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Let G be a finite group, P a Sylow p-subgroup of G for an odd prime p, 
and ;Gi =g =$.g,,,(p,gJ = I. 

Fix an element v E G such that P = <n), and assume C,(P) .: P, q z 

[:\;,,(P): P] == p - lit # p - 1, where C,(P), N,(P) denote the centralizer 
of P in G and the normalizer of Y in G, respectively. 

Let T m: 7r1 , 7rZ ,..., 7rt be the representatives of conjugacy classes of 
elements of order p, where T? E P, 1 < i < t. For 1 < i,i, k < t, denote 
by sii,; the number of times a product of a conjugate of n[ , in NG(P), by a 
conjugate of nj , in N,(P), equals rii. . 

Denote by Ciir the number of times a product of a conjugate of ni, in G, 
by a conjugate of T? , in G, equals T,< . 

In this paper we study the relation between these numbers siJ,( and Cij6. , 
1 < i, j, k -< t. 

We denote z-~* E P for the representative of nil. Herzog, in his paper “A 
characterization of the simple group PSL(2, p), p > 3” (see [ 13]), by assuming 
the situation we are considering here and also the condition ciji6 = srjk- for all 
(i,j, k) j (i, i, i”), 1 < ;,j, k < t, was able to show that: “If G is a simple 
group, then G is isomorphic to PSL(2, p), p > 3.” 

Considering some relations between c,ii and sill , 1 < i < t, we are success- 
ful in proving, among other things, some similar results to that of Herzog. 

\Ve shall prove in this paper the following results: 

THEOREM 1. If G is a simplegroup and szll = till , for all i E [I ,..., t}, then 
G is isomorphic z&th PSL (2, p), q = (p - 1)/2 odd, p 3 7. 

* This research is part of the author’s Ph.D. Thesis at the University of Chicago, 
I971 ; it was supported by C.N.Pq, Brasil. 
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186 GON~ALVES 

For the other results we assume G satisfying the condition (*) C,,, em 0 
whenever sill =: 0 and 1 < i <. t. 

We also define the rational number r :- r(G, p) by 

P.S. I. This number r has some interesting properties as, e.g., 

(i) 1’ 1 (mod p) as a rational number; 

” irnniV~ ~(/l,, , p) = CT where .+f,) is the alternating group on p 

THEOREM 2. If G is a simple group and Y(G, p) li: 2( p + 2)/3, then G is 
isomorphic with PSL (2, p), p >: 7. 

We denote through this paper 2stll/t by a( p, t) = a (average of sill’s), 
and r(G, p) by r. 

THEOREM 3. If G is a simple group with a = 2 and ~2 < 28p, then G is 
isomorphic with one of the following groups: 

(i) PSL(2, 1 I)( p == 1 I, y = 1); 

(ii) ,WI, , the Mathieugroup on 11 letters (p == I I, T = 35/2). 

THEoREnI 4. If G is a simple group with a =- 1 and r2 < 176Op, then G is 
isomorphic zkth one of the follozoing groups: 

(i) PSI, (2, 7)(/, := 7, r mmm I); 

(ii) --I, , the alternating group on 7 letters (p -:- 7, Y :- 36); 

(iii) C:,(3), unitavy group of dimension 3 ouer GF(3)(p z= 7, Y 106). 

P.S. 2. To reduce the length of this paper we will prove Theorem 4 
in the particular case sill ... =-~ stir :m I. 

P.S. 3. There is a conjecture involving this number r and --I,, the 
alternating group on 7 letters. 

Let s be the degree of the exceptional character in the principal p-block of 
G. Assume G satisfies our initial conditions. 

If G is a simple group and i G 1 z-m g rpx, is G isomorphic with -17? 

PRELIMINARIES 

Here we present some results and notations (see Brauer [2] and W. Feit [6]) 
concerning the irreducible characters of N,(P) and those of G. 
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The irreducible characters of N,(P) a re in two categories. The first one 

consists of t characters c1 , <a ,..., & of degree q = [N,(P) : P], vanishing 
outside P. The second one consists of q linear characters which contain P 
in their kernel, and the following holds: 

(1) 

The exceptional characters of G associated with the 5;‘s will be denoted 
by *, , i =~ 1) 2 ,..., t. 

