider the case r =3(mod4). The other case where
r = 1 (mod4) is similar.

Lete =(r —3)/2,L={2,4,...,e}and R = {e + 2,e + 4,...,r —1}. For any element
ain L U R, we shall write a{ (resp. a | } to mean that a € L (resp. a € R). Also, for any
a,b € L U R, we shall write (a — b) if any of the following conditions hold:

(1) at,b? and a < b;

(2)at,bl anda<r—1-—b;

(3)al,bt andr—1—a < b;

4) al,b|l and b< a.
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Furthermore, for any a,b € L u R with (a — b), we shall define || a — b| as follows:

b
(1)ifaT,bT,and(a—»b),then||a—>b|!=§—g+1;

. . r—1—-b a
(2)1faT,bl,and(a—>b),then||a—>b|l=—2——§+1;
. b r—1-—a
(3)1fal,bT,and(a—>b),then||a—>b||=5— 5 +1;
. a b
(4)1fai,b1,and(a—->b),then||a—->b[|=—2——5+1.

Now, let a,b,i € L U R. We shall give below a required trail in 7[r] from [a] to [b]
satisfying the given conditions, for each of the following possible cases.
Case 1: af,bT and i1. Required trail:

[a]tlla—'ellt\!i—'ewl[i]tui—velltllb—~evl [b]

Case 2.1: a1,bT1,i], (a— i) and (b — i). Required trail:
[a]t'e~il[i]e"e =1 [b].

Case 2.2: al,b1,i|,(a— i) and (i —» b). Required trail:
[a]t!e~ - DI[j — 2]¢I2~ - Di[]gI2~elglb=eip),

Case 2.3: a7,b?7,i|,(i— a) and (b - i). Required trail:
[a]t“""e”th""” [Z]t“z"“_z"'[i _z]tub—»(i—z)ll [b]

Case 2.4: al,bt,il,(i— a), (i— b)and i # (r + 5)/2. Required trail:
[a]tlla—»elltll2~e<\ [2]tll2—'(i—4)|| [i —_ 4]t"2"“_4"' [z]t\|2—+ellt||b—oe|| [b]

Case 2.5: a1,b1,il,(i—a), (i— b)and i = (r + 5)/2. Required trail:
[a]t!e=el[i — 2]¢12ei[2] ez~ elghb=el[p],

Case 3.1: a1,b|,it and (i — b). Required trail:
[a]ela=elghi=el[i]¢hi=I[p].

Case 3.2: af,b}l, il and (b— i). Required trail:
[a]ele=elgli=D=el[j — 2]¢Ii-2=elgi2=el[p] l2=bI[p]

or

[a]tle=elgh2=el[i][b] fi=2andb=r—1.

Case 4.1: at,b]l,i|,(a—i)and i # (r + 1)/2. Required trail:
[a]tﬂa-»(i-Z)ll [i _2]tll2—»(l'—2)|I[2]t||2—»bwl[b]
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or
[a]tle= =21 — 2]¢12~6-2I[2][b] ifb=r—1.
Case 4.2: at,b},i],(a— i) and i = (r + 1)/2. Required trail:
[a)ele=eV¢[i — 2]et!2~ <1 [2]¢12~ 1 [b]
or
[a]e'e=eVe[i —2]ee"?~ 1 [2][b] fb=r—1.
Case 4.3: at,b|,il,(i— a)and i # (r + 5)/2. Required trail:
[a]tla—elgh2=el[2]¢12= 0 =9I[; — 4]¢12= 6= 9I[2]¢12-I[B]
or
[a]tle=elpiz=ei[2]¢I2~ =M — 4]¢12=G-9I[2][b] ifb=r—1.
Case 44: a?l,b|,i|, (i— a)and i = (r + 5)/2. Required trail:
[a]tha=eI[i — 2]¢12~ <1 [2]¢12 =4I [b]
or
[a]tVe=el[i —2]¢"?~eI[2][p] ifb=r—1.
Case 5.1: a|,b?1,i1 and (i - a). Required trail:
[a]¢!i=aI[i]¢li~elgib=el[p].
Case 52: al,b?1,iT and (a — i). Required trail:
[a]¢V2~al[2]¢i2=elghi=2=el[j _ 2]l -2 elplb=el[p]
or
[a][2]e!2=elpli=D=el[j — 2]¢Wi-2=elpib=el[p] jfg=r—1, i #2;
or
[a][2]t"2=elib=elfp]) ifi=2.
Case 6.1: al,b?t,il,(b—i)and i # (r + 1)/2. Required trail:
[a]¢12=41[2]¢12= 6 =20 — 2]¢1b=¢=DI[p],
Case 6.2: a|,b?1,i],(b—i)and i = (r + 1)/2. Required trail:
[a]t'2=aI[2] 12~ le[i — 2] ¢ e~ I [b].
Case 6.3: a|,b1,i] and (i > b). Required trail:
[a]t'2=al[2]¢12= 6= 9[; — 412~ 0 =91 [2] (12 elplb—el[p]
or
[a]t!?~el[2]e"?~ =200 —2][b]) ifb=r—i+3;
or
[a]¢h?—al[2]e"2 =D — 2]¢[b] ifb=r—i+1.
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Case71.1: al,b],il, (i— a) and i # 2. Required trail:
[a]tV6-2=al[j — 2]l -D=elgiz=el[2]fI2=bI[p],

