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We study the scalar, nonlinear Volterra integrodifferential equation (x), x'(¢) +
f{o,n g(x(t—s)) du(s) =1() (¢ > 0). We let g be continuous, 4 positive definite, and
/ integrable over (0, o). The standard assumption on g which yields boundedness
of the solutions of (*) prevents g(x) from growing faster than an exponential as
x-» o0. Here we present a weaker condition on g, which does not restrict the
growth rate of g(x) as x - oo, but which still implies that the solutions of (x) are
bounded. In particular, when g is nondecreasing and either nonnegative or odd, we
get bounds which are independent of g.

1. INTRODUCTION

We study the scalar, nonlinear Volterra integrodifferential equation

X(0)+]|  gxt—s)du@s)=f() (20) (1.1)

[0,¢]

Throughout we suppose that g is continuous, and that it has an integral
which is bounded from below:

gECWR), inf G(x)>—w, where G(x)=G(0)+ f e dy.  (12)

We let u be a positive definite measure and f an integrable function on the
interval [0, T]:

J‘t o(r) r @(t —s)du(s)dr > 0 whenever 0t < T and p € C[0,¢t], (1.3)
0 0
fELYO, T). (1.4)

Here 0 < T 0.
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If in addition g satisfies the growth condition

“_:Effpi(g?g%l < 00, (1.5)

then a well known argument |5, p. 572] shows that every solution x of (1.1)
on |0, T) satisfies

sup G(x(r)) < . (1.6)
ogt<T

Clearly, if in addition

G(x) - o0 (x—= +o0), 1.7

then the solutions of (1.1) are bounded on [0, T).

Essentially, (1.5) may be regarded as a restriction on the growth rate of g
at +00. In particular, if (1.2), (1.5) hold, then |g(x)| cannot grow faster than
an exponential as x — +co. Here we sharpen the above mentioned argument,
and get sharper bounds, which permit {g(x)| to grow arbitrarily fast as
x— +00. Some of our bounds (Corollaries 3.1 and 3.2 below) are actually
independent of g, as long as g satisfies some general conditions.

In Section 4 we discuss a related boundedness result due to Levin.

2. A Basic ESTIMATE

All our estimates are essentially applications of the following theorem:

THEOREM 2.1. (i) Let (1.2), (1.3), and (1.4) hold for some T < . For
all y such that the set {z € R| G(z) <y} is nonempty, define

u(y)=sup{lg(2)|| G(z) <y} (2.1)

Then every solution x of (1.1) on |0, T) satisfies

G dy
JG(x(on u(y) < .’0 V(o) dr 0<gt< 1) (2.2)
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(i) In addition to (i), suppose that

@ dy
.3
J'G(x(O)) u(y) j o) e 23)

Then G(x(2)) is bounded on |0, T). In particular, this is true if the integral
& oy (@v/u(p)) diverges.
(iii) If moreover G(x)— oo (x - +00), then x is bounded on [0, T).

Clearly, the function u in (2.1) is nondecreasing, and 0 < u(y) < . If,
e.g., G(x)— o (x— +o0), then u(y) < oo for y < co. Interpret 1/0 as co and
1/co as O in the left hand side of (2.2).

The boundedness result mentioned in the Introduction is contained in
Theorem 2.1. If (1.2), (1.5) hold, then we can, without loss of generality
(add a constant to G), assume that g(x) < CG(x) for some constant C. This
implies u(y) < Cy; hence [&), (@/u(»)) > (1/C) [Exiop (@/y) = 0, 50
Theorem 2.1(ii) applies.

Proof of Theorem 2.1. Without loss of generality, take inf, , G(y)=0
(i-e., replace G(x) by G(x) — y and u(y) by u(y + y), where y = inf ., G(y)).
Replace ¢ by 7 in (1.1), multiply by g(x(r)), and integrate over (0,¢) to
obtain

GOx(0) + | 8(x(2) || 8x(z ) duts) e

(2.4)
=G(x(0)) + J gx(2)) f(r) dr.
Hence, by (1.3) and (2.1),
G((0) < G(x(0)) + [ gx(x)) S() d
’ 2.5)

<GxO0) + [ w(G) |/ e

The function u is nonnegative and nonincreasing, so if it is in addition
continuous then one can apply Bihari’s inequality [1, p. 83] to obtain (2.2).
The discontinuous case can be reduced to the continuous case as follows. Fix
t € [0, T). Without loss of generality, assume

J:x(o” u(y) >J‘ ) 4
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(because otherwise (2.2) is trivially true). Then, for some M < oo,