We also have 

&( 1) = .t :z y,it(mod p), where y = sign = + 1, 1 Sz i S- t; 

$i(T)) = ESi(.rrj) t ct 
(2) 

where E-sign=&], I c:i,j:gt, 

and c is a rational integer neither depending on i nor on;. 
The nonexceptional irreducible characters of G, nonvanishing on P* := 

P - {l}(i.e., in B,,(P), the principal p-block of G) will be denoted by 7: , 
i : 

I ,..., q, where qr = I, , the principal character of G. 
\Ve know that each of theses characters rli is constant on P” == P - (1) 

and also, if ~~(1) = ni and qi(nj) = E! , 1 <j < t, 1 < i < q, then the 
following is true: ti : sign := &I, ~r ~2 I, and n, =.T E, (mod p), 1 < i < q. 

Let 1 mm Cl=, l ,/q . Since or = I it is easily seen that 

It is also well known that 

where 

sij,, r: *s (q ,- z&k) = ; (q +- BijJc), 

where 1 G / = s, 

(4) 

(5) 
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and x is the degree of the exceptional character in B,(p). Then 

fc” -- 2tc, (6) 

where t is the same sign used in (2). 
As a corollary we have, c the same rational integer used in (2), 

t ’ 3 ::- (‘ 0. (7) 
Also, if c 0, vve get 

s-4 j,,, qB,,, . (8) 

I. ‘THEOREMS 1 .kx;D 2 

Before we prove Theorems I and 2 we will prove some lemmas. 

LEMMA I. I. 

(4 i, Sill -= 4 - 1; 

/ 
(b) z 4411 -= Q - P. 

Proof. 
(a) It is quite clear since the orbit of r or has y elements and there is 

no i, 1 .;: i < t, such that TT~ 7~ =~ 7~. 

(11) .'ill ;I (q -I- Bill), Fill y’ -1 9Bill . 

By (a), p(y - 1) = qat 7- cf=, qBill 
Now, since qt ~- p 1 we have (b). 

PROPOSITION I .2. r(G, p) -- 1 (mod p) as u rational number. 

hoof. Since EL. 1 St11 -boy- I y 0 -- some sirI / 0. 
Thus it is enough for us to show that 

Cl’,,, :- sill (mod p). 

But for this, look at P acting on the set SI, {(,vi, ,x1) E G x G 1 .v, .sl = rl), 

by the rule (,xi , x1)(’ ~= (xi”, xIC) = (6-r .x, C, c txlc). 
Since P is self-centralized, then 

and also (s, , x1)” f (xi , x1). 
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Thus P acts f.p.f on set 

LEnftir,t I .3. If t = 2, we haze (8’) 

N‘4i,l; = E’ . q . Bzjh , (8’) 

where t’ :=I ic is a sign. 

Proof. Assume t == 2. 
If c == 0, there is nothing to prove by (8). 
Let c be different from zero. From (6) we have c E z il. 
We have two exceptional characters #r , & and since [,(rj) -t ia := - 1, 

S ’ a‘ff,p =’ C Y,(Ti) . Y,(Tj) Y,~(TT~l) 
,s=l 

Remark. Thus we can use 

.XAill =: t 

with t’ m= sign = *I foranyt 32. 

-cqBijk for 1 :< i,j, k k:. 2. 

!fBill (9) 

LEMMA 1.4. Assume G is a simplegroup neither of type (A) G = PS.L(2, p) 
nor of type (B) G S+ SL(2, p - l), where p - 1 = 2”, a 3 2. Then 

1 G: X,;(P)\ = gjpq < y . v, 

where ‘z; .= (q - 1) . (p + q)/p - q. 

l’roof Let x be the degree of exceptional character in E$(p), the principal 
p-block of G. 

By a Theorem of Feit (see [7]), we have J 3 p + q. 
Now, C,,, < aill for all i E { I,..., tj. 
By (9) 3cAill = c’qBill , where E’ = & I. 



190 GON(‘ALVES 

Thus we obtain 

and from this we obtain 

Applying Lemma 1. I, we have 

Therefore 

LJ 49 - P) -___- 
P [ 

-1-b 
.T I 

;=rq(p- I) '-r(q-p) -r.p(q- I). 

SO 

l - PI 
4-F I + It :c. ql”(q - I). 

Multiplying both sides by q, we have 

f’d9 - P) 
R L .Y -I- I( p - I)] 5: rp'q(q - I ). 

