A Bound on the Solutions of a Nonlinear Volterra Equation

Olof J. Staffans
Institute of Mathematics, Helsinki University of Technology, SF-02150 Espoo 15, Finland

Submitted by J. P. LaSalle

Abstract

We study the scalar, nonlinear Volterra integrodifferential equation $(*), x^{\prime}(t)+$ $\int_{[0, t]} g(x(t-s)) d \mu(s)=f(t)(t \geqslant 0)$. We let g be continuous, μ positive definite, and f integrable over $(0, \infty)$. The standard assumption on g which yields boundedness of the solutions of $(*)$ prevents $g(x)$ from growing faster than an exponential as $x \rightarrow \infty$. Here we present a weaker condition on g, which does not restrict the growth rate of $g(x)$ as $x \rightarrow \infty$, but which still implies that the solutions of (*) are bounded. In particular, when g is nondecreasing and either nonnegative or odd, we get bounds which are independent of g.

1. Introduction

We study the scalar, nonlinear Volterra integrodifferential equation

$$
\begin{equation*}
x^{\prime}(t)+\int_{[0, t]} g(x(t-s)) d \mu(s)=f(t) \quad(t \geqslant 0) \tag{1.1}
\end{equation*}
$$

Throughout we suppose that g is continuous, and that it has an integral which is bounded from below:
$g \in C(R), \quad \inf _{x \in R} G(x)>-\infty, \quad$ where $\quad G(x)=G(0)+\int_{0}^{x} g(y) d y$.
We let μ be a positive definite measure and f an integrable function on the interval $[0, T]$:

$$
\begin{gather*}
\int_{0}^{t} \varphi(\tau) \int_{0}^{\tau} \varphi(\tau-s) d \mu(s) d \tau \geqslant 0 \text { whenever } 0 \leqslant t<T \text { and } \varphi \in C[0, t] \tag{1.3}\\
f \in L^{1}(0, T) \tag{1.4}
\end{gather*}
$$

Here $0<T \leqslant \infty$.

If in addition g satisfies the growth condition

$$
\begin{equation*}
\limsup _{x \rightarrow+\infty} \frac{|g(x)|}{G(x)}<\infty . \tag{1.5}
\end{equation*}
$$

then a well known argument $\mid 5$, p. 572| shows that every solution x of (1.1) on $[0, T)$ satisfies

$$
\begin{equation*}
\sup _{0 \leqslant 1<T} G(x(t))<\infty . \tag{1.6}
\end{equation*}
$$

Clearly, if in addition

$$
\begin{equation*}
G(x) \rightarrow \infty \quad(x \rightarrow \pm \infty) \tag{1.7}
\end{equation*}
$$

then the solutions of (1.1) are bounded on $[0, T)$.
Essentially, (1.5) may be regarded as a restriction on the growth rate of g at $\pm \infty$. In particular, if (1.2), (1.5) hold, then $|g(x)|$ cannot grow faster than an exponential as $x \rightarrow \pm \infty$. Here we sharpen the above mentioned argument, and get sharper bounds, which permit $|g(x)|$ to grow arbitrarily fast as $x \rightarrow \pm \infty$. Some of our bounds (Corollaries 3.1 and 3.2 below) are actually independent of g, as long as g satisfies some general conditions.

In Section 4 we discuss a related boundedness result due to Levin.

2. A Basic Estimate

All our estimates are essentially applications of the following theorem:

Theorem 2.1. (i) Let (1.2), (1.3), and (1.4) hold for some $T \leqslant \infty$. For all y such that the set $\{z \in R \mid G(z) \leqslant y\}$ is nonempty, define

$$
\begin{equation*}
u(y)=\sup \{|g(z)| \mid G(z) \leqslant y\} . \tag{2.1}
\end{equation*}
$$

Then every solution x of (1.1) on $[0, T)$ satisfies

$$
\begin{equation*}
\int_{G(x(0))}^{G(x(t)} \frac{d y}{u(y)} \leqslant \int_{0}^{t}|f(\tau)| d \tau \quad(0 \leqslant t<T) \tag{2.2}
\end{equation*}
$$

(ii) In addition to (i), suppose that

$$
\begin{equation*}
\int_{G(x(0))}^{\infty} \frac{d y}{u(y)}>\int_{0}^{T}|f(\tau)| d \tau \tag{2.3}
\end{equation*}
$$

Then $G(x(t))$ is bounded on $[0, T)$. In particular, this is true if the integral $\int_{G(x(0))}^{\infty}(d y / u(y))$ diverges.
(iii) If moreover $G(x) \rightarrow \infty(x \rightarrow \pm \infty)$, then x is bounded on $[0, T)$.

