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Abstract

We introduce a cohomological invariant arising from a class in nonabelian cohomology. This invariant
generalises the Dixmier–Douady class and encodes the obstruction to a C∗-algebra bundle being the fixed-
point algebra of a gauge action. As an application, the duality breaking for group bundles vs. tensor C∗-
categories with nonsimple unit is discussed in the setting of Nistor–Troitsky gauge-equivariant K-theory:
there is a map assigning a nonabelian gerbe to a tensor category, and “triviality” of the gerbe is equivalent
to the existence of a dual group bundle. At the C∗-algebraic level, this corresponds to studying C∗-algebra
bundles with fibre a fixed-point algebra of the Cuntz algebra and in this case our invariant describes the
obstruction to finding an embedding into the Cuntz–Pimsner algebra of a vector bundle.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

In a series of works in the last eighties, S. Doplicher and J.E. Roberts developed an abstract
duality for compact groups, motivated by questions raised in the context of algebraic quantum
field theory. In such a scenario, the dual object of a compact group is characterised as a ten-
sor C∗-category, namely a tensor category carrying an additional C∗-algebraic structure (norm,
conjugation).
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At the C∗-algebraic level, one of the main discoveries in that setting has been a machinery
performing a duality theory for compact groups in the context of the Cuntz algebra [4]. If d ∈ N

and (Od , σd) is the Cuntz C∗-dynamical system (here σd ∈ end Od denotes the canonical endo-
morphism, see [6, §1]), then every compact subgroup G ⊆ U(d) defines an automorphic action

G → aut Od, G � g �→ Ĝ ∈ aut Od : ĝ(ψi) :=
d∑

j=1

gijψj , (1)

where gij ∈ C, i, j = 1, . . . , d , are the matrix elements of g and {ψi} denotes the multiplet of mu-
tually orthogonal partial isometries generating Od . Let OG denote the fixed-point algebra of Od

w.r.t. the action (1). Since σd commutes with the G-action, the restriction σG := σd |OG
∈ end OG

is well defined. The C∗-dynamical system (OG,σG) allows one to reconstruct the following ob-
jects: (1) the group G, as the stabiliser of OG in aut Od ; (2) The category Ĝ of tensor powers of
the defining representation G ↪→ U(d), as the category σ̂G with objects σ r

G, r ∈ N, and arrows
the intertwiner spaces of σG:(

σ r
G,σ s

G

) := {
t ∈ OG: σ s(a)t = tσ r

G(a), a ∈ OG

}
, r, s ∈ N. (2)

In this way, the map

G �→ (OG,σG) (3)

may be considered as a “Galois correspondence” for compact subgroups of U(d).
A more subtle question is when a C∗-dynamical system (A, ρ), ρ ∈ end A, is isomorphic

to (OG,σG) for some G ⊆ U(d). The solution to this problem (for G contained in the special
unitary group SU(d)) has been given in [8, §4]: to get the above characterisation, natural neces-
sary conditions are the triviality of the centre of A and the fact that A is generated as a Banach
space by the intertwiner spaces (ρr , ρs), r, s ∈ N; a more crucial condition is the existence of
an intertwiner ε ∈ (ρ2, ρ2), ε = ε−1 = ε∗ (the symmetry), providing a representation P∞ → A
of the infinite permutation group and implementing suitable flips between elements of (ρr , ρs),
r, s ∈ N. This structure is an abstract counterpart of the flip operator θ(ψ ⊗ ψ ′) := ψ ′ ⊗ ψ ,
ψ,ψ ′ ∈ H , where H is the Hilbert space of dimension d .

In this way, a group G ⊆ SU(d) is associated with (A, ρ, ε) and the intertwiner spaces of ρ

are interpreted as G-invariant operators between tensor powers of H . In this sense G is the gauge
group associated with (A, ρ, ε), according to the motivation of Doplicher and Roberts [9]. The
correspondence (A, ρ, ε) �→ G is functorial: groups G,G′ ⊆ SU(d) are conjugates in U(d) if and
only if there is an isomorphism α : (A, ρ, ε) → (A′, ρ′, ε′) of pointed C∗-dynamical systems, in
the sense that the conditions α ◦ ρ = ρ′ ◦ α, α(ε) = ε′, are fulfilled. As we shall see in the
sequel, the previous conditions are equivalent to require an isomorphism of symmetric tensor
C∗-categories naturally associated with our C∗-dynamical systems.

Our research program focused on the study of tensor C∗-categories with nonsimple unit. This
means that the space of arrows of the identity object ι is isomorphic to an Abelian C∗-algebra
C(X) for some compact Hausdorff space X. Thus the model category, rather than the one of
Hilbert spaces, is the one of Hermitian vector bundles over X, that we denote by vect(X). In a
previous work [24], we proved that every tensor C∗-category with symmetry and conjugates can
be regarded in terms of a bundle of C∗-categories over X, with fibres duals of compact groups
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(see also [27]). By applying a standard technique, we associate pointed C∗-dynamical systems
of the type (A, ρ, ε) with objects of these categories; as a consequence of the above-mentioned
results, each (A, ρ, ε) is a continuous bundle of C∗-algebras with base X and fibres pointed
C∗-dynamical systems (OGx ,σGx , θx), x ∈ X.

Starting from this result, it became natural to search for a classification of locally trivial
pointed C∗-dynamical systems (A, ρ, ε) with fibre (OG,σG, θ), G ⊆ SU(d). In the first paper
of the present series, we gave such a classification in terms of the cohomology set H 1(X,QG),
QG := NG\G, where NG is the normaliser of G in U(d) [24]. In this way, QG-cocycles
q ∈ H 1(X,QG) are put in one-to-one correspondence with pointed C∗-dynamical systems
(Oq, ρq, εq). From a different — but equivalent — point of view, H 1(X,QG) describes the
set sym(X, Ĝ) of isomorphism classes of “locally trivial” symmetric tensor C∗-categories with
fibre Ĝ and such that (ι, ι) � C(X).

In the present paper we study the Galois correspondence (3) and the associated abstract ver-
sion in the case where X is nontrivial. Instead of Od , our reference algebra is the Cuntz–Pimsner
algebra O E associated with the module of sections of a vector bundle E → X, which yields
a pointed C∗-dynamical system (O E , σE , θE ). If G → X is a bundle of unitary automorphisms
of E , then we can construct a pointed C∗-dynamical system (O G , σG , θE ), O G ⊆ O E , from which
it is possible to recover G with the same method used for compact subgroups of U(d).

This leads to a duality for elements of sym(X, Ĝ) vs. G-bundles acting on vector bundles
in the sense of Nistor and Troitsky [20]. Anyway, what we get is not a generalisation of the
Doplicher–Roberts construction, as new phenomena arise. Firstly, in general it is false that a
category with fibre Ĝ is the dual of a G-bundle; the reason is a cohomological obstruction to
the embedding into vect(X): in C∗-algebraic terms, there are pointed C∗-dynamical systems
(Oq, ρq, εq) which do not admit an embedding into some (O E , σE , θE ). Secondly, an element
of sym(X, Ĝ) may be realised as the dual of nonisomorphic G-bundles: at the C∗-algebraic
level, we may get isomorphisms (Oq, ρq, εq) � (O G , σG , θE ), (Oq, ρq, εq) � (O G′ , σG′, θE ′),
with G not isomorphic to G′ and E not isomorphic to E ′. In the present work we give an expla-
nation of these facts in terms of properties of H 1(X,QG), providing a complete geometrical
characterisation of sym(X, Ĝ) for what concerns the duality theory.

The above-mentioned cohomological machinery has its roots in the general framework of
principal bundles and can be applied to generic C∗-algebra bundles. Let G be a group of auto-
morphisms of a C∗-algebra F• and A• denote the fixed point algebra w.r.t. the G-action. It is
natural to ask whether an A•-bundle A admits an embedding into some F•-bundle. In general,
the answer is negative and the obstruction is measured by a class

δ(A) ∈ H 2(X,G′), (4)

where G′ is an Abelian quotient of G. When the above-mentioned embedding exists, A is the
fixed-point algebra w.r.t. a gauge-action of a group bundle G → X with fibre G on an F•-bundle,
in the sense of [25]. The above-mentioned obstruction for bundles with fibre (OG,σG, θ) and the
classical Dixmier–Douady invariant for bundles with fibre the compact operators [5, Chapter 10],
are particular cases of this construction.

The present work is organised as follows.
In Section 3 we recall some results relating pointed C∗-dynamical systems with tensor C∗-

categories. Moreover, under the hypothesis that the inclusion G ⊆ U(d) is covariant (i.e., the
embedding of Ĝ into the category of tensor powers of H is unique up to unitary natural trans-
formations), we give a geometrical characterisation of the space of embeddings of OG into Od
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(Lemma 6) and a cohomological classification for sym(X, Ĝ) (Theorem 7). Note that every in-
clusion G ⊆ SU(d) is covariant (in essence, this is proved in [7, Lemma 6.7]).

In Section 4 we define some cohomological invariants for principal bundles. Given an exact

sequence of topological groups G → NG
p−→ QG and a space X, we consider the induced map

of cohomology sets p∗ : H 1(X,NG) → H 1(X,QG) and construct a class δ(q) ∈ H 2(X,G′)
vanishing when q is in the image of p∗. Moreover, a nonabelian G-gerbe Ğ is associated with q,
collapsing to a group bundle G when q is in the image of p∗. Finally, for each G ⊆ SU(d) we
define a Chern class c(q) ∈ H 2(X,Z) (Lemma 16).

In Section 5 we give some properties of gauge C∗-dynamical systems and apply to them
the construction of the previous section. In this way we construct the class (4), that we ap-
ply to pointed C∗-dynamical systems (Lemma 18, Theorem 21). The relation with the classical
Dixmier–Douady invariant is discussed in Proposition 22.

In Section 6 we prove a concrete duality for group bundles with fibre G ⊆ U(d). Let E → X

be a rank d vector bundle, Ê denote the category with objects the tensor powers E r , r ∈ N, and
arrows the spaces (E r , E s) of bundle morphisms; then Ê is a symmetric tensor C∗-category with
(ι, ι) � C(X). We consider a group bundle G → X with a gauge action G ×X E → E and define
a symmetric tensor C∗-subcategory Ĝ of Ê , with arrows G -equivariant morphisms (E r , E s)G ,
r, s ∈ N. We establish a one-to-one correspondence between tensor C∗-subcategories of Ê and
gauge actions (Proposition 25). Tensor C∗-subcategories of Ê with fibre Ĝ are in one-to-one
correspondence with reductions to NG of the structure group of E (Theorem 27): this yields a
link between the categorical structure of Ê and the geometry of E .

In Section 7 we discuss the breaking of abstract duality for categories T with fibre Ĝ. Isomor-
phism classes [T ] ∈ sym(X, Ĝ) such that there is an embedding η : T ↪→ vect(X) are in one-
to-one correspondence with elements of the set p∗(H 1(X,NG)) ⊆ H 1(X,QG) (Theorem 30).
For each η there is a vector bundle Eη → X and a G-bundle Gη → X acting on Eη such that T is
isomorphic to Ĝη . Applying the results of Section 4, we assign a class δ(T ) ∈ H 2(X,G′): if there
is an embedding T → vect(X) then δ(T ) vanishes, and when such an embedding does not exist
the role of the dual G-bundle is played by a G-gerbe (Theorem 35). Finally, we discuss the cases
G = SU(d) (Examples 32, 36), G = T (Example 38) and G = Rd (Example 37, Rd denotes the
group of roots of unity).