Now, we prove that I) -= c'q(q - p)/s + /(/I -- I) > 0. Indeed, by (3) we 
have 

D = c’q(q - p) + l(p -- l)S E’q(q - P) -i- (p -- 4)x 
s s 

Since x > p + q, we obtain 

..E’Y(q-P)+(P_Y)(P-g) :P-!z 
x 

-7 [(p 7 q) - c'q] Ir- 0. 

Thus we get 

By (3) we have 

(11) 
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Case 1. 6’ z -1. 

Here we obtain 

‘~ ,:aq- 1) 
P-Y’ 

Therefore 

SIPS G 
YP(Q - 1) 

p _ q <y(q- I)=-=r.v. 

Case 2. f’ E T]. 
Here, 

But 

.x :5 p + q 2 g/pq < YP(cl - 1) _ YP(Y - l)(P + 4) 
(P - 41P 

=Y’v 

(P-djl -&q, 

and this proves Lemma 1.4. 

LEMMA 1.5. Let G be a simple group. Jf C,,, = 0, then p < q”. 

Proqf. Let us assume C,,, =~ 0 and p > q”. 
From Cl,, : - 0 = sill , we obtain (using (4), (5), (9)) B,,, = --q and 

1 + ~‘qB,,,/x = 0. 
Now, from (3) we have I 2: (p - q)/( p - 1) > 0 and we have 

Let s 

If n 

up + q. Thus up -+ q = q2il, and 

(ap ~,~ 4) ~_ (P -~ 1) 4” / (P - 1) q’ 
(p -- I)Z -= p-q ’ 

(ap + q)(p - q) cc (p - 1) 4”. 

1, we have 

(P -i- q)(P - 4) < (aP + q)(P - q) < (P - 1) q2, P” - 9’ < Pq2 -- q’, 

and then p” <ppqz, i.e., p < q*, a contradiction and thus a = 0 and 
x == q < (p - 1). 

By a theorem of Feit we must have G is either of type (A) G e PSL(2, p) or 
of type (B) G z SL(q,p - I),p - I == 2”. 
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But in type (A), q m= (p - I)/2 and 

By our hypothesis, p --- 5, q ~- t --; 2, and G = PSL(2, 5) % dj But 
here srrr = 0 # C,,, , a contradiction. 

Now, in type (B) we have srrr 1 0 + C,,, , a contradiction. 
This proves Lemma 1.5. 

Proof of Theorem I. Assume G simple and s,rr 1 till for all i~(l,.,., tf. 
From (4), (5) and (9) we have 

r\Tow since (gc’q)i(px) - q -m; 0 :> g = p.v -> g < x2, a contradiction. 
We must have (gc’q)/(px) - q f 0 and (12) determines the Bill’s and, 

moreover, B,,, =: B,,, -.: ... = B,,, . 
But this implies, 

Sill = SZll = “’ -- Slll -; Cfll -7 ‘.. =- Clll , A,,, = A,,, .‘. -= & . 

From srrr = szrl :: ... m= soI , we have that G cannot be of type (B) since 
in this type we have q = 2 and this gives &, sill = q - 1 -= 1 3 $1, == 

I =- t = 1, a contradiction. 
If G is of type (A), we are done since the group PSL(2, p), with q L p - 112 

even, does not satisfy sill -= till for all i E {l,..., tj. 
Thus we have, by Lemma 1.3, that 

P+q g;pq2;-.a= 1 .V-C-(q-l)-----. 
P--4 

NOW, 

(t-l- l)p- I 

(t -- ,;p + I * 
t 

P$-4 w-1 
P-q --c‘t--l’ 

Since (t + I)/(t - 1) = I + 2/(t - I) IS a decreasing function of t and 
q - 1 = (p - l/t) - 1 == p - (t + 1)/t, we have for t > 2, 

Then, 

.,<3(P--)&P+3. 
2P 2 
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By a Theorem of Brauer (see [3]), we have G is of type (A) or (B), and this 
proves Theorem 1. 

I)loof of Theorem 2. Assume G is simple and a counter exam.ple for 
Theorem 2. 

\Ve first claim that G is not of type (A) or (B). For, G cannot be of type (A) 
since there either Y = 1 or r = 5(p - I)/(p - 5) (depending if q is odd or 
even, respectively) and in both situations we do not have G, a counter- 
example for Theorem 2. 