-M

|- Loy J 1/

Lo teion u(y)

This number M can be chosen so that u(M) < oo, because [;; (dy/u(y))=0,
where M, =inf{y|u(y)=oc0}. Pick ¢>0. Let v be a continuous,
nondecreasing function on [0, ) satisfying

u(y)<ov(y)  ©O<y<M),

and
M dy M dy
, —— g} 2.6
jG(x(O)) v(y) > max U Flde JG(x(o)) u(y) 8; (26)
Then
Gx(5)) < G(O) + [ o(Gx(s)) |/ ()] e @7)
for as long as
Glx(s)) <M. (2.8)
Apply Bihari’s inequality to (2.7) to obtain
-Gx(sh  dy
JGMOD o) S J |f(z) dr (2.9)

for as long as (2.8) holds. But (2.6) and (2.9) imply that (2.8) holds on the
whole interval [0, ¢], and so (2.9) holds for s = ¢. This, together with (2.6)
and the fact that ¢ can be chosen arbitrarily small, yields (2.2). Statements
(i) and (iii) follow trivially from (i). §

3. FURTHER BOUNDS

If g is nondecreasing, then one can develop (2.2) further. The case when g
does not change sign is simplest, so we discuss it first.
Suppose that g is nonnegative and nondécreasing. Diefine

= inf{x | g(x) > 0}. (3.1

The case w = o0, i.e., g =0, is trivial, so we assume —o0 € w < oo. Define
G(—oo)=lim,__ G(x). Then G is defined and nondecreasing on [—a0, o0},
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[—00, ), and strictly increasing on [w, o). Let G, be the restriction of G
to [w, o0). Then G- ' is continuous on [G(w), o), and continuously differen-
tiable on (G(w), ), with

diycz‘(y) — (GO (> G@)) (3.2)

Because of the monotonicity of g and G, the function u defined in (2.1)
becomes

u(»)=g(G7'(»))  (¥>Gw)) (3.3)
Substituting (3.2), (3.3) into the left hand side of (2.2) we obtain

G(xt0)  dy ; G-
I 2ty = O (0D - GG
G(x(0)) (3'4)

= max{w, x(t)} — max{w, x(0)}.

One could substitute this into (2.2) to obtain an upper bound on x, but a
minor modification of the proof of Theorem 2.1 yields an even sharper
extimate. In this case, as g is nonnegative, one can replace | f(1)| in (2.5) by
max{0, f(z)}, and this means that the same substitution can be made in (2.2)
and (2.3). Thus, we have almost proved the following corollary:

COROLLARY 3.1. [In addition to (1.2), (1.3), and (1.4), suppose that g is
nonnegative and nondecreasing. Then every solution x of (1.1) on [0,T)
satisfies

x(t) < x(0) + j ‘max{0, /@) dc  (©<t<T) (3.5)

Completion of Progf. Clearly, (3.5) follows from the preceding argument,
provided x(0) > w. If x(0) < w (in particular, if g=0 and w = ), then
define ¢, =sup{t € [0, T)| x(s) < w in [0,¢]}. Clearly, (1.1) becomes the
trivial equation x'(f) =f(f) for ¢t € [0,1,), and this implies that (3.5) holds
for ¢ < t,. In particular, if ¢, = T, then (3.5) holds. If ¢, < T, then x(t;) = w,
and [5 max{0, f(r)} dr > © — x(0). Define y(t) = x(t — ¢,) for 0 t < T~ ¢;.
Then y(0) = w, and y satisfies (1.1) with f(¢) replaced by f(t + ¢,). Apply
(3.5) to obtain

<o +J-t max{0, f(r + ¢,)} dr

t+t

=w +f max{0, f(7)} dt
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Thus, for 1 > 1, we have
-1 o
x()<w+ | max{0, f (1)} < x(0) + | max{0. f(r)}dr.
Yt o

so in this case, too, (3.5) holds.