2. Preliminaries

2.1. Keywords and notation

Let X be a locally compact Hausdorff space. If {Xi} is a cover of X, then we define
Xij := Xi ∩ Xj , Xijk := Xi ∩ Xj ∩ Xk . Moreover, we denote the C∗-algebra of continuous
functions on X vanishing at infinity by C0(X); if X is compact, then we denote the C∗-algebra
of continuous functions on X by C(X). If U ⊂ X is open, then we denote the ideal in C0(X)

(or C(X)) of functions vanishing in X − U by C0(U). If W ⊂ X is closed, then we define
CW(X) := C0(X − W); in particular, for every x ∈ X we set Cx(X) := C0(X − {x}). Since in
the present paper we shall deal with Čech cohomology, we assume that every space has good
covers (i.e. each Xij ,Xijk, . . . , is empty or contractible).

Let A be a C∗-algebra. We denote the set of automorphisms (resp. endomorphisms) of A,
endowed with pointwise convergence topology, by aut A (resp. end A). A pair (A, ρ), with
ρ ∈ end A, is called C∗-dynamical system. If (A, ρ), (A′, ρ′) are C∗-dynamical systems, then a
C∗-algebra morphism α : A → A′ such that α ◦ ρ = ρ′ ◦ α is denoted by α : (A, ρ) → (A′, ρ′).
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In particular, if a ∈ A, a′ ∈ A′ and α(a) = a′, then we write α : (A, ρ, a) → (A′, ρ′, a′) and refer
to α as a morphism of pointed C∗-dynamical systems. We denote the group of automorphisms of
the pointed C∗-dynamical system (A, ρ, a) by aut(A, ρ, a).

Let X be a locally compact Hausdorff space. A C0(X)-algebra is a C∗-algebra A en-
dowed with a nondegenerate morphism from C0(X) into the centre of the multiplier algebra
M(A). It is customary to assume that such a morphism is injective, thus C0(X) will be re-
garded as a subalgebra of M(A). For every x ∈ X, we define the fibre epimorphism as the
quotient πx : A → Ax := A/(Cx(X)A) and call Ax the fibre of A over x. The group of C0(X)-
automorphisms of A is denoted by autX A. The restriction of A on an open U ⊂ X is given by
the closed ideal obtained multiplying elements of A by elements of C0(U), and is denoted by
AU := C0(U)A. We denote the (spatial) C0(X)-tensor product by ⊗X (see [16, §1.6], where the
notation “C(X)” is used to mean C0(X)). Examples of C0(X)-algebras are continuous bundles
of C∗-algebras in the sense of [5,17]; we refer to the last reference for the notion of locally triv-
ial continuous bundle. Let A• be a C∗-algebra; to be concise, we will call A•-bundle a locally
trivial continuous bundle of C∗-algebras with fibre A•; to avoid confusion with bundles in the
topological setting, we emphasise the fact that an A•-bundle is indeed a C∗-algebra.

For standard notions about vector bundles, we refer to the classics [1,15,21]. In the present
work, we will assume that every vector bundle is endowed with a Hermitian structure. We shall
also consider Banach bundles (see [10], [5, Chapter 10]).

For basic properties of fibre bundles and principal bundles, we refer to [12, Chapter 4, 6],
[11, I.3]. If p : Y → X is a continuous map (i.e., a bundle), then we say that p has local sec-
tions if for every x ∈ X there is a neighbourhood U � x and a continuous map s : U → Y such
that p ◦ s = idU . If p′ : Y ′ → X is a continuous map, then the fibred product is defined as the
space Y ×X Y ′ := {(y, y′) ∈ Y × Y ′: p(y) = p′(y′)}. An expository introduction to nonabelian
cohomology and gerbes is [2], where a good list of references is provided.

For basic properties of C∗-categories and tensor C∗-categories, we refer to [7]. In particu-
lar, we make use of the terms C∗-functor, C∗-epifunctor, C∗-monofunctor, C∗-isofunctor, C∗-
autofunctor to denote functors preserving the C∗-structure.

For every r ∈ N we denote the permutation group of order r by Pr and the infinite per-
mutation group by P∞, which is endowed with natural inclusions Ps ⊂ P∞, s ∈ N. For every
r, s ∈ N, we denote the permutation exchanging the first r objects with the remaining s objects
by (r, s) ∈ Pr+s .

2.2. Bundles of C∗-categories

A C∗-category C is a category having Banach spaces as sets of arrows and endowed with an
involution ∗ : (ρ,σ ) → (σ,ρ), ρ,σ ∈ obj C , such that the C∗-identity ‖t∗ ◦ t‖ = ‖t‖2, t ∈ (ρ,σ ),
is fulfilled. In this way, each (ρ,ρ), ρ ∈ obj C , is a C∗-algebra, whilst (ρ,σ ) a Hilbert (σ,σ )-
(ρ,ρ)-bimodule (see [14,24]). In the present work we will consider C∗-categories not necessarily
endowed with identity arrows 1ρ ∈ (ρ,ρ) (see [19, §2.1]). In this setting, (ρ,ρ) is not necessarily
unital and we denote the multiplier algebra by M(ρ,ρ).

Let C be a C∗-category and X a locally compact Hausdorff space. C is said to be a C0(X)-
category whenever there is a family {iρ, ρ ∈ obj C} of nondegenerate morphisms iρ : C0(X) →
M(ρ,ρ), called the C0(X)-structure, such that

t ◦ iρ(f ) = iσ (f ) ◦ t, ρ, σ ∈ obj C, t ∈ (ρ,σ ), f ∈ C0(X).
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The previous equality implies that each (ρ,ρ), ρ ∈ obj C , is a C0(X)-algebra. We assume that
each iρ is injective and write f t := iσ (f ) ◦ t , f ∈ C0(X), t ∈ (ρ,σ ). Functors preserving the
C0(X)-structure are called C0(X)-functors.

If U ⊆ X is open, then we define the restriction on U as the C∗-category CU having the same
objects as C and spaces of arrows (ρ,σ )U := C0(U)(ρ,σ ); note that CU may lack identity arrows
also when C has identity arrows. If W is closed, then we denote the C∗-category having the same
objects as C and spaces of arrows the quotients (ρ,σ )W := (ρ,σ )/(C0(X − W)(ρ,σ )) by CW ;
the corresponding C∗-epifunctor πW : C → CW is called the restriction functor. In particular,
we define the fibre of C over x as Cx := C{x} and call πx : C → Cx the fibre functor. For every
ρ,σ ∈ obj C , t ∈ (ρ,σ ), we define the norm function nt (x) := ‖πx(t)‖, x ∈ X. It can be proved
that nt is upper semicontinuous for each arrow t ; when each nt is continuous, we say that C is a
continuous bundle over X. In this case, each (ρ,σ ) is a continuous field of Banach spaces over X

and each (ρ,ρ) is a continuous bundle of C∗-algebras.
Let C• be a C∗-category. The constant bundle XC• is the C0(X)-category having the same

objects as C• and arrows the spaces (ρ,σ )X of continuous maps vanishing at infinity from X to
(ρ,σ ), ρ,σ ∈ obj C•. A C0(X)-category C is said to be locally trivial whenever for each x ∈ X

there is an open neighbourhood U � x with a C0(U)-isofunctor αU : CU → U C•, such that the
induced map αU : obj C → obj C• does not depend on the choice of U . The functors αU are
called local charts.

When X is compact, the same constructions apply with the obvious modifications.

3. Tensor C∗-categories and C∗-dynamical systems

The present section has two purposes. Firstly, in order to make the present paper enough
self-contained, we collect some results from [6,24] in a slightly different form and recall the
notions of special category and embedding functor. Secondly, we describe the space of certain
embedding functors in terms of a principal bundle (Lemma 6) and provide a classification result
for bundles with fibre Ĝ, G ⊂ U(d) (Theorem 7); these results shall be applied in Section 6.

A tensor C∗-category is a C∗-category T with identity arrows endowed with a C∗-bifunctor
⊗ : T × T → T , called the tensor product. For brevity, we denote the tensor product of objects
ρ,σ ∈ obj T by ρσ , whilst the tensor product of arrows t ∈ (ρ,σ ), t ′ ∈ (ρ′, σ ′), is denoted by
t ⊗ t ′ ∈ (ρρ′, σσ ′). We assume the existence of an identity object ι ∈ obj T such that ιρ = ρι = ρ,
ρ ∈ obj T : it can be easily verified that (ι, ι) is an Abelian C∗-algebra and every space of arrows
(ρ,σ ) is a Banach (ι, ι)-bimodule w.r.t. the operation of tensoring with arrows in (ι, ι).

Let Xι denote the spectrum of ι; then T is a C(Xι)-category in a natural way. In particular, it
can be proved that T is a continuous bundle if certain additional assumptions are satisfied [24,
27].

A tensor C∗-category whose objects are r-fold tensor powers of an object ρ, r ∈ N, is denoted
by (ρ̂,⊗, ι); for r = 0, we use the convention ρ0 := ι. In the sequel of the present work, we
shall need to keep in evidence an arrow a ∈ (ρr , ρs) for some r, s ∈ N, so that we introduce the
notation (ρ̂,⊗, ι, a). Moreover, we denote tensor C∗-functors α : ρ̂ → ρ̂′ (the term tensor means
that ⊗′ ◦ (α × α) = α ◦ ⊗, α(ι) = ι′) such that α(a) = a′ by

α : (ρ̂,⊗, ι, a) → (
ρ̂′,⊗′, ι′, a′).

If (A, ρ, a) is a pointed C∗-dynamical system, then the category ρ̂ with objects the powers ρr ,
r ∈ N, and arrows the intertwiner spaces (ρr , ρs), r, s ∈ N, endowed with the tensor product
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ρrρs := ρr+s, t ⊗ t ′ := tρr
(
t ′
)
, t ∈ (

ρr, ρs
)
,
(
ρr ′

, ρs′)
,

is an example of such singly generated tensor C∗-categories with a distinguished arrow. We
denote the C∗-algebra generated by the intertwiner spaces (ρr , ρs), r, s ∈ N, by Oρ .

Actually, every tensor C∗-category (ρ̂,⊗, ι) comes associated with a C∗-dynamical system, in
the following way (see [7, §4] for details). As a first step, we consider the maps jr,s(t) := t ⊗1ρ ∈
(ρr+1, ρs+1), t ∈ (ρr , ρs) and define the Banach spaces Ok

ρ := lim→r ((ρ
r , ρr+k), jr,r+k), k ∈ Z.

As a second step, we note that composition of arrows and involution induce a well-defined ∗-
algebra structure on the direct sum 0 Oρ := ⊕

k Ok
ρ . It can be proved that there is a unique C∗-

norm on 0 Oρ such that the circle action ẑ(t) := zkt , z ∈ T, t ∈ Ok
ρ , extends to an automorphic

action. In this way, the so-obtained C∗-completion Oρ comes equipped with a continuous action
T → aut Oρ with spectral subspaces Ok

ρ , k ∈ N, and also with a canonical endomorphism

ρ∗ ∈ end Oρ, ρ∗(t) := 1ρ ⊗ t, t ∈ (
ρr, ρs

)
,

such that ρ∗ ◦ ẑ = ẑ ◦ ρ∗, z ∈ T. The pair (Oρ, ρ∗) is called the DR-dynamical system associated
with ρ. Since the maps jr,s are injective in all the cases of interest in the present work, in the
sequel we will identify t ∈ (ρr , ρs) with the corresponding element of Oρ .

By construction we have (ρr , ρs) ⊆ (ρr∗, ρs∗), r, s ∈ N. We say that ρ is amenable if (ρr , ρs) =
(ρr∗, ρs∗), r, s ∈ N, and in that case ρ̂ is said to be amenably generated. We summarise the above
considerations in the following theorem, which also includes a reformulation of [24, Proposi-
tion 19]:

Theorem 1. The map (ρ̂,⊗, ι, a) → (Oρ, ρ∗, a) defines a one-to-one correspondence between
the class of amenably generated tensor C∗-categories with a distinguished arrow and the class
of pointed C∗-dynamical systems (A, σ, a) such that A is generated by the intertwiner spaces
of σ . Tensor C∗-functors α : (ρ̂,⊗, ι, a) → (ρ̂′,⊗′, ι′, a′) are in one-to-one correspondence with
morphisms α : (Oρ, ρ∗, a) → (Oρ′ , ρ′∗, a′) of pointed C∗-dynamical systems. The category ρ̂ is a
continuous bundle over the spectrum Xι of (ι, ι) if and only if Oρ is a continuous bundle over Xι.
If ρ̂ is locally trivial as a bundle of C∗-categories, then Oρ is locally trivial as a C∗-algebra
bundle.