Clearly, the function u in (2.1) is nondecreasing, and $0 \leqslant u(y) \leqslant \infty$. If, e.g., $G(x) \rightarrow \infty(x \rightarrow \pm \infty)$, then $u(y)<\infty$ for $y<\infty$. Interpret $1 / 0$ as ∞ and $1 / \infty$ as 0 in the left hand side of (2.2).

The boundedness result mentioned in the Introduction is contained in Theorem 2.1. If (1.2), (1.5) hold, then we can, without loss of generality (add a constant to G), assume that $g(x) \leqslant C G(x)$ for some constant C. This implies $u(y) \leqslant C y$; hence $\int_{G(x(0))}^{\infty}(d y / u(y)) \geqslant(1 / C) \int_{G(x(0))}^{\infty}(d y / y)=\infty$, so Theorem 2.1 (ii) applies.

Proof of Theorem 2.1. Without loss of generality, take $\inf _{y \in R} G(y)=0$ (i.e., replace $G(x)$ by $G(x)-\gamma$ and $u(y)$ by $u(y+\gamma)$, where $\gamma=\inf _{y \in R} G(y)$). Replace t by τ in (1.1), multiply by $g(x(\tau))$, and integrate over $(0, t)$ to obtain

$$
\begin{gather*}
G(x(t))+\int_{0}^{t} g(x(\tau)) \int_{0}^{\tau} g(x(\tau-s)) d \mu(s) d \tau \tag{2.4}\\
=G(x(0))+\int_{0}^{t} g(x(\tau)) f(\tau) d \tau
\end{gather*}
$$

Hence, by (1.3) and (2.1),

$$
\begin{align*}
G(x(t)) & \leqslant G(x(0))+\int_{0}^{t} g(x(\tau)) f(\tau) d \tau \tag{2.5}\\
& \leqslant G(x(0))+\int_{0}^{t} u(G(x(\tau)))|f(\tau)| d \tau
\end{align*}
$$

The function u is nonnegative and nonincreasing, so if it is in addition continuous then one can apply Bihari's inequality [1, p. 83] to obtain (2.2). The discontinuous case can be reduced to the continuous case as follows. Fix $t \in[0, T)$. Without loss of generality, assume

$$
\int_{G(x(0))}^{\infty} \frac{d y}{u(y)}>\int_{0}^{t}|f(\tau)| d \tau
$$

(because otherwise (2.2) is trivially true). Then, for some $M<\infty$,

$$
\int_{\sigma(x+\theta)}^{M} \frac{d y}{u(y)}>\int_{\theta}^{t}|f(\tau)| d \tau
$$

This number M can be chosen so that $u(M)<\infty$, because $\int_{M_{1}}^{\infty}(d y / u(y))=0$, where $M_{1}=\inf \{y \mid u(y)=\infty\}$. Pick $\varepsilon>0$. Let v be a continuous, nondecreasing function on $[0, \infty)$ satisfying

$$
u(y) \leqslant v(y) \quad(0<y \leqslant M)
$$

and

$$
\begin{equation*}
\int_{G(x(0))}^{M} \frac{d y}{v(y)}>\max \left\{\int_{0}^{t}|f(\tau)| d \tau, \int_{G(x(0))}^{M} \frac{d y}{u(y)}-\varepsilon\right\} \tag{2.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
G(x(s)) \leqslant G(x(0))+\int_{0}^{s} v(G(x(s)))|f(\tau)| d \tau \tag{2.7}
\end{equation*}
$$

for as long as

$$
\begin{equation*}
G(x(s)) \leqslant M \tag{2.8}
\end{equation*}
$$

Apply Bihari's inequality to (2.7) to obtain

$$
\begin{equation*}
\int_{G(x(0)}^{G(x(s))} \frac{d y}{v(y)} \leqslant \int_{0}^{s}|f(\tau)| d \tau \tag{2.9}
\end{equation*}
$$

for as long as (2.8) holds. But (2.6) and (2.9) imply that (2.8) holds on the whole interval $[0, t]$, and so (2.9) holds for $s=t$. This, together with (2.6) and the fact that ε can be chosen arbitrarily small, yields (2.2). Statements (ii) and (iii) follow trivially from (i).