If g, instead of being nonnegative, is nonpositive, then the same argument
yields

x(t) > x(0) — ;" min{0, /(c)} dr. (3.6)

Finally, suppose that g is nondecreasing and changes sign. Define w as in
(3.1), and let a be the number

a =supi{x| g(x) < O} 3.7

Then —o0 <a{w < o, and G is strictly decreasing on (—o0, a]. Define
G ' as before, and let G~' be the inverse of the restriction of G to (— o, a].
Then

d

@ GZ' =[G I (¥>Gla)), (3.8)

and the function u becomes

u(y)=max{| g(GZ'(»)), g(G;')}. (3.9)

In particular, if g is odd, then u(y) =] g(G5'(»))), and the same argument as
that used when g did not change sign yields the following corotlary:

COROLLARY 3.2. [In addition to (1.2), (1.3), and (1.4), suppose that g is
nondecreasing and odd. Then every solution x of (1.1) on |0, T) satisfies

OISO + [ 170 de. (3.10)

If g is not odd, then in many cases it is still true that either g(G;'(y))
dominates | g(GZ'(»))| in the seénse that

| g(GZI(MI<qg(G'(»)  (¥>G(a) (3.11)

for some positive constant g, or | g(G~'(»)) dominates g(G;'(y)) in the
same sense:

gGI ML gGII M (¥ > G(w)). (3.12)
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By (3.2), (3.8), this is equivalent to requiring that either |(d/dy) GZ'(y)|
dominates (d/dy) G;'(p), or vice versa. Of course, it may happen that both
(3.11) and (3.12) hold simultaneously. If (3.11) is true, then u satisfies

u(y) < max{g, 1} g(G7'(»))s

and this together with (2.2), (3.2) yields
G7H(G0) < G3H(G(x(0) + max{L g} [ 17(7) dr.

This inequalty can be slightly sharpened, if one redefines u so that
u(y) =g(G7'(»)), and replaces | f(z) in (2.5) by max{f(r), —qf(r)}. This
leads to the same substitution in (2.2). Thus, we have the following
corollary:

CoROLLARY 3.3. In addition to (1.2), (1.3), and (1.4), suppose that g is
nondecreasing, changes sign, and satisfies (3.11) for some g > 0. Then every
solution x of (1.1) on |0, T) satisfies

G (GO < G GEON + [ max(f()—af @)} dr <1< T).(13)

In particular, x is bounded on [0, T).

The boundedness of x follows from the fact that in Corollary 3.3,
G(x)— (x— +o0); hence (3.13) acts as a two-sided bound for x. Observe
that G '(G(x(¢))) = x(t) whenever x(t) > w.

If g satisfies (3.12) rather than (3.11), then (3.13) becomes

1

GZ'(G(x(1))) > GZ(G(x(0))) —f min{f(z), —1f ()} dr  (O<1<T)

’ (3.14)
If x(¢) < a, then G- (G(x(1))) = x(¢).

Let us illustrate the conclusion of Corollary 3.3 with an example. Let g be
continuous and nondecreasing on [0, c0), with g(0) =0 and g(x) > 0 (x > 0)
(e.g., gx)=x" for some p>O0 will do). Extend g to (—o0,0) by
g(x)=—kg(k|x|]) (x<0), where k is some positive constant. Then
G_(-x)=G,(kx) (x>0), and g(GZ'(»))=—kg(GZ'(») (»y>G(0)). In
particular, (3.11) is true with ¢ =k, and (3.12) is true with r = 1/k. In this
case (3.13) and (3.14) yield the same bound, namely,

max {x(t), —kx(¢)} < max{x(0), —kx(0)}
+[ ‘max{f(c),—kf()}dr  (O<t<T).

When k= 1, g is odd, and we get the old bound (3.10).
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4. A Bounp Due 1o LEvVIN

In [3] Levin studies the integrated version
-
x() + ‘ a(t —s) gix(s))ds=h(t) (>0) (4.1
S0

of (1.1). Equations (1.1) and (4.1) are egivalent, if one defines
a(t) =u([0,t]), and h(t) = x(0) + [{f(t)dr. Theorem 1 in |3] reads as
follows:

THEOREM A. Let g be continuous, xg(x)20 (—o <x < ®), a>0,a
nonincreasing on 10, ), a(0) < oo, and h € C[0, ) N-BV[0; ). Then
there exists a continuous solution of (1.1) on [0, 0). Moreover, any
continuous solution x of (1.1) satisfies

ool X0 < V(h) + oSup th(O)ls (4.2)

where V(h) is the total variation of h on |0, o).

Theorem A was later improved (see [2, 4]). In particular, in [4] Levin
replaces sup [A(t)| in (4.2) by inf [A(t). If h is absolutely continuous, then
V(h)= [P A (¢)| dr, and substituting 4'() =f(r) one gets a bound which is
very close to (3.10) (observe that h(0) = x(0)). Levin's assumption on a is
stronger than our assumption on y, because if a is nonnegative and nonin-
creasing with a(0) < oo, then 4 satisfies (1.3). On the other hand, contrary to
Corollary 3.2, Levin does not require that g be nondecreasing or odd.
Levin’s proof is completely different from ours.
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