A tensor C∗-category (T ,⊗, ι) is said to be symmetric if there is a family of unitary operators
ε(ρ,σ ) ∈ (ρσ,σρ), ρ,σ ∈ obj T , implementing the flips(

t ⊗ t ′
) ◦ ε

(
ρ′, ρ

) = ε
(
σ ′, σ

) ◦ (
t ′ ⊗ t

)
.

In particular, if (ρ̂,⊗, ι) is symmetric, then we define the symmetry operator

ε := ε(ρ,ρ) ∈ (
ρ2, ρ2).

It is well known that ε induces a unitary representation of P∞, by considering products of the
type ε ◦ (1ρ × ε) ◦ (1ρr ⊗ ε) ◦ · · · , r ∈ N (for example, see [6, p. 100]). We denote the unitaries
arising from such a representation by ε(p) ∈ (ρr , ρr), r ∈ N, p ∈ Pr ⊆ P∞; in particular, we
denote the unitary associated with (r, s) ∈ Pr+s by ερ(r, s) ∈ (ρr+s , ρr+s). If there is

α : (ρ̂,⊗, ι, ε) → (
ρ̂′,⊗′, ι′, ε′),
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then the above considerations imply that α(ερ(r, s)) = ε′
ρ′(r, s), r, s ∈ N. We denote the pointed

C∗-dynamical system associated with (ρ̂,⊗, ι, ε) by (Oρ, ρ∗, ε). According to the considerations
of the previous section, we find that ρ̂ is a C(Xι)-category. Now let (ρ̂•,⊗•, ι•, ε•) be a symmet-
ric tensor C∗-category such that (ι•, ι•) � C; we denote the set of isomorphism classes of locally
trivial symmetric tensor C∗-categories (ρ̂,⊗, ι, ε) having fibre ρ̂• and such that (ι, ι) � C(X) by

sym(X, ρ̂•).

With the term isomorphism, here we mean a tensor C∗-isofunctor of the type α : (ρ̂,⊗, ι, ε) →
(ρ̂′,⊗′, ι′, ε′). A locally trivial symmetric tensor C∗-category (ρ̂,⊗, ι, ε) with fibre ρ̂• is called
ρ̂•-bundle; the class of ρ̂ in sym(X, ρ̂•) is denoted by [ρ̂,⊗, ι, ε] or, more concisely, by [ρ̂].

Remark 2. The condition α(ε) = ε′ required in the previous notion of isomorphism comes from
group duality. Let G1,G2 be compact groups and RG1,RG2 the associated symmetric ten-
sor C∗-categories of finite dimensional, continuous, unitary representations; if α : RG1 → RG2
is an isomorphism of tensor categories, then a sufficient condition to get an isomorphism
α∗ :G2 → G1 is that α preserves the symmetry (see [13]).

The category hilb of Hilbert spaces, endowed with the usual tensor product, is clearly a sym-
metric tensor C∗-category. Of particular interest for the present work is the following class of
subcategories of hilb. Let H be the standard Hilbert space of dimension d ∈ N; we denote the
r-fold tensor power of H by Hr (for r = 0, we define ι := H 0 := C) and the space of linear
operators from Hr to Hs by (Hr,Hs), r, s ∈ N; moreover, we consider the flip

θ ∈ (
H 2,H 2).

If G ⊆ U(d) is a compact group, then for every g ∈ G we find that the r-fold tensor power gr is
a unitary on Hr , so that we consider the spaces of G-invariant operators(

Hr,Hs
)
G

:= {
t ∈ (

Hr,Hs
)
: t = ĝ(t) := gs ◦ t ◦ g∗

r , g ∈ G
}
. (5)

In particular, we have that θ ∈ (H 2,H 2)G. By defining the category Ĝ with objects Hr , r ∈ N,
and arrows (Hr,Hs)G, we obtain a symmetric tensor C∗-category (Ĝ,⊗, ι, θ). The pointed
C∗-dynamical system associated with (Ĝ,⊗, ι, θ) in the sense of Theorem 1 is (OG,σG, θ),
where OG, σG are defined in Section 1. As mentioned in Section 1, the category Ĝ is amenably
generated, so that we have equalities(

Hr,Hs
)
G

= (
σ r

G,σ s
G

)
, r, s ∈ N. (6)

If G reduces to the trivial group, then we obtain the category (Ĥ ,⊗, ι, θ) of tensor powers
of H and Theorem 1 yields the Cuntz C∗-dynamical system (Od, σd, θ). If G = U(d), then
(Hr,Hs)U(d) is nontrivial only for r = s; in such a case, (Hr,Hr)U(d) is generated as a vector
space by the unitaries θ(p), p ∈ Pr . Let NG denote the normaliser of G in U(d) and QG :=
NG/G the quotient group; then, the map (1) induces an injective continuous action

QG → aut(OG,σG, θ), y �→ ŷ. (7)
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An other symmetric tensor C∗-category that shall play an important role in the present paper is
the category vect(X) with objects vector bundles over a compact Hausdorff space X and arrows
vector bundle morphisms.

Definition 3. Let (T ,⊗, ι, ε) be a symmetric tensor C∗-category. An embedding functor is a
C∗-monofunctor E : T → vect(Xι) preserving tensor product and symmetry.

We now describe in geometrical terms a set of embedding functors of Ĝ, G ⊆ U(d). To this
end, let us denote the set of monomorphisms

η : (OG,σG, θ) → (Od , σd, θ)

by emb OG, and endow it with the pointwise norm topology; by Theorem 1, we can identify
emb OG with the set of embeddings β : (Ĝ,⊗, ι, θ) → (Ĥ ,⊗, ι, θ). In particular, we denote the
group of autofunctors of the type β : (Ĝ,⊗, ι, θ) → (Ĝ,⊗, ι, θ) by aut Ĝ.

Definition 4. The faithful representation G ⊆ U(d) is said to be covariant whenever for each
η ∈ emb OG there is u ∈ U(d) such that η = û|OG

.

By Theorem 1 the property of G ⊆ U(d) being covariant is equivalent to require that the
inclusion functor (Ĝ,⊗, ι, θ) ⊆ (Ĥ ,⊗, ι, θ) is unique up to tensor unitary natural transforma-
tion. By [7, Lemma 6.7, Theorem 4.17] (see also the following Theorem 10) every inclusion
G ⊆ SU(d) is covariant, thus we conclude that every compact Lie group has a faithful covariant
representation (in fact, it is well known that every compact Lie group G has a faithful represen-
tation u : G → U(d), so it suffices to consider u ⊕ detu). Anyway there are interesting examples
of covariant representations whose image is not contained in the special unitary group.

Example 5. Let G ⊂ U(d) denote the image of T under the action on H � Cd defined by
scalar multiplication. Then Ĝ has spaces of arrows (Hr,Hs)G = δrs(H

r,Hs), r, s ∈ N, where
δrs denotes the Kronecker symbol. We have NG = U(d), QG = PU(d). If η ∈ emb OG then
η restricts to a C∗-isomorphism η : (H,H)G = (H,H) → (H,H), which is the inner automor-
phism induced by a unitary u ∈ U(d). Since (Hr,Hr) � ⊗r

(H,H) and η(
⊗r

i ti ) = ⊗r
i η(ti) =⊗r

i û(ti ), ti ∈ (H,H), i = 1, . . . , r , we conclude that η = û|OG
and G ⊆ U(d) is covariant.

Lemma 6. Let G ⊆ U(d) be covariant. Then emb OG is homeomorphic to the coset space
U(d)\G. For each locally compact Hausdorff space Y and continuous map

β : Y → emb OG, y �→ βy, (8)

there is a finite open cover {Yl} of Y and continuous maps ul : Yl → U(d) such that

ûl,y(t) = βy(t), y ∈ Yl, t ∈ OG, (9)

where ûl,y ∈ aut Od is defined by (1).
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Proof. We consider the fibration q : U(d) → U(d)\G and define

χ : U(d) → emb OG, u �→ û|OG
.

The map χ is clearly continuous and, since G ⊆ U(d) is covariant, it is also surjective. Now,
(1) yields an isomorphism from G to the stabiliser of OG in aut Od [6, Corollary 3.3], thus we
find that χ(u1) = χ(u2) if and only if u∗

1u2 ∈ G, i.e. q(u1) = q(u2). This proves that emb OG

is homeomorphic to U(d)\G. Since U(d) is a compact Lie group, the map q defines a principal
G-bundle over U(d)\G, thus there is a finite open cover {Ωl} of U(d)\G and local sections
sl : Ωl → U(d), q ◦ sl = idΩl

. Now, let us identify emb OG with U(d)\G and consider the
map (8); defining Yl := β−1(Ωl) we obtain a finite open cover of Y and set ul,y := sl ◦ βy ,
y ∈ Yl . By definition of χ , Eq. (9) is fulfilled and the theorem is proved. �

Let now p : NG → QG the natural projection. The following result is a version of [24, The-
orem 36] for groups not necessarily contained in SU(d):

Theorem 7. If G ⊆ U(d) is covariant then there is an isomorphism QG � aut Ĝ, and for each
compact Hausdorff space X there is a bijective map Q : sym(X, Ĝ) → H 1(X,QG).

Proof. Using Theorem 1 we identify aut Ĝ with aut(OG,σG, θ). By [24, Lemma 32], to prove
the theorem it suffices to verify that (7) is an isomorphism. Now, the same argument of the
previous lemma shows that if η ∈ aut Ĝ then there is u ∈ U(d) such that û ∈ aut Od restricts to η

on OG; since OG is û-stable, for each g ∈ G we find that û ◦ ĝ ◦ û−1 is the identity on OG, thus
by [6, Corollary 3.3] there is g′ ∈ G such that g′ = ugu∗. We conclude that u ∈ NG and since
û ◦ ĝ|OG

= û|OG
= η for all g ∈ G we find η = ŷ, where y = p(u) and ŷ is the image of y ∈ QG

under (7). �
Remark 8. Let aut(Od ; OG) denote the group of automorphisms of (Od , σ, θ) that restrict to
elements of aut OG. The argument of the previous theorem shows that (1) induces the isomor-
phism NG → aut(Od ; OG), in such a way that for each u ∈ NG we have

û|OG
= ŷ, y := p(u) ∈ QG.

This yields a slight generalisation of [24, Theorem 34].

Given a Ĝ-bundle (ρ̂,⊗, ι, ε), with G ⊆ U(d) covariant, we denote the associated class in
H 1(X,QG) by Q[ρ̂].

Now, let us consider a symmetric tensor C∗-category (ρ̂,⊗, ι, ε). For every n ∈ N, we define
the antisymmetric projection

Pρ,ε,n := 1

n!
∑

p∈P(n)

sign(p)ερ(p). (10)

The object ρ is said to be special if there is d ∈ N and a partial isometry S ∈ (ι, ρd) with sup-
port Pρ,ε,d , such that(

S∗ ⊗ 1ρ

) ◦ (1ρ ⊗ S) = (−1)d−1d−11ρ ⇔ S∗ρ∗(S) = (−1)d−1d−11. (11)
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In such a case, d is called the dimension of ρ. When ρ is an endomorphism and is special in the
above sense, we say that ρ satisfies the special conjugate property (see [8, §4]).

Special objects play a pivotal role in the Doplicher–Roberts theory. From the viewpoint of
group duality they are an abstract characterisation of the notion of representation with determi-
nant 1 (see [7, §3]). From the C∗-algebraic point of view, they are an essential tool for the crossed
product defined in [8, §4].