3. Further Bounds

If g is nondecreasing, then one can develop (2.2) further. The case when g does not change sign is simplest, so we discuss it first.

Suppose that g is nonnegative and nondecreasing. Define

$$
\begin{equation*}
\omega=\inf \{x \mid g(x)>0\} . \tag{3.1}
\end{equation*}
$$

The case $\omega=\infty$, i.e., $g \equiv 0$, is trivial, so we assume $-\infty \leqslant \omega<\infty$. Define $G(-\infty)=\lim _{x \rightarrow-\infty} G(x)$. Then G is defined and nondecreasing on $[-\infty, \infty)$,
$[-\infty, \infty)$, and strictly increasing on $[\omega, \infty)$. Let G_{+}be the restriction of G to $[\omega, \infty)$. Then G_{+}^{-1} is continuous on $[G(\omega), \infty)$, and continuously differentiable on $(G(\omega), \infty)$, with

$$
\begin{equation*}
\frac{d}{d y} G_{+}^{-1}(y)=\left[g\left(G_{+}^{-1}(y)\right)\right]^{-1} \quad(y>G(\omega)) \tag{3.2}
\end{equation*}
$$

Because of the monotonicity of g and G, the function u defined in (2.1) becomes

$$
\begin{equation*}
u(y)=g\left(G_{+}^{-1}(y)\right) \quad(y>G(\omega)) \tag{3.3}
\end{equation*}
$$

Substituting (3.2), (3.3) into the left hand side of (2.2) we obtain

$$
\begin{align*}
\int_{G(x(0))}^{G(x(t))} \frac{d y}{u(y)} & =G_{+}^{-1}(G(x(t)))-G_{+}^{-1}(G(x(0))) \tag{3.4}\\
& =\max \{\omega, x(t)\}-\max \{\omega, x(0)\}
\end{align*}
$$

One could substitute this into (2.2) to obtain an upper bound on x, but a minor modification of the proof of Theorem 2.1 yields an even sharper extimate. In this case, as g is nonnegative, one can replace $|f(\tau)|$ in (2.5) by $\max \{0, f(\tau)\}$, and this means that the same substitution can be made in (2.2) and (2.3). Thus, we have almost proved the following corollary:

Corollary 3.1. In addition to (1.2), (1.3), and (1.4), suppose that g is nonnegative and nondecreasing. Then every solution x of (1.1) on $[0, T)$ satisfies

$$
\begin{equation*}
x(t) \leqslant x(0)+\int_{0}^{t} \max \{0, f(\tau)\} d \tau \quad(0 \leqslant t<T) \tag{3.5}
\end{equation*}
$$

Completion of Proof. Clearly, (3.5) follows from the preceding argument, provided $x(0)>\omega$. If $x(0)<\omega$ (in particular, if $g \equiv 0$ and $\omega=\infty$), then define $t_{1}=\sup \{t \in[0, T) \mid x(s) \leqslant \omega$ in $[0, t]\}$. Clearly, (1.1) becomes the trivial equation $x^{\prime}(t)=f(t)$ for $t \in\left[0, t_{1}\right)$, and this implies that (3.5) holds for $t<t_{1}$. In particular, if $t_{1}=T$, then (3.5) holds. If $t_{1}<T$, then $x\left(t_{1}\right)=\omega$, and $\int_{0}^{t_{1}} \max \{0, f(\tau)\} d \tau \geqslant \omega-x(0)$. Define $y(t)=x\left(t-t_{1}\right)$ for $0 \leqslant t<T-t_{1}$. Then $y(0)=\omega$, and y satisfies (1.1) with $f(t)$ replaced by $f\left(t+t_{1}\right)$. Apply (3.5) to obtain

$$
\begin{aligned}
y(t) & \leqslant \omega+\int_{0}^{t} \max \left\{0, f\left(\tau+t_{1}\right)\right\} d \tau \\
& =\omega+\int_{t_{1}}^{t_{1}+t} \max \{0, f(\tau)\} d \tau
\end{aligned}
$$

Thus, for $t \geqslant t_{1}$ we have

$$
x(t) \leqslant \omega+\int_{t_{1}}^{t} \max \{0, f(\tau)\} \leqslant x(0)+\int_{0}^{t} \max \{0, f(\tau)\} d \tau
$$

so in this case, too, (3.5) holds.
If g, instead of being nonnegative, is nonpositive, then the same argument yields

$$
\begin{equation*}
x(t) \geqslant x(0)-\int_{0}^{t} \min \{0, f(\tau)\} d \tau \tag{3.6}
\end{equation*}
$$