Now, G cannot be of type (B) since for SL(2, p - 1)~ - 1 : 2*, we have 

Sill =~ 0 and clll # 0. 
As in the proof of Theorem I, z’ < (p - 3/2) x 3. Hence 

g/pq ,; y.z’ :- w;t 2) x (P - 3)3 
2 

== (p 7. ?)(p - 3). 

Thus, g&q = mp + I < (p i 2)(p - 3) =z m < p -t 2. 
Sow, by theorems of Brauer and Nagai ([8]) we must have one of the 

possibilities for G: 

6) Kl ; 

(ii) PSL(3, 3); 

(iii) type (A); 

(iv) type (B); 

(v) SL(2,p + l), p + 1 == 2”. 

The possibility (i) is out since there m = p + 2. 
The possibilities (iii) and (iv) are out as we saw previously. 
The possibility (ii) is out since there we have sill = 0 + err-, , by 

Lemma I .5. 
Finally, the possibility (v) is also out because there we have q = 2 and this 

implies slll = 0. 
But, by Lemma 1.5, it is not difficult to see that C,,, # 0, and this proves 

Theorem 2. 

2. THEOREMS 3 AND 4 

Proof of Theorem 3. Let G be a counterexample for Theorem 3. 
We claim that G is not of type (A) nor of type (B). Indeed, if G is of type 

(A), PSL (2,~) implies that p = at2 + t + 1 = 2t2 + t f 1 = 11 and 
G = PSL (2, 11) and G is not a counterexample. 
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If G is of type (B), SL (2, p - I), p -- 1 : 2” implies that q : 
at + I ~~- 2t -+ I, a contradiction. 

Thus by Lemma I .4 g/pq < Y v. 
Assume t :., 2, p = 2ta + t -1 1, and p prime number m:- t .P: 4 -J- p 

and f k l:t(t -- I) :< 5/12. 
But 

2 = 

’ 37 

Thus 

Therefore mp < V’28p (p - 5)5/ 12. But p -3 37 -‘- d28p < p. 
So m < 5/12 (p -- 5) < p - 512 < p -t 312 and by a theorem of Hrauer 

(see [3]) we have a contradiction. 
Thus t = 2, p imp 2t2 + t + I =- 1 I, y ~~~ 5. 

IVie also have d28p = d28 x 1 I c: 18, hence 

Then, gjpq = m A 11 $ I :.< YU j. 18 3213 192. 
Therefore llm < 191. So m yi 17. 
Also by the theorems of Brauer and Xagai (see [S]), we may assume 

m>p-,-2 = 13. 
Thus we have 15 :< m -:; 17,~ 55 (I Inz + 1). 
Since G is simple, we may consider only nf odd. 

(i) For m 7 15, g = 2 g’, g’ odd, so G is not simple by Burnside 
(see [I I]). 

(ii) Form- 17,g -4 x5 .I 11 Y 47. Again G is not simple by 

Burnside (see [l I]). And this proves Theorem 3. 

Proof of Theorem 4. Assume G is a counterexample for Theorem 4. 
As before G cannot be of type (A) or (B). Thus, by Lemma 1.3, g,‘pq 5; Y w. 

\T:e also have y - I =- & sill at 1, and this gives p : t” 1 f + 1, 
q .= t :- 1. 

JVe also may assume by the theorems of Brauer and Nagai (see [S]) that 

where m > p + 2. Thus we have 
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We claim that t < 8. 
For, assume t 3 8. Then p > S2 + 8 + 1 = 73, and 

Therefore 

p . (p + 2) -II ,ma v’j 
9 

(p - 7) - . 
56 

(p + 2) 
9 

< t/l760 \dj. c: 
____ 

56 2’1760 . \/p ;- 2 . $. 

SO 
,-- 

~‘p + 2 ,-; \/I760 . $ and p -)- 2 x,- ___-- 1760 x 81 (56)” . 

Then 

Finall!., 

75 ,< ‘4256o 
3136 

<, 46 ’ 

a contradiction. 
Considering also that for t = 4, p : 21 not prime; for t = 7, p m= 

49 t 7 + 1 7 57 not prime, we have the following possibilities for p: 

t -- 2, p :- 7, q = 3; 

t -= 3, p ~:~~ 13, q :4; 

t -5, p =: 31, q= 6; 

t -6, p =: 43, 9’ 7. 