Let G ⊆ SU(d). Then the object H of Ĝ is special and has dimension d . In fact, we consider
the isometry S generating the totally antisymmetric tensor power

∧d
H , and note that ud ◦

S = detu · S = S, u ∈ SU(d), so that S ∈ (ι,Hd)SU(d) ⊆ (ι,Hd)G and (11) follows from [6,
Lemma 2.2]. In particular when G = SU(d) the spaces (Hr,Hs)SU(d), r, s ∈ N, are generated
by the operators θ(p), p ∈ P∞, and S ∈ (ι,Hd)SU(d), by closing w.r.t. composition and tensor
product.

Definition 9. A special category is a locally trivial, symmetric tensor C∗-category (ρ̂,⊗, ι, ε)

with fibre (ρ̂•,⊗•, ι•, ε•), such that ρ• is a special object.

The dimension of the object ρ generating the special category ρ̂ is by definition the dimension
of the special object ρ• and is denoted by d . The main motivation of the present work is the
search of embedding functors for special categories. The first step in this direction is given by
the following classification result, proved in [24, Theorem 36]:

Theorem 10. Let (ρ̂,⊗, ι, ε) be a special category with fibre (ρ̂•,⊗•, ι•, ε•). Then:

(1) ρ is amenable;
(2) Let d ∈ N denote the dimension of ρ; then there is a compact Lie group G ⊆ SU(d) such

that (ρ̂•,⊗•, ι•, ε•) � (Ĝ,⊗, ι, θ);
(3) There is a bijection sym(Xι, ρ̂•) � H 1(Xι,QG);
(4) Oρ is an OG-bundle.

In general, the object generating a special category is not special. The obstruction to ρ being
special is encoded by the Chern class introduced in [24, §3.0.3],

c(ρ) ∈ H 2(Xι,Z
)
, (12)

constructed by observing that the (ι, ι)-module Rρ := {ψ ∈ (ι, ρd): Pρ,ε,dψ = ψ} is the set of
sections of a line bundle Lρ → Xι. The invariant c(ρ) is defined as the first Chern class of Lρ .

4. Cohomology classes and principal bundles

In the present section we give an exact sequence and a cohomological invariant for a class
of principal bundles. This elementary construction has important consequences in the setting of
abstract duality for tensor C∗-categories and can be regarded as a generalisation of the Dixmier–
Douady invariant.
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Let G a topological group with unit 1 and X a locally compact, paracompact Hausdorff space
endowed with a (good) open cover {Xi}. A G-cocycle is given by a family g := {gij } of contin-
uous maps gij : Xij → G satisfying on Xijk the cocycle relations

gij gjk = gik

(which imply gij gji = gii = 1). In the sequel we will denote the evaluation of gij on x ∈ Xij

by gij,x . We say that g is cohomologous to g′ := {g′
ij } whenever there are maps vi : Xi → G such

that gij vj = vigij on Xi . This defines an equivalence relation over the set of G-cocycles, and
passing to the inverse limit over open good covers provides the Čech cohomology set H 1(X,G)

(see [15, I.3.5]), which is a pointed set with distinguished element the class of the trivial cocy-
cle 1, 1ij,x ≡ 1. To be concise, sometimes in the sequel cocycles will be denoted simply by g

or {gij }, and their classes in H 1(X,G) by [g] or [gij ]. It is well known that H 1(X,G) classifies
the principal G-bundles over X. When G is Abelian, H 1(X,G) coincides with the first cohomol-
ogy group with coefficients in the sheaf SX(G) of germs of continuous maps from X into G [11,
I.3.1].

We now pass to give a definition of nonabelian Čech 2-cohomology. The basic object pro-
viding the coefficients of the theory is now given by a crossed module (also called 2-group,
see [2, §3]), which is defined by a morphism i : G → N of topological groups and an action
α : N → autG, such that i is equivariant for α and the adjoint actions G → autG, G � g �→ ĝ,
N → autN , N � u �→ û:

û ◦ i = i ◦ α(u), ĝ = α ◦ i(g).

The crossed module (G,N, i,α) is denoted for short by G → N . To be concise we write g :=
i(g) ∈ N , g ∈ G, and α(u) := û, u ∈ N . The equivariance relations ensure that no confusion will
arise from this notation.

Example 11. Let N be a topological group and G a normal subgroup of N : then considering
the inclusion i : G → N and the adjoint action α : N → autG, u �→ û, yields a crossed module
G → N .

A cocycle pair b := (u,g) with coefficients in the crossed module G → N is given by families
of maps

uij : Xij → N, gijk : Xijk → G,

satisfying the cocycle relations {uijujk = g
ijk

uik,

gijkgikl = ûij (gjkl)gij l,

where ûij : Xij → autG is defined by means of α. Cocycle pairs b := (u,g), b′ := (u′,g′) are
said to be cohomologous whenever there is a pair (v,h) of families of maps

vi : Xi → N, hij : Xij → G,
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such that {
viu

′
ij = hijuij vj ,

hikgijk = v̂i

(
g′

ijk

)
hij ûij (hjk).

It can be proved that cohomology of cocycle pairs defines an equivalence relation [2, §4]. The
set of cohomology classes of cocycle pairs is by definition the cohomology set relative to the
cover {Xi} with coefficients in the crossed module G → N ; passing to the limit w.r.t. covers yields
the Čech cohomology set H̆ 2(X,G→N) with distinguished element the class of the trivial cocycle
pair 1 := (1,1), 1ij,x := 1 ∈ N , 1ijk,x := 1 ∈ G. The symbol H̆ is used to emphasise that we deal
with nonabelian cohomology sets. Note that our notation is not universally used in literature:
sometimes the symbol H̆ 1(X,G→N) is used instead of H̆ 2(X,G→N) (see for example [2]). The
cohomology class of the cocycle pair b = (u,g) is denoted by [b] ≡ [u,g].

Remark 12.

(1) Each N -cocycle u := {uij } defines the cocycle pair du := (u,1);
(2) If G is Abelian and α is the trivial action, then each cocycle pair (u,g) defines the cocycle

g = {gijk} in the second (Abelian) cohomology of G.

An important class of examples is the following: let G be a topological group and i : G →
autG, i(g) := ĝ, denote the adjoint action; then taking α : autG → autG as the identity map
yields a crossed module G → autG. Thus we can define the cohomology set H̆ 2(X,G→ autG)

with elements classes of cocycle pairs (λ,g) of the type

λij : Xij → autG, gijk : Xijk → G:

{
λijλjk = ĝijkλik,

gijkgikl = λij (gjkl)gij l,

where each ĝijk : Xijk → autG is defined by adjoint action.

Remark 13. According to the considerations in [2, §2], H̆ 2(X,G→ autG) classifies the G-gerbes
on X up to isomorphism. In the present paper we use the term G-gerbe to mean a principal
2-bundle over X with fibre the crossed module G → autG. In this way, cocycle pairs with
coefficients in G → autG are interpreted as transition maps for G-gerbes, and G-bundles define
G-gerbes such that the associated cocycle pairs are of the type dλ = (λ,1), λ ∈ H 1(X,autG)

(see Remark 12).

We define the maps

γ∗ : H 1(X,N) → H 1(X,autG), [uij ] �→ [ûij ], (13)

γ̆∗ : H̆ 2(X,G→N) → H̆ 2(X,G→ autG),
[{uij },g

] �→ [{ûij },g
]
. (14)

Let now N denote a topological group and G ⊆ N a normal subgroup. Defining QG := N\G
yields the exact sequence

1 → G
i

↪→ N
p−→ QG → 1. (15)
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Let NG denote the smaller normal subgroup of N containing the set

[G,N ] := {
gug−1u−1, g ∈ G, u ∈ N

}
.

We consider the quotient map πN : N → N ′ := N\NG and define G′ := πN(G). Note that by
construction G′ is Abelian; when G is contained in the centre of N we have that [G,N ] is trivial
and NG = {1}, N = N ′, G = G′.

Lemma 14. Let G be a normal subgroup of the topological group N and suppose that the fi-
bration p : N → QG := N\G has local sections. Then for every locally compact, paracompact
Hausdorff space X there is an isomorphism of pointed sets

ν : H 1(X,QG) → H̆ 2(X,G→N). (16)

Moreover, there is a commutative diagram

G
i

πG

N

πN

G′ i′
N ′

(17)

which yields the map

πN,∗ : H̆ 2(X,G→N) → H 2(X,G′). (18)

Proof. The fact that there is an isomorphism as in (16) is proved in [2, Lemma 2], anyway for the
reader’s convenience we give a sketch of the proof. Let q := {yij } be a QG-cocycle; since p has
local sections, up to performing a refinement of {Xi} there are maps uij : Xij → N such that
yij = p ◦ uij (it suffice to define uij := s ◦ yij , where s : U → N , U ⊆ QG, yij (Xij ) ⊆ U , is a
local section). Since p ◦ (uij ujku

−1
ik ) = yij yjkyki = 1, we conclude that there is gijk : Xijk → G

such that uijujk = gijkuik . It is trivial to check that ({uij }, {gijk}) is a cocycle pair, and we define

ν[q] := [{uij }, {gijk}
]
, [q] := [yij ] ∈ H 1(X,QG). (19)

On the other side, if b := ({uij }, {gijk}) is a cocycle pair then defining p∗[b] := [p ◦ uij ] yields
an inverse of ν. We now prove (18). Defining πG := πN |G yields the commutative diagram (17);
if b := (u,g), g := {gijk}, is a cocycle pair, then we define πN,∗[b] := [πN ◦ gijk] and this yields
the desired map (note in fact that πN ◦ ûij (gjkl) = πN ◦ gjkl , so that {πN ◦ gijk} is a 2-G′-
cocycle). �

Now, by functoriality of H 1(X, ·) there is a sequence of maps of pointed sets

H 1(X,G)
i∗−→ H 1(X,N)

p∗−→ H 1(X,QG). (20)

In fact, p∗ ◦ i∗[g] = [1] for each g ∈ H 1(X,G). In the following result we give an obstruction
to p∗ being surjective.
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Lemma 15. Let G be a normal subgroup of the topological group N such that the fibration
p : N → QG := N\G has local sections. Then we have the following sequence of maps of
pointed sets:

H 1(X,G)
i∗

H 1(X,N)
p∗

γ∗

H 1(X,QG)
δ

γ̆∗◦ν

H 2(X,G′)

H 1(X,autG)
d∗

H̆ 2(X,G→ autG)

(21)

Here d∗ is induced by the map dλ := (λ,1), and the square is commutative. When G is contained
in the centre of N , the upper horizontal row is exact and G′ = G.

Proof. The proof of the lemma is based on the maps introduced in Lemma 14. Define δ :=
πN,∗ ◦ ν. If u := {uij } is an N -cocycle and q := {yij := p ◦ uij } then by definition of ν we find
ν[q] = [u,1] = d∗[u] (see Remark 12); moreover, δ[q] = πN,∗[u,1] = [1] and this proves that
p∗(H 1(X,N)) ⊆ ker δ. We now prove that the square is commutative. To this end, note that
for each N -cocycle u := {uij } we find d∗ ◦ γ∗[u] = [d{ûij }] = [{ûij },1]; on the other side, if
q := {yij } := {p ◦ uij } then γ̆∗ ◦ ν ◦ p∗[u] = γ̆∗ ◦ ν[q] = γ̆∗[u,1] = [{ûij },1], and we conclude
that the square is commutative. Finally, we prove that the upper horizontal row is exact when
G is contained in the centre of N ; to this end, it suffices to verify that ker δ ⊆ p∗(H 1(X,N)).
Now, we have G = G′ and the map πN,∗ takes the form πN,∗[u,g] := [g]. Since ν is bijective
we have that δ[q] = [1] if and only if πN,∗[u,g] = [1], where [u,g] = ν[q]. This means that
g = {gijk} is a trivial G-2-cocycle, so that there are maps hij : Xij → G such that hijhjk =
gijkhik ; the pair (1, {hij }) defines a 2-cocycle equivalence between (u,g) and (u′,1), where
u′ := {uijhji} is, by construction, an N -cocycle. By definition of ν we have p∗[u′] = [q], and
this proves p∗(H 1(X,N)) = ker δ. Thus the upper horizontal row is exact as desired. �

Note that by classical results when N is a compact Lie group and G is closed, G, QG, G′ are
compact Lie groups and the fibration N → QG has local sections.