Finally, suppose that g is nondecreasing and changes sign. Define ω as in (3.1), and let α be the number

$$
\begin{equation*}
\alpha=\sup \{x \mid g(x)<0\} \tag{3.7}
\end{equation*}
$$

Then $-\infty<\alpha \leqslant \omega<\infty$, and G is strictly decreasing on ($-\infty, \alpha$]. Define G_{+}^{-1} as before, and let G_{-}^{-1} be the inverse of the restriction of G to ($\left.-\infty, \alpha\right]$. Then

$$
\begin{equation*}
\frac{d}{d y} G_{-}^{-1}(y)=\left[g\left(G_{-}^{-1}(y)\right)\right]^{-1} \quad(y>G(\alpha)) \tag{3.8}
\end{equation*}
$$

and the function u becomes

$$
\begin{equation*}
u(y)=\max \left\{\left|g\left(G_{-}^{-1}(y)\right)\right|, g\left(G_{+}^{-1}(y)\right)\right\} \tag{3.9}
\end{equation*}
$$

In particular, if g is odd, then $u(y)=\left|g\left(G_{+}^{-1}(y)\right)\right|$, and the same argument as that used when g did not change sign yields the following corollary:

Corollary 3.2. In addition to (1.2), (1.3), and (1.4), suppose that g is nondecreasing and odd. Then every solution x of (1.1) on $[0, T)$ satisfies

$$
\begin{equation*}
|x(t)| \leqslant|x(0)|+\int_{0}^{t}|f(\tau)| d \tau \tag{3.10}
\end{equation*}
$$

If g is not odd, then in many cases it is still true that either $g\left(G_{+}^{-1}(y)\right)$ dominates $\left|g\left(G_{-}^{-1}(y)\right)\right|$ in the sense that

$$
\begin{equation*}
\left|g\left(G_{-}^{-1}(y)\right)\right| \leqslant q g\left(G_{+}^{-1}(y)\right) \quad(y>G(\alpha)) \tag{3.11}
\end{equation*}
$$

for some positive constant q, or $\left|g\left(G_{-}^{-1}(y)\right)\right|$ dominates $g\left(G_{+}^{-1}(y)\right)$ in the same sense:

$$
\begin{equation*}
g\left(G_{+}^{-1}(y)\right) \leqslant r\left|g\left(G_{-}^{-1}(y)\right)\right| \quad(y>G(\omega)) \tag{3.12}
\end{equation*}
$$

By (3.2), (3.8), this is equivalent to requiring that either $\left|(d / d y) G_{-}^{-1}(y)\right|$ dominates $(d / d y) G_{+}^{-1}(y)$, or vice versa. Of course, it may happen that both (3.11) and (3.12) hold simultaneously. If (3.11) is true, then u satisfies

$$
u(y) \leqslant \max \{q, 1\} g\left(G_{+}^{-1}(y)\right),
$$

and this together with (2.2), (3.2) yields

$$
G_{+}^{-1}(G(x(t))) \leqslant G_{+}^{-1}(G(x(0)))+\max \{1, q\} \int_{0}^{t}|f(\tau)| d \tau
$$

This inequalty can be slightly sharpened, if one redefines u so that $u(y)=g\left(G_{+}^{-1}(y)\right.$), and replaces $|f(\tau)|$ in (2.5) by $\max \{f(\tau),-q f(\tau)\}$. This leads to the same substitution in (2.2). Thus, we have the following corollary:

Corollary 3.3. In addition to (1.2), (1.3), and (1.4), suppose that g is nondecreasing, changes sign, and satisfies (3.11) for some $q>0$. Then every solution x of (1.1) on $[0, T)$ satisfies

$$
\begin{equation*}
G_{+}^{-1}(G(x(t))) \leqslant G_{+}^{-1}(G(x(0)))+\int_{0}^{t} \max \{f(\tau),-q f(\tau)\} d \tau \quad(0 \leqslant t<T) \tag{3.13}
\end{equation*}
$$

In particular, x is bounded on $[0, T)$.
The boundedness of x follows from the fact that in Corollary 3.3, $G(x) \rightarrow(x \rightarrow \pm \infty)$; hence (3.13) acts as a two-sided bound for x. Observe that $G_{+}^{-1}(G(x(t)))=x(t)$ whenever $x(t) \geqslant \omega$.