Now we will assume, as we mention in the introduction, sttr =m ‘.. =m= 
sill = 1 (instead of a == I) to shorten this proof. 

LEMMA 2. I. Let / N,(P)1 r p q and let 12 < p be a solution for ~‘1 I 
(modp) and such that n” + 1 (modp) for s < q. 

Define the sets Q, , Qa ,..., Q, as follows: 

Q, =: [I, II, n’(mod p), n3(mod p) ,..., nqml(mod p))-; 

Q, -== (a2 , oi,n(mod p), cgz2(mod p),..., ol,n’f-r(mod p);, 

where~,isthefirstintegerE(l,2 ,..., p-- I) -Qr -(,yg[I ,,.., p-]}l,y#Q,). 
Then 

J-l3 = {cd) , Lu,n(mod p), cr,n2(mod p),..., aan”-‘(mod p);, 

where 01~ is the first integer E {I, 2,...,p - I} - (Q, u ii?,). 
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Recursively, define Q, ,..., Q, (note:p ~~ I q t). 
Let ‘TT~,, be a representative of the class containing +A, for 12 = I ,,... -1, and 

“I, I. (Note: ri, 7~~ .) Then 

s 11, = l((~~,y) EJ& x Q, I .x t Y I(modp))i, 

.siLl, --- l{(x,y) EQ~ x Q1 / .x ! J I(modp)il 

Proof. First, 4 divides p - I and y -/ I, p -- 1. Let c’ - {Z;pZ -- (0); XI 
be the multiplicative group of the field Z/pZ. C; is cyclic of order p - I. 
Since 4 I p ~ 1, there exists WC U such that W is a subgroup of order 9 and 
the unique one of such order. Let IV -= ‘~1, )r? < p, ti = IZ 1 p&C’. Then, 
n” fin I’ -. n” ~~~ 1 (modp) and nr + I (modp) for s i 9, since IV ~~ y. 

Thus, the 9 elements of W are I, n., 3 ,..., 6-r. This also says that the set 
Q, (1; n, rz2 (modp),..., n’lm* (modp)) is uniquely determined lbv anv . . 
solution 71, of .‘l I (mod p) and n” +k (mod p) for s < q. 

Now we can choose 01~ I, (Ye , ‘~a ,..., 01~ integers as we wish such that 

Then, the sets Qj , 1 -< i -.< t, arc uniquely determined by the cosets 
W . ti , 1 .; i ,rC t, and, moreover, the sets Qn,‘s arc pairwise disjoint and 
i Qi y, 1 5; i 5; t. 

Now, let N(P)/C’(P) < CT:, CI an automorphism of P, 0 : 9. 

x Tl > 
+J ~~- n”a 

a, an integer .% I. 
Also, 

(#)o = (*%yJ (Tu)((” _ Tr’,,,, 

Hence, the elements coniugate to n in ,V,(P) are 

,.w .~_ 7T n”*, n%:! ,,,,, $--‘I 
l 3 I. 

Since ~7” ~~ I, we have a, as a solution of equation n” I (modp), N’ -2 I 
(mod p) ifs < q. Hence, 

Q, = 11, a<, t cI,,‘(mod p) ,..., ~7:~ ‘(mod p)!. 

sow Sill = n” of times ~~0’ 7r%’ 77 n” of times nh ZJ 71 with 
h, I l Q, == no of pairs (k, I) E Q, x Q, such that k t- 1 I (mod p). 
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Now, look at 01~ and choose iz such that 7~~~ is a representative for +y. Then 

N(P) 
‘1 1 

Xi? 
,cTi, _ $?, +J _~ Two )...) ;7.‘““” 1. 

Let Q, [z? , N~u,, (modp) ,..., a&’ (modp)). 

.qi& --- 
n,” of times +2QaL . &b’ ; n no of times ni. pi’ 7. 

Iz E Q, , 1 E Q1 == 1~” of pairs (Ii, I) E Q:-):! x Q, such that ii - I I (mod p). 
Recursively, we finally obtain 

8, ;:q , +a,(mod p),..., x,(7: I(mod p)i 

and sitll = ~20 of pairs (k, I) E Q, ;,’ Q, such that k ~-~ I I (mod p). Hence, 