An interesting class of examples is the following. Let U be the unitary group of an infinite
dimensional Hilbert space; then, the centre of U is the torus T and PU := U/T is the projective
unitary group. In this case, δ takes the form

{
δ : H 1(X,PU) → H 2(X,T) � H 3(X,Z),

δ[q] := [g], q := {yij }, g := {gijk}
(22)

(where {gijk} is defined by (19)) and it is well known that it is an isomorphism (see [5, §10.7.12]
and following sections).

In the following lemma, we define a Chern class for a QG-cocycle when G ⊆ SU(d) and NG

is the normaliser of G in U(d).

Lemma 16. Let G ⊆ SU(d). Then there is a map c : H 1(X,QG) → H 2(X,Z); if q is a trivial
QG-cocycle then c[q] = 0.
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Proof. It suffice to note that the determinant defines a group morphism det : NG → T. Since
G ⊆ SU(d), we find that det factorises through a morphism detQ : QG → T. The functoriality
of H 1(X, ·), and the well-known isomorphism H 1(X,T) � H 2(X,Z), complete the proof. �
5. Bundles of C∗-algebras and cohomology classes

In the present section we give an application of the cohomology class δ defined in Lemma 15
to bundles of C∗-algebras. To this end, in the following lines we present some constructions
involving principal bundles and C∗-dynamical systems.

Let F• be a C∗-algebra and X a locally compact, paracompact Hausdorff space. Then the co-
homology set H 1(X,aut F•) can be interpreted as the set of isomorphism classes of F•-bundles,
in the following way: for each aut F•-cocycle u := {uij }, denote the fibre bundle with fibre F•
and transition maps {uij } by

π : F̂ → X

(see [12, 5.3.2]); by construction, F̂ is endowed with local charts

πi : F̂ |Xi
:= π−1(Xi) → Xi × F•,

where {Xi}i is an open cover of X, in such a way that

πi ◦ π−1
j (x, v•) = (

x,uij,x(v•)
)
, x ∈ Xij , v• ∈ F•. (23)

The set of sections t : X → F̂ , p ◦ t = idX , such that the norm function {X � x �→ ‖t (x)‖} van-
ishes at infinity has a natural structure of F•-bundle, that we denote by Fu. On the converse, given
an F•-bundle F , using the method exposed in [25, §3.1] (see also the related references), we can
construct a fibre bundle π : F̂ → X with fibre F•, in such a way that F is isomorphic to the
C0(X)-algebra of sections of F̂ . The correspondence F �→ F̂ is functorial: C0(X)-morphisms
τ : F1 → F2 correspond to bundle morphisms τ̂ : F̂1 → F̂2 such that τ(t) = τ̂ ◦ t , t ∈ F1.

Let F1, F2 be F•-bundles and K a subgroup of aut F•; a C0(X)-isomorphism β : F1 → F2 is
said to be K-equivariant if there is an open cover {Xi}i∈I trivialising F̂1, F̂2 by means of local
charts πi,k : F̂k|Xi

→ Xi × F•, k = 1,2, i ∈ I , with automorphisms βi,x ∈ K , i ∈ I , x ∈ Xi ,
satisfying

β̂ ◦ π−1
i,1 (x, v•) = π−1

i,2

(
x,βi,x(v•)

)
, v• ∈ F•

(roughly speaking, at the local level β is described by automorphisms in K). In such a case, we
say that F1 is K-C0(X)-isomorphic to F2. Moreover, we say that an F•-bundle F has structure
group K if F = Fu for some K-cocycle u. It is easy to verify that K-cocycles u, v are equivalent
in H 1(X,K) if and only if the associated F•-bundles are K-C0(X)-isomorphic.

Remark 17. Let (A•, ρ•, a•) be a pointed C∗-dynamical system and K := aut(A•, ρ•, a•) ⊆
aut A•. An A•-bundle A has structure group K if and only if there is ρ ∈ endX A and a ∈ A
with local charts πi : Â|Xi

→ Xi × A•, such that

πi ◦ ρ̂(v) = ρ•(v•), πi(a) = (x, a•), v ∈ Â, (x, v•) := πi(v).
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In this case, we say that (A, ρ, a) is a locally trivial pointed C∗-dynamical system. Now,
β : A → A′ is a K-C0(X)-isomorphism if and only if β is an isomorphism of pointed C∗-
dynamical systems. So that, H 1(X,K) describes the set of isomorphism classes of locally trivial
pointed C∗-dynamical systems (A, ρ, a) with fibre (A•, ρ•, a•). In the sequel, we shall make use
of the following fact: if N is a subgroup of K and n is an N -cocycle, then we may regard n as
a K-cocycle; thus, if A is an A•-bundle with structure group N , then A defines a locally trivial
pointed C∗-dynamical system (A, ρ, a).

The next lemma is an application of the previous ideas.

Lemma 18. Let d ∈ N, G ⊆ U(d) be covariant and QG := NG\G. Then for each compact
Hausdorff space X there are one-to-one correspondences between:

(1) QG-cocycles;
(2) locally trivial pointed C∗-dynamical systems with fibre (OG,σG, θ);
(3) Ĝ-bundles.

Proof. Consider the pointed C∗-dynamical system (OG,σG, θ) with the action (7), then apply
Remark 17, Theorems 7 and 1. �

The following construction may be regarded as an analogue of the notion of group action in
the setting of C∗-bundles and appeared in [25, §3.2]. Let G be a subgroup of aut F•. A gauge
C∗-dynamical system with fibre (F•,G) is given by a triple (F , G, α), where F is an F•-bundle,
η : G → X is a bundle with fibre G and

α : G ×X F̂ → F̂

is a continuous map such that for each x ∈ X there is a neighbourhood U of x with local charts

ηU : G|U → U × G, πU : F̂ |U → U × F•, (24)

satisfying

πU ◦ α(y, v) = (
x, y•(v•)

)
, (25)

where

x := π(v) = η(y), (x, y•) := ηU(y), (x, v•) := πU(v)

(so that y• ∈ G ⊆ aut F• and v• ∈ F•). We say that (F , G, α) has structure group K if F has
structure group K .

Usual continuous actions are related with gauge C∗-dynamical systems in the following way:
if S is a set of sections of G which is also a group w.r.t. the operations defined pointwise, then
there is an action S → autX F ; in particular, every continuous action G → autX F can be re-
garded as a gauge action on F of the bundle G := X × G (see [25, §3.2] for details).
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The fixed-point algebra of (F , G, α) is given by the C0(X)-algebra

F α := {
t ∈ F : α

(
y, t (x)

) = t (x), x ∈ X, y ∈ η−1(x)
}
.

Let A• ⊆ F• denote the fixed-point algebra w.r.t. the G-action. Then (25) implies that F α is an
A•-bundle.

We now expose the main construction of the present section. Again, we consider a C∗-algebra
F• and a subgroup K of aut F•; moreover, we pick a subgroup G of K and denote the fixed-
point algebra w.r.t. the G-action by A•. We consider the normaliser of G in K and the associated
quotient group, as follows: {

NG := {
u ∈ K: u ◦ g ◦ u−1 ∈ G

}
,

p : NG → QG := NG\G.
(26)

By construction, for every u ∈ NG, g ∈ G, a ∈ A• there is g′ ∈ G such that g ◦ u(a) = u ◦
g′(a) = u(a). The above equalities imply that the NG-action on F• factorises through a QG-
action

QG → aut A•, p(u) �→ u|A• , u ∈ NG; (27)

thus, applying the above procedure, for every QG-cocycle q we can construct an A•-bundle Aq.

Lemma 19. Let q := ({Xi}, {yij }) ∈ H 1(X,QG) and Aq denote the associated A•-bundle. Then
the following are equivalent:

(1) There is a gauge C∗-dynamical system (F , G, α) with fibre (F•,G) and structure group NG,
such that Aq is QG-C0(X)-isomorphic to F α ;

(2) There is an NG-cocycle n such that [q] = p∗[n], where p∗ : H 1(X,NG) → H 1(X,QG) is
the map induced by (26(2)).

Proof. (1) ⇒ (2). Let us denote the NG-cocycle associated with F by n := ({Xi}, {uij }). We
assume that {Xi} trivialises G and F̂ (otherwise, we perform a refinement of {Xi}), so that we
have local charts ηi : G|Xi

→ Xi × G, πi : F̂ |Xi
→ Xi × F• fulfilling (25), with {πi} related

with {uij } by means of (23). Let us consider the fibre bundle F̂ α → X associated with F α ; then
we have an inclusion F̂ α ⊆ F̂ and (25) implies

πi

(
F̂ α|Xi

) = Xi × A• ⇒ Xij × A• = πi ◦ π−1
j (Xij × A•).

We conclude by (23) that vij,x := uij,x |A• ∈ aut A• for every x ∈ Xij and pair i, j . Moreover,
by (27) we find that vij = p ◦uij , as i, j vary, yield a set of transition maps for F̂ α . Finally, since
A is QG-C0(X)-isomorphic to F α , we conclude that [q] = p∗[n].

(2) ⇒ (1). Let n := {uij }. We define F as the F•-bundle with cocycle n and G → X as the
fibre bundle with fibre G and transition maps γij,x(g) := uij,x ◦g ◦u−1

ij,x , x ∈ Xij . Such transition

maps define a cocycle with class γ∗[n] ∈ H 1(X,autG). Now, we note that

uij,x ◦ g(v•) = γij,x(g) ◦ uij,x(v•), g ∈ G, v• ∈ F•, x ∈ Xij .
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This implies that if we consider the maps

αi : (Xi × G) ×Xi
(Xi × F•) → Xi × F•, αi

(
(x, g), (x, v•)

) := (
x,g(v•)

)
,

then there is a unique gauge action α : G ×X F̂ → F̂ with local charts {ηi} of G associated with

{γij } and {πi} of F̂ associated with {uij }, fulfilling

αi = πi ◦ α ◦ (
η−1

i × π−1
i

)
for every index i. Since A has QG-cocycle {p ◦ uij }, reasoning as in the first part of the proof
we conclude that A is QG-C0(X)-isomorphic to F α . �
Corollary 20. With the notation of the previous lemma, if γ∗[n] = [1] then there is a continuous
action α• : G → aut F with fixed-point algebra QG-C0(X)-isomorphic to A.

Proof. Since γ∗[n] = [1] there is an isomorphism G � X×G. Thus, the gauge action α : G ×X F̂
induces the continuous action α• : G → autX F (see [25, Corollary 3.4]). �
Theorem 21. Let G ⊆ K ⊆ aut F•, A• denote the fixed-point algebra of F• w.r.t. the G-action
and QG defined as in (26(2)). For each A•-bundle A with structure group QG there is a class

δ(A) ∈ H 2(X,G′) (28)

fulfilling the following property: if A is QG-C0(X)-isomorphic to the fixed-point algebra of
a gauge C∗-dynamical system (F , G, α) with fibre (F•,G) and structure group NG, then
δ(A) = [1]. The converse is also true when G lies in the centre of NG.

Proof. Applying Lemma 15 we define δ(A) := δ[q], where q is the QG-cocycle associated
with A (of course, there is an abuse of the notation δ in the previous definition, but this should
not create confusion). The theorem now follows applying Lemma 19. �

The class δ may be also interpreted as an obstruction to constructing covariant representations
of a gauge C∗-dynamical system over a continuous field of Hilbert spaces. Since this point goes
beyond the purpose of the present work, we postpone a complete discussion to a forthcoming
paper.