If g satisfies (3.12) rather than (3.11), then (3.13) becomes

$$
\begin{equation*}
G_{-}^{-1}(G(x(t))) \geqslant G_{-}^{-1}(G(x(0)))-\int_{0}^{t} \min \{f(\tau),-r f(\tau)\} d \tau \quad(0 \leqslant t<T) \tag{3.14}
\end{equation*}
$$

If $x(t) \leqslant \alpha$, then $G_{-}^{-1}(G(x(t)))=x(t)$.
Let us illustrate the conclusion of Corollary 3.3 with an example. Let g be continuous and nondecreasing on $[0, \infty)$, with $g(0)=0$ and $g(x)>0(x>0)$ (e.g., $g(x)=x^{n}$ for some $p>0$ will do). Extend g to ($-\infty, \infty$) by $g(x)=-k g(k|x|) \quad(x<0)$, where k is some positive constant. Then $G_{-}(-x)=G_{+}(k x)(x>0)$, and $g\left(G_{-}^{-1}(y)\right)=-k g\left(G_{-}^{-1}(y)\right)(y \geqslant G(0))$. In particular, (3.11) is true with $q=k$, and (3.12) is true with $r=1 / k$. In this case (3.13) and (3.14) yield the same bound, namely,

$$
\begin{aligned}
& \max \{x(t),-k x(t)\} \leqslant \max \{x(0),-k x(0)\} \\
& \quad+\int_{0}^{t} \max \{f(\tau),-k f(\tau)\} d \tau \quad(0 \leqslant t<T)
\end{aligned}
$$

When $k=1, g$ is odd, and we get the old bound (3.10).

4. A Bound Due to Levin

In |3] Levin studies the integrated version

$$
\begin{equation*}
x(t)+\int_{0}^{t} a(t-s) g(x(s)) d s=h(t) \quad(t \geqslant 0) \tag{4.1}
\end{equation*}
$$

of (1.1). Equations (1.1) and (4.1) are eqivalent, if one defines $a(t)=\mu([0, t])$, and $h(t)=x(0)+\int_{0}^{t} f(\tau) d \tau$. Theorem 1 in $\left.\mid 3\right]$ reads as follows:

Theorem A. Let g be continuous, $x g(x) \geqslant 0(-\infty<x<\infty), a \geqslant 0, a$ nonincreasing on $[0, \infty), a(0)<\infty$, and $h \in C[0, \infty) \cap B V[0, \infty)$. Then there exists a continuous solution of (1.1) on $[0, \infty)$. Moreover, any continuous solution x of (1.1) satisfies

$$
\begin{equation*}
\sup _{0 \leqslant t<\infty}|x(t)| \leqslant V(h)+\sup _{0 \leqslant t<\infty}|h(t)|, \tag{4.2}
\end{equation*}
$$

where $V(h)$ is the total variation of h on $[0, \infty)$.
Theorem A was later improved (see [2, 4|). In particular, in [4] Levin replaces sup $|h(t)|$ in (4.2) by inf $|h(t)|$. If h is absolutely continuous, then $V(h)=\int_{0}^{\infty}\left|h^{\prime}(\tau)\right| d \tau$, and substituting $h^{\prime}(\tau)=f(\tau)$ one gets a bound which is very close to (3.10) (observe that $h(0)=x(0)$). Levin's assumption on a is stronger than our assumption on μ, because if a is nonnegative and nonincreasing with $a(0)<\infty$, then μ satisfies (1.3). On the other hand, contrary to Corollary 3.2, Levin does not require that g be nondecreasing or odd. Levin's proof is completely different from ours.

References

1. I. Bihari, A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations, Acta Math. Acad. Sci. Hungar. 8 (1957), 81-94.
2. G. Gripenberg, Bounded solutions of a Volterra equation, J. Differential Equations 28 (1978), 18-22.
3. J. J. Levin, On a nonlinear Volterra equation, J. Math. Anal. Appl. 39 (1972), 458-476.
4. J. J. Levin, A bound on the solutions of a Volterra equation, Arch. Ratlonal Mech. Anal. 52 (1973), 339-349.
5. S.-O. Londen, On the solutions of a nonlinear Volterra equation, J. Math. Anal. Appl. 39 (1972), 564-573.