Case 72: al,b}l,it,(i— a)and i = 2. Required trail:
[a]t||2~alr[2]tll2—obll [b]

Case 73: al,bl,it, (@a— i) and (i » b). Required trail:
[a]t'2~aI[2] ¢l elpli =D el[j _ 2] ¢l =2~ bi[p]

Case 74: al,b|,iT,(@a— i), (b— i) and i # 4. Required trail:

[@]e!2=I[2] 12~ elgli =9~ el[; _ 4]l =9 elgi2=el[o] 12 bI[p]

or
[a]t?~el[2]¢"2elghi=D=el[; —27¢[b] ifb=r+1—i.
Case 7.5: al,b|,iT,(@a— i), (b— i) and i = 4. Required trail:
[a]t"z"“"[Z]t”z"""t"z‘“" [Z]t"z"""[b].
Case 8.1: al,b|,i] and i > (r + 5)/2. Required trail:
[a]t"?=aI[2]¢12= 6= 9N[i — 4]¢h2~ =91 [2] 112~ bI[p],
Case 82: al,b|,i] and i < (r + 5)/2. Required trail:

[a]t!2=el[2] ¢ el gl == el[; _ 4] N0 =H=elpizoel[2]h2=bI[p]. [

Remark. Note that when a =r —1, b = 2 and i = 4, then the required trial is
[r — 1] [2]t||2—-elltll2—oell [2]tn2—-eutll2—~eu[2],
which attains the maximal length (r — 3)(r + 1) + 4 as stated in Lemma 16.

By virtue of Lemma 16 and the fact that each trail in T'{r] induces a gapless path in
G with a given initial vertex, we have the following corollary.

Corollary 17. For any two paths xP~'[m] and yP[k] in G, where m,k € L U R, and
x is an odd integer and y an even integer such that y —x = (r — 3)(r + 1) + 4, there
exists a gapless path P in G with initial vertex x, terminal vertex y and
VIP)={x—-m+1,x—m+2,....,y+k—1}.

Theorem 18. Let r be an odd integer withr =2 7. If n 21> —r + 1, then G = C(2n, 1,7)
is Hamiltonian laceable.
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Proof. We first introduce some sequences of paths and vertices in G as follows.
Let se {—3, —5,..., —r +2}. We define, recursively, three sequences of paths
P,P,P; i=1,2,..., as follows:

P, = 0P[2],

Py =P, J 'P[s+7r],

Py =P,J 'P[—s—1];
and for k > 1, we put

P.=P;_,J 'P[2],

P, =PJ 'P[s +r],

Py =P.J 'P[—s—1].
Next, for each k = 1,2, ..., we let

x, = end vertex of P,

x, = end vertex of Py,

x, = end vertex of P},

It can be shown that for any negative odd integer x > — 2n, there exist s and i such
that x € {x;, xi, X{, ¥i, Vi, y{ }-

As G is vertex transitive, we need only to show that, for any odd vertex x in G, there
exists a Hamiltonian path from 0 to x. We have the following two cases to consider.

Case 1: 0 < x < n. In this case, by the argument used in the proof of Lemma 5,
there exists a gapless path P from 0 to some positive odd vertex y < r such that
V(P) = {0,1,...,z}, where z is an odd positive vertex with x — z < r (see the illustra-
tion in the following figure, where r =7, x =29, y = 3, z = 27).

— ot e ee ee e

0o 2V¥ 89 14 20 z z
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By the corollary to Lemma 16, there exists a path Q from x to 2n+y —r,
where V(Q)={z+1,z+2,...,2n —1}. Then PQ~! will be a Hamiltonian path in
G from 0 to x. (Note here that 2n+ y—r)—~x2Q2n+y—-r)—n=n+y—r>
rPP—r+l+y—r>rr=-2r+1=0c-3)r+1)+4)

Case 2: —n < x < 0. As mentioned above, there exists x;, s and i such that
x € {x;, xi, x{, yi, yi, i }. If x = x;, then let P be the gapless path

P/ J 7 P [=s1(JP s + r}JP T [21IP T [~ s~ 1]) !

from 0 to x}+1 with V(P)={x;+ 1,x;+2,...,x;}. By the corollary to
Lemma 16, G contains a gapless path Q from x|+ 1+r to y;+2—r with
V@)= {x; +1,x;+2,...,2n + x;}. Then PQ(y;+2{(y;+3)---x; will be a
Hamiltonian path in G from 0 to x;.

The cases x = x; or x; can be settled in like manner.

If x = y,, then let P be the gapless path

PJ 'P[s+r+1](JP [s+r]JP [2]JP ' [—s—1])"

from 0 to xy+1 with V(P)={yi+ 1,y;+2,...,x,}. By the corollary to
Lemma 16, G contains a gapless path Q from x|+ 1+r to xi+2—r
with V(Q)={x; + 1, x, +2,...,2n + y;}. Then PQ(x;+2)}(x;+3)---y; will be
a Hamiltonian path in G from 0 to y;.

The cases x = y; or y; can be settled in like manner. [

5. A final remark

Although the results in the paper show that most C(2n,1,r) are Hamiltonian
laceable, with which it is possible to deduce the Hamiltonian laceability of some
classes of C(2n,t,r) for odd ¢, the general problem whether or not all brick-products
are Hamiltonian laceable remains open.
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