In the following lines we discuss the relation between the class δ and the Dixmier–Douady
invariant. Let H denote the standard separable Hilbert space, U the unitary group of H endowed
with the norm topology, T the torus acting on H by scalar multiplication, PU := U/T the pro-
jective unitary group, Kr the C∗-algebra of compact operators acting on the tensor power Hr ,
r ∈ N, and (Hr,Hr) ⊃ Kr the C∗-algebra of bounded operators. Moreover, let O∞ denote the
Cuntz algebra; it is well known that there is a continuous action

U → aut O∞, (29)



376 E. Vasselli / Journal of Functional Analysis 257 (2009) 357–387
defined as in (1), which restricts to the circle action T → aut O∞. The construction (26) with
K = U, G = T yields QG = PU and the action

PU → aut O0∞, γ �→ γ̂ .

Now, O0∞ can be constructed using a universal construction on K, as follows (see [3]). Consider
the inductive structure

· · · jr−1−→ (
Hr,Hr

) jr−→ (
Hr+1,H r+1) jr+1−→ · · · , jr (t) := t ⊗ 1, (30)

where 1 ∈ (H,H) is the identity, and denote the associated C∗-algebra by B∞. Then, O0∞ is
the C∗-subalgebra of B∞ generated by the images of the Kr ⊂ (Hr,Hr), r ∈ N. The PU-action
on O0∞ preserves the inductive structure: if ir : Kr → O0∞, r ∈ N, are the natural inclusions, then

γ̂ ◦ ir (t) ∈ ir
(

Kr
)
, γ ∈ PU, t ∈ ir

(
Kr

)
, (31)

and in particular PU acts on i1(K) as the usual adjoint action:

γ̂ ◦ i1(t) = i1 ◦ γ (t), t ∈ K, γ ∈ PU. (32)

Let us denote the category of O0∞-bundles over X with arrows PU-C0(X)-isomorphisms by
bunPU(X, O0∞). By the above results, each O0∞-bundle A∞ with structure group PU is deter-
mined by a PU-cocycle q, and the class

δ(A∞) = δ[q] ∈ H 2(X,T) � H 3(X,Z) (33)

measures the obstruction to finding a gauge dynamical system with fibre (29) and fixed-point al-
gebra A∞. Now, we denote the category of K-bundles over X with arrows C0(X)-isomorphisms
by bun(X, K); each K-bundle A is determined by a PU-cocycle q, and its Dixmier–Douady
invariant [5, Chapter 10] is computed by (22):

δDD(A) = δ(q). (34)

Proposition 22. For each locally compact, paracompact Hausdorff space X, there is an equiva-
lence of categories bun(X, K) → bunPU(X, O0∞), A �→ A∞, and

δDD(A) = δ(A∞), A ∈ bun(X, K). (35)

Proof. Let A be a K-bundle with associated PU-cocycle q. The multiplier algebra MA of A
can be constructed as the C0(X)-algebra of bounded sections of the bundle B̂ → X with fibre
(H,H) and transition maps defined by q. For each r ∈ N, we consider the C0(X)-tensor products
MAr := MA ⊗X · · · ⊗X MA, Ar := A ⊗X · · · ⊗X A and the obvious inclusions Ar ⊂ MAr .
We have the inductive limit structure

· · · jr−1−→ MAr jr−→ MAr+1 jr+1−→ · · · , jr (t) := t ⊗ 1,
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where 1 ∈ MA is the identity. The system (MAr , jr ) yields the inductive limit algebra MA∞ and
we define A∞ as the C∗-subalgebra of MA∞ generated by the images of the C∗-algebras Ar ,
r ∈ N. If β : A → A′ is a C0(X)-isomorphism, then it naturally extends to C0(X)-isomorphisms
βr : Ar → A′r , r ∈ N, and finally to a C0(X)-isomorphism β∞ : A∞ → A′∞. On the converse,
let A∞ be an O0∞-bundle with structure group PU and associated PU-cocycle q. Since the PU-
action on O0∞ preserves the inductive structure (30), and since the PU-action on O0∞ restricts
to the natural PU-action on K ⊂ O0∞ (see (31) and (32)), for each r ∈ N there is a Kr -bundle
Ar ⊂ A∞ with associated PU-cocycle q, with A1 generating A∞ as above; thus our functor
is surjective on the sets of objects. If β ′ : A∞ → A′∞ is an isomorphism in bunPU(X, O0∞)

then by PU-equivariance we find β ′|Ar = A′r for each r ∈ N. Defining β := β ′|A1 we easily
find β ′ = β∞; thus our functor is surjective on the sets of arrows. Finally, (35) follows by (33)
and (34). �
6. Gauge-equivariant bundles, and a concrete duality

Let X be a compact Hausdorff space. In the present section we give a duality theory in the set-
ting of the category vect(X) of vector bundles over X, relating suitable subcategories of vect(X)

with gauge equivariant vector bundles in the sense of [20].
Let d ∈ N and π : E → X a vector bundle of rank d . We denote the Hilbert C(X)-bimodule

of sections of E by SE , endowed with coinciding left and right C(X)-actions. For each r ∈ N,
we denote the r-fold tensor power of E in the sense of [15, §I.4], [1, 1.2] by E r (for r = 0, we
define E 0 := ι := X × C) and by (E r , E s) the set of vector bundle morphisms from E r into E s .
The Serre–Swan equivalence implies that every (E r , E s) is the C(X)-bimodule of sections of
a vector bundle πrs : E rs → X, having fibre (Hr,Hs) ≡ Mdr ,ds [15, Theorem 5.9]. In explicit
terms, E rs � E s ⊗ E r∗ , where E r∗ is the r-fold tensor power of the conjugate bundle and every
t ∈ (E r , E s) can be regarded as a continuous map

t : X → E rs, πrs ◦ t = idX.

We denote the tensor category with objects E r , r ∈ N, and arrows (E r , E s) by Ê . It is clear that
(ι, ι) = C(X). Moreover, the flip operator

θE ∈ (
E 2, E 2): θE (x) ◦ (

v ⊗ v′) := v′ ⊗ v, v, v′ ∈ Ex, x ∈ X, (36)

defines a symmetry on Ê . Thus, (Ê ,⊗, ι, θE ) is a symmetric tensor C∗-category; we denote the
associated pointed C∗-dynamical system by (O E , σE , θE ).

Proposition 23. Let d ∈ N and H denote the standard rank d Hilbert space.

(1) For each compact Hausdorff space X there is an isomorphism

Q : sym(X, Ĥ ) → H 1(X,U(d)
)
.

(2) If E → X is a rank d vector bundle, then the category (Ê ,⊗, ι, θE ) is an Ĥ -bundle and all
the elements of sym(X, Ĥ ) are of this type.

(3) If u is a U(d)-cocycle associated with E as a set of transition maps, then Q[Ê ] = [u].
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(4) O E is the Cuntz–Pimsner algebra associated with SE and is an Od -bundle with structure
group U(d).

Proof. (1) We apply Theorem 7 to the case G = {1}, so that NG = QG = U(d).
(2) Let E → X be a vector bundle; we consider a local chart πU : E |U → U × H and note

that, by functoriality, for each r, s ∈ N there are local charts πrs
U : E rs |U → X × (Hr,Hs). This

yields the desired local chart π̂U : Ê → UĤ . Let now (ρ̂,⊗, ι, ε) be an Ĥ -bundle; to prove
that ρ̂ � Ê for some vector bundle E we note that the Hilbert C(X)-bimodule (ι, ρ) defines
a locally trivial continuous field of Hilbert spaces with fibre H ; we denote the vector bundle
associated with (ι, ρ) by E , and applying the Serre–Swan equivalence we obtain an isomorphism
β : SE � (ι, E ) → (ι, ρ), which extends to the desired isomorphisms βrs : (E r , E s) → (ρr , ρs),
r, s ∈ N.

(3) We pick a U(d)-cocycle u′ with class Q[Ê ]. By definition of Q we have that u′ yields
transition maps for the vector bundles E rs , r, s ∈ N, by means of the action û(t) := us ◦ t ◦ u∗

r ,
u ∈ U(d), t ∈ (Hr,Hs) (compare with (5)). In particular, for r = 0, s = 1, we conclude that
u′ defines, up to cocycle equivalence, a set of transition maps for E and thus [u′] = Q[Ê ] = [u].

(4) It suffices to recall [22, Propositions 4.1, 4.2]. �
Remark 24. To be concise, we denote the totally antisymmetric projections defined as in (10)
by Pn := PE ,θE ,n ∈ (E n, E n), n ∈ N. By definition of the totally antisymmetric line bundle∧d E := Pd E d we have that E is a twisted special object, with ‘categorical Chern class’ (12)
coinciding with the first Chern class c1(E ). If c1(E ) = 0 then E is a special object and the conju-
gate bundle E∗ appears as the object associated with the projection Pd−1 ∈ (E d−1, E d−1) (see [7,
Lemma 3.6]). Clearly, the existence of the conjugate bundle does not depend on the vanishing
of c1(E ), anyway in general it is false that E∗ � Pd−1 E d−1.

Let ρ̂ be a tensor C(X)-subcategory of (Ê ,⊗, ι); we denote the spaces of arrows of ρ̂ by
(E r , E s)ρ , r, s ∈ N. For every r, s ∈ N, we define the set E rs

ρ := {tx ∈ E rs : x ∈ X, t ∈ (E r , E s)ρ}
and denote the restriction of πrs on E rs

ρ by π
ρ
rs . In this way, we obtain Banach bundles

πρ
rs : E rs

ρ → X. (37)

Let t ∈ (E r , E s). If t ∈ (E r , E s)ρ , then by definition tx ∈ E rs
ρ for every x ∈ X. On the converse,

suppose that tx ∈ E rs
ρ , x ∈ X; then for every x ∈ X there is t ′ ∈ (E r , E s)ρ such that tx = t ′x . By

continuity, for every ε > 0 there is a neighbourhood Uε � x with supy∈Uε
‖ty − t ′y‖ < ε. Thus,

[5, 10.1.2(iv)] implies that t ∈ (E r , E s)ρ . We conclude that

t ∈ (
E r , E s

)
ρ

⇔ tx ∈ E rs
ρ , ∀x ∈ X. (38)

Let p : G → X be a group bundle with fibres compact groups Gx := p−1(x), x ∈ X. According
to [20], a gauge action on E is given by a continuous map

α : G ×X E → E ,
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such that each restriction αx : Gx × Ex → Ex , x ∈ X, is a unitary representation on the Hilbert
space Ex ; to economise on notation, we define

Gα,x := αx(Gx), uα,x := αx(u), u ∈ Gx.

In this way, E is a G -equivariant vector bundle in the sense of [20, §1], with trivial action on X.
Moreover, every πrs : E rs → X is a G -vector bundle, with action

αrs : G ×X E rs → E rs, (u, v) �→ αrs(u, v) := ûα,x(v), x := p(u) = πrs(v) ∈ X,

where ûα,x(v) is defined as in (1). We denote the category with objects E r , r ∈ N, and arrows(
E r , E s

)
α

:= {
t ∈ (

E r , E s
)
: αrs

(
u, t (x)

) = t (x), u ∈ G, x := p(u)
}

(39)

by α̂. Clearly, (α̂,⊗, ι) is a tensor C∗-category with (ι, ι) = C(X) and fibres Ĝα,x , x ∈ X, defined
as in (5). Since θE (x) = θ , x ∈ X, we conclude that θE ∈ (E 2, E 2)α , thus there is an inclusion
functor

E : (α̂,⊗, ι, θE ) → (Ê ,⊗, ι, θE ).

Let us consider the bundle U E → X of unitary automorphisms of E (see [15, I.4.8]). It is well
known that U E has fibre the unitary group U(d); if {uij } is the U(d)-cocycle associated with E ,
then U E has associated autU(d)-cocycle

γij,x(u) := uij,x · u · u∗
ij,x, x ∈ Xij , u ∈ U(d).

Note that U E is compact as a topological space. In the same way the bundle S U E → X of special
unitary automorphisms of E is defined: it has fibre SU(d) and the same transition maps as U E .
Of course, there is an inclusion S U E ⊂ U E .

Now let G → X be a closed subbundle of U E , not necessarily locally trivial. Then there is an
obvious gauge action α : G ×X E → E . In order to emphasise the picture of G as a subbundle
of U E , we use the notations

Ĝ := α̂,
(

E r , E s
)

G := (
E r , E s

)
α
,

and call Ĝ the dual of G . Clearly, each (E r , E s)G is the module of sections of a Banach bundle

π G
rs : E rs

G → X, r, s ∈ N.

We define (O G , σG , θE ) as the pointed C∗-dynamical system associated with (Ĝ,⊗, ι, θE ).
Clearly, there is a canonical monomorphism

E∗ : (O G , σG , θE ) → (O E , σE , θE ).

Actions on the vector bundle E → X by (generally noncompact) groups G of unitary automor-
phisms have been considered in [23, §4]. This approach has the disadvantage to associate the
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same dual to very different groups (see [23, Example 4.2]). According to [23, Definition 4.7], we
can associate a group bundle G ⊆ U E to G, in such a way that the map {G �→ Ĝ} is one-to-one
[23, Proposition 4.8]. For this reason in the present paper we passed to consider the notion of
gauge action.

The following result is a different version of [23, Proposition 4.8]; since the proof is essentially
the same, it is omitted.

Proposition 25. Let E → X be a vector bundle. The map {G �→ Ĝ} defines a one-to-one cor-
respondence between the set of closed subbundles of S U E and the set of symmetric tensor
C∗-subcategories ρ̂ of Ê such that (ι,

∧d E ) ⊆ (ι, E d)ρ .

Let G ⊆ U(d). A Ĝ-bundle in Ê is a Ĝ-bundle ρ̂ endowed with an inclusion

(ρ̂,⊗, ι, θE ) ⊆ (Ê ,⊗, ι, θE ).

Let us denote the inclusion map by i : NG → U(d), and the quotient projection by p : NG →
QG; by functoriality of H 1(X, ·), there are maps

i∗ : H 1(X,NG) → H 1(X,U(d)
)
, p∗ : H 1(X,NG) → H 1(X,QG). (40)

Moreover, by (13) each NG-cocycle n = {uij } defines an autG-cocycle {ûij } with class γ∗[n].

Theorem 26. Let G ⊆ U(d) be a compact group. For each compact Hausdorff space X and
NG-cocycle n = {uij }, there are a vector bundle E → X with U(d)-cocycle {i ◦ uij } and a fibre

G-bundle G ⊆ U E with transition maps {ûij }. The category (Ĝ,⊗, ι, θE ) is a Ĝ-bundle with
associated cohomology class p∗[n] ∈ H 1(X,QG). Moreover, there is a gauge action

α : G ×X Ô E → Ô E

with fibre (Od ,G) and fixed-point algebra O G .

Proof. Clearly, there are E and G defined as above. Since by construction G ⊆ U E , the action
α is defined, together with the tensor C∗-category (Ĝ,⊗, ι, θE ) and the pointed C∗-dynamical

system (O G , σG , θE ). By (7) we can regard QG as a subgroup of aut Ĝ, so the QG-cocycle
q := {p ◦uij } defines a symmetric tensor C∗-category (ρ̂q,⊗, ι, εq) and a pointed C∗-dynamical
system (Oq, ρq, εq). To prove that Ĝ has associated cocycle q, it suffices to give a QG-C(X)-
isomorphism Oq � O G . To this end, we note that Lemma 19 implies that Oq is QG-C(X)-
isomorphic to the fixed-point algebra Oα

E ; thus, in order to get the desired isomorphism, it suffices
to prove that O G = Oα

E . Now, it is clear that O G ⊆ Oα
E . To prove the opposite inclusion, we

consider the Haar functional ϕ : C(G) → C(X) and the induced invariant mean m : O E → Oα
E

in the sense of [25, §4]. By definition of α we have m((E r , E s)) = (E r , E s)G ⊂ O G , r, s ∈ N,
so that if t ∈ Oα

E is a norm limit of the type t = limn tn, tn ∈ span
⋃

rs(E r , E s), then t = m(t) =∑
n m(tn), with tn ∈ (E r , E s)G . Thus, Oα

E = O G and this completes the proof. �
In the following theorem we characterise the Ĝ-bundles in Ê that arise as above.
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Theorem 27. Let G ⊆ U(d) be covariant, E → X a vector bundle with U(d)-cocycle u and ρ̂ a
Ĝ-bundle in Ê with QG-cocycle q (in the sense of Lemma 18). Then the structure group of E can
be reduced to NG, i.e. there is an NG-cocycle n such that [u] = i∗[n]. Moreover [q] = p∗[n]
and ρ̂ = Ĝ , where G ⊆ U E is a fibre G-bundle with class γ∗[n] ∈ H 1(X,autG).

Proof. We associate to ρ̂ the locally trivial pointed C∗-dynamical system (Oρ, ρ∗, θE ) with fibre
(OG,σG, θ), equipped with the inclusion (Oρ, ρ∗, θE ) ⊆ (O E , σE , θE ). There is a finite open
cover {Xi} and local charts ηi : Oρ |Xi

→ C0(Xi) ⊗ OG, defining the QG-cocycle q := {yij }
such that

ŷij,x = ηi,x ◦ η−1
j,x, x ∈ Xij .

Now, up to performing a refinement, we may assume that {Xi} trivialises E , so that there are local
charts πi : E |Xi

→ Xi ×H with associated U(d)-cocycle u := {uij := πi ◦π−1
j }. Moreover, each

πi induces a local chart π̂i : O E → C0(Xi) ⊗ Od . Let us define Oρ,i := π̂i(Oρ). We introduce
the C0(Xi)-isomorphisms

βi := π̂i ◦ η−1
i , βi : C0(Xi) ⊗ OG

�−→ Oρ,i ⊆ C0(Xi) ⊗ Od,

so that for each pair i, j we find

ŷij,x = β−1
i,x ◦ ûij,x ◦ βj,x, x ∈ Xij . (41)

Now, each βi may be regarded as a continuous map βi : Xi → emb OG, thus by Lemma 6 there
is an open cover {Yil}l of Xi and continuous maps wil : Yil → U(d) such that

βi,x(t) = ŵil,x(t), t ∈ OG, x ∈ Yil . (42)

We extract from {Yil}il a finite open cover {Yh} of X; to economise on notation, we introduced
the index h instead of i, l, so that we have maps wh satisfying (42) for each h and x ∈ Yh. Since
E |Yh

is trivial, we have that u is equivalent to a cocycle defined by transition maps uhk : Yhk →
U(d); with a slight abuse of notation, we denote this cocycle again by u. Of course, the same
procedure applies to q = {yhk}. By (41), we find

ŷhk,x = ŵh,x ◦ ûhk,x ◦ ŵ−1
k,x, x ∈ Yhk. (43)

Now, u is equivalent to the U(d)-cocycle n := {zhk := whuhkw
∗
k } and (43) becomes

ŷhk,x(t) = ẑhk,x(t), x ∈ Yhk, t ∈ OG.

In other terms, each zhk,x ∈ aut(Od, σd, θ) restricts to the automorphism ŷhk,x ∈ aut OG, so by
Remark 8 we conclude that n takes values in NG and yields a reduction to NG of the structure
group of E . Moreover, using again Remark 8 we have [q] = p∗[n]. The fact that G has class γ∗[n]
follows by applying the previous theorem to the NG-cocycle n. �
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Corollary 28. Let ρ̂ be a special category with an inclusion (ρ̂,⊗, ι, θE ) → (Ê ,⊗, ι, θE ). Then:

(1) There is a compact group G ⊆ SU(d) such that E has an associated NG-cocycle n;
(2) ρ̂ has class Q[ρ̂] = p∗[n] ∈ H 1(X,QG);
(3) There is a group bundle G ⊆ S U E such that ρ̂ = Ĝ .

Proof. (1) By Theorem 10 there is a compact group G ⊆ SU(d) such that ρ̂ has fibre Ĝ and an
associated QG-cocycle q; thus, by the previous theorem we conclude that E has an associated
NG-cocycle n.

(2) The previous theorem implies [q] = p∗[n].
(3) We apply again the previous theorem. �

7. Cohomological invariants and duality breaking

In the present section we approach the following question: given a covariant inclusion G ⊆
U(d) and a Ĝ-bundle (ρ̂,⊗, ι, ε), is there any G -equivariant vector bundle E → Xι with an
isomorphism (Ĝ,⊗, ι, θE ) � (ρ̂,⊗, ι, ε)? This is what we call the problem of abstract duality,
as — differently from the previous section — our category ρ̂ is not presented as a subcategory
of vect(Xι). We will give a complete answer to the previous question in terms of the cohomology
set H 1(Xι,QG), reducing the problem of abstract duality to (relatively) simple computations
involving cocycles and principal bundles.

As a preliminary step we analyse the setting of C∗-bundles. Let X be a compact Hausdorff
space. By Lemma 18 we have that H 1(X,QG) describes the set of isomorphism classes of
locally trivial, pointed C∗-dynamical systems with fibre (OG,σG, θ). For every QG-cocycle q,
we denote the associated pointed C∗-dynamical system by (Oq, ρq, εq).

Theorem 29. With the above notation, for each QG-cocycle q and (Oq, ρq, εq), the following
are equivalent:

(1) There is a rank d vector bundle E → X with a C0(X)-monomorphism η : (Oq, ρq, εq) →
(O E , σE , θE );

(2) There is a gauge C∗-dynamical system (O, G, α) with fibre (Od,G) and structure
group U(d), such that Oq is QG-C0(X)-isomorphic to the fixed-point algebra Oα ;

(3) There is an NG-cocycle n such that p∗[n] = [q].

Proof. (3) ⇒ (2). We consider the Cuntz algebra Od endowed with the NG-action (1), which
factorises through the action QG → aut OG. Then we apply Lemma 19 with F• = Od and
A• = OG.

(2) ⇒ (1). Let n := {uij } denote the U(d)-cocycle associated with O and E → X be the rank
d vector bundle with transition maps {uij }. According to Proposition 23 there is a U(d)-C0(X)-
isomorphism O � O E , so that, to be concise, we identify O with O E . Now, by construction of O E
there is an inclusion SE ⊂ O E , to which corresponds an inclusion E ⊂ Ô E ; since (O E , G, α)

has fibre (Od ,G), with G acting on Od as in (1), we conclude that E is G -stable and the map
α : G ×X Ô E → Ô E restricts to an action

G ×X E → E , (44)
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i.e., E is G -equivariant. By Theorem 26, we conclude that Oα = O G . Moreover, by Theorem 7
we have QG = aut(OG,σG, θ), thus, from Remark 17 we conclude that the given QG-C0(X)-
isomorphism β : Oq → O G yields monomorphisms

(Oq, ρq, εq)
β−→ (O G , σG , θE ) ↪→ (O E , σE , θE ). (45)

(1) ⇒ (3). Apply again Lemma 19 with F• = Od and A• = OG. �
Now, by Theorem 7 there are maps{

sym(X, Ĝ) → H 1(X,QG), [ρ̂,⊗, ι, ε] �→ Q[ρ̂],
H 1(X,QG) → sym(X, Ĝ), [q] �→ [ρ̂q,⊗, ι, εq], (46)

which are the inverses one of each other. The following result is the translation of Theorem 29 in
categorical terms; the proof is an immediate application of Theorems 1, 7 and 27, thus it will be
omitted.

Theorem 30. Let d ∈ N and G ⊆ U(d) be covariant. For each Ĝ-bundle (ρ̂,⊗, ι, ε), the follow-
ing are equivalent:

(1) There is an embedding functor E : ρ̂ ↪→ vect(Xι);
(2) There is a vector bundle E → Xι and a compact G-bundle G ⊆ U E with an isomorphism

(ρ̂,⊗, ι, ε) � (Ĝ,⊗, ι, θE );
(3) There is an NG-cocycle n such that p∗[n] = Q[ρ̂].

We call a gauge group associated with ρ̂ the bundle G → X appearing in Theorem 30, whose
isomorphism class is labelled by γ∗[n] ∈ H 1(X,autG). It follows from the previous theorem
that the set of embedding functors E : ρ̂ ↪→ vect(X) is in one-to-one correspondence with the
set of NG-cocycles n such that p∗[n] = Q[ρ̂], that we denote by Z1(X,NG; ρ̂). As we shall
see in the sequel, Z1(X,NG; ρ̂) may contain more than a cohomology class, or be empty. Let
n,n′ ∈ Z1(X,NG; ρ̂) and G , G′ denote the associated gauge groups. In general, G may be not
isomorphic to G′; an example of this phenomenon with G = SU(2) is provided in Example 36.

Corollary 31. Let G ⊆ U(d) be covariant. If there is a continuous monomorphism s : QG →
NG, p ◦ s = idQG, then for each Ĝ-bundle (ρ̂,⊗, ι, ε) there is at least one embedding functor
ρ̂ ↪→ vect(Xι).

Proof. By functoriality there is s∗ : H 1(Xι,QG) → H 1(Xι,NG) such that p∗ ◦s∗ is the identity
on H 1(Xι,QG). Thus Q[ρ̂] = p∗[n], n := s∗ ◦ Q[ρ̂] and this means that the desired embedding
functor exists. �
Example 32. Let G = SU(d), so that NG = U(d) and QG = T. By (46), we have the map

Q : sym
(
X, ŜU(d)

) → H 1(X,T).

Elementary computations show that the quotient map p : U(d) → T is the determinant; we define
the continuous section s : T ↪→ U(d), s(z) = z⊕1d−1, where 1d−1 is the identity of Md−1. Since
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s is multiplicative, we conclude by Corollary 31 that for each ŜU(d)-bundle σ̂ there is at least
one embedding functor E : σ̂ → vect(X).

For future reference, we consider the well-known isomorphism B : H 1(X,T) → H 2(X,Z).
Moreover, we recall the reader to (12).

Corollary 33. Let (ρ̂,⊗, ι, ε) be a special category such that ρ has dimension d ∈ N and Chern
class c ∈ H 2(Xι,Z). Then there is an ŜU(d)-bundle (σ̂ ,⊗, ι, ε) with an inclusion functor

(σ̂ ,⊗, ι, ε) → (ρ̂,⊗, ι, ε). (47)

If E : ρ̂ ↪→ vect(Xι) is an embedding functor and E := E(ρ), then there is a factorisation

σ̂

E�

ρ̂

E

Ŝ U E
⊆

Ê

(48)

and E has first Chern class c1(E ) = c.

Proof. We define σ̂ as the tensor C∗-subcategory of ρ̂ generated by the symmetry operators
ερ(r, s), r, s ∈ N, and the elements of Rρ (see (12) and following remarks). The obvious in-
clusion σ̂ ⊆ ρ̂ yields the functor (47). If E is an embedding functor then E(Pρ,ε,d ) = Pd (see
Remark 24); this implies E(Rρ) = (ι,

∧d E ) and we conclude that c(ρ) = c1(E ). Finally, since

the spaces of arrows of Ŝ U E are generated by the flips θE (r, s) = E(ερ(r, s)), r, s ∈ N, and ele-
ments of (ι,

∧d E ), we obtain the desired factorisation (48). �
Corollary 34. Let (σ̂ ,⊗, ε, ι) be an ŜU(d)-bundle with B ◦ Q[σ̂ ] ∈ H 2(Xι,Z). Then the set of
embedding functors E : σ̂ → vect(Xι) coincides with the set of vector bundles over Xι of rank d

and first Chern class B ◦ Q[σ̂ ].

For the notion of conjugate in the setting of tensor C∗-categories, we refer the reader to
[18, §2].

Theorem 35. Let d ∈ N and G ⊆ U(d) be covariant. Then for every Ĝ-bundle (ρ̂,⊗, ι, ε) the
following invariants are assigned:{

δ(ρ̂) := δ ◦ Q[ρ̂] ∈ H 2(Xι,G′),
γ̆∗(ρ̂) := γ̆∗ ◦ Q[ρ̂] ∈ H̆ 2(Xι,G→ autG

)
.

The class γ̆∗(ρ̂) defines a G-gerbe Ğ over Xι, unique up to isomorphism, which collapses to a
G-bundle G if and only if there is an embedding functor E : ρ̂ → vect(Xι), and in such a case
δ(ρ̂) = [1]. When G ⊆ SU(d), the Chern class

c(ρ) ∈ H 2(Xι,Z
)
,
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defined in (12), fulfils the following properties: if c(ρ) = 0 then ρ is a special object and the
closure for subobjects of ρ̂ has conjugates; if E : ρ̂ → vect(Xι) is an embedding functor then
c(ρ) is the first Chern class of E(ρ).

Proof. We pick a cocycle pair b in the cohomology class γ̆∗(ρ̂) and define Ğ as the G-gerbe
with transition maps defined by b according to Remark 13 and Lemma 15. Embeddings E : ρ̂ →
vect(Xι) are in one-to-one correspondence with NG-cocycles n such that p∗[n] = Q[ρ̂] and the
associated G-bundles G define cohomology classes γ∗[n] ∈ H 1(Xι,autG). Commutativity of
the square in (21) implies that

d∗ ◦ γ∗[n] = γ̆∗ ◦ Q[ρ̂] ∈ H̆ 2(Xι,G→ autG
)
,

and this proves that Ğ is isomorphic to the gerbe defined by G according to Remark 13. The
relation between the existence of E and the vanishing of δ(ρ̂) is proved applying Theorem 30
and Lemma 15. Let now G ⊆ SU(d). If c(ρ) = 0 then Rρ is a free Hilbert (ι, ι)-module and there
is an isometry S ∈ Rρ . So that ρ is special, and [7, Lemma 3.6] implies that the conjugate ρ̄ is a
subobject in ρ̂. Using [18, Theorem 2.4] we conclude that the tensor powers ρr , r ∈ N, and their
subobjects, have conjugates. �

The previous theorem suggests that in general the dual object of a symmetric tensor C∗-
category is a nonabelian gerbe rather than a group bundle. Clearly, we should say in precise terms
in which sense a tensor C∗-category is the representation category of a gerbe. This could be done
considering the notion of action of gerbes on bundles of 2-Hilbert spaces. An alternative point of
view is to consider Hilbert C∗-bimodules rather than bundles: this situation is analogous to what
happens in twisted K-theory, where we can use equivalently (Abelian) gerbes or bimodules with
coefficients in a continuous trace C∗-algebra to define the same K-group. These aspects will be
clarified in a forthcoming paper [26].

Example 36. Let n ∈ N and Sn denote the n-sphere. We discuss the map p∗ in the case G =
SU(d), d > 1:

p∗ : H 1(Sn,U(d)
) → sym

(
Sn, ŜU(d)

) � H 1(Sn,T
) � H 2(Sn,Z

)
.

A well-known argument implies H 1(Sn,U(d)) � πn−1(U(d)) [12, Chapter 7.8]; thus, by classi-
cal results [12, Chapter 7.12] we have

H 1(S2,U(d)
) � H 1(S4,U(d)

) � Z, H 1(S1,U(d)
) � H 1(S3,U(d)

) � 0;

moreover,

H 2(S2,Z
) � Z, H 2(Sn,Z

) � 0, n �= 2.

Thus the cases S1, S3 are trivial. In the other cases, we have the following:

• n > 2. The map p∗ is trivial and the unique element of sym(Sn, ŜU(d)) is the class of the
trivial bundle. Now, it is a general fact that if E → X is a vector bundle, then the continuous
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bundle (E , E ) is trivial if and only if E is the tensor product of a trivial bundle by a line
bundle. In the case X = Sn, n �= 2, every line bundle is trivial, thus we conclude that (E , E )

is trivial if and only if E is trivial. Since (E , E ) is generated as a C(X)-module by the special
unitary group of E , we conclude that E → Sn is trivial if and only if S U E → Sn is trivial.
Thus, Ŝ U E is trivial for every E → Sn, in spite of the fact that S U E is trivial if and only if
E = Sn × Cd . In particular, this holds for S2m, m = 2, . . . , where nontrivial vector bundles
exist.

• n = 2. We recall that the Chern character

Ch : K0(S2) → H 0(S2,Z
) ⊕ H 2(S2,Z

)
is a ring isomorphism. The term H 0(S2,Z) � Z corresponds to the rank, whilst
H 2(S2,Z) � Z is the first Chern class. By the well-known stability properties of vector
bundles (see [12, Chapter 8, Theorem 1.5] or [15, II.6.10]), we find that rank d vector bun-
dles E , E ′ → S2 are isomorphic if and only if [E ] = [E ′] ∈ K0(S2), i.e. Ch[E ] = Ch[E ′]. This
implies that p∗ is one-to-one for n = 2.

Example 37. We define Rd ⊂ SU(d) as the group of diagonal matrices of the type g :=
diag(z, . . . , z), where z ∈ T is a root of unity of order d . Then NRd = U(d) acts trivially on Rd

and R′
d = Rd . We have the exact sequence of pointed sets

H 1(S2,Rd

) i∗−→ H 1(S2,U(d)
) p∗−→ H 1(S2,QRd

) δ−→ H 2(S2,Rd

)
.

Now, every principal Rd -bundle over S2 is trivial, and the universal coefficient theorem yields
H 2(S2,Rd) � Hom(Z,Rd) � Zd . Thus we have

0 → Z
p∗−→ H 1(S2,QRd

) δ−→ Zd ,

and p∗ is injective. We now prove that there is a left inverse s : Zd → H 1(S2,QRd) for δ with
trivial intersection with p∗(Z). This suffices to prove that H 1(S2,QRd) � Z ⊕ Zd . To this end,
we embed Rd in T and regard each Rd -2-cocycle g := {gijk} as a T-2-cocycle. In this way, the
argument of the proof of [5, Theorem 10.8.4(2)] implies that there is a 1-U(d)-cochain u := {uij }
such that uijujku

−1
ik = gijk . Thus, we define the map

s : H 2(S2,T
) → H̆ 2(S2,Rd→U(d)

) � H 1(S2,QRd

)
, s[g] := [u,g],

which clearly yields the desired left inverse (recall the definition of δ). We conclude that

sym
(
S2, R̂d

) � Z ⊕ Zd .

The first direct summand corresponds to the term H 1(S2,U(d)) whose isomorphism with Z

is realised by means of the determinant (see [12, §7.8]); this implies that the projection
of sym(S2, R̂d) on Z is the Chern class. On the other side, by construction the projection on Zd

corresponds to the class δ.
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Example 38. Let G ⊂ U(d) be as in Example 5 and ρ̂ be a Ĝ-bundle; then it is easy to check
that the set of embeddings ρ̂ → vect(X) is in one-to-one correspondence with vector bundles
E → X such that (E , E ) � (ρ,ρ). In particular when X is the 3-sphere S3 then every vector
bundle E → S3 is trivial and ρ̂ admits an embedding if and only if (ρ,ρ) is trivial. On the other
side, the (classical) Dixmier–Douady invariant is a complete invariant for bundles with fibre Md

and base space S3, thus we conclude that

δ : sym
(
S3, Ĝ

) → H 2(S3,G
) = H 3(S3,Z

) = Z

is an isomorphism.
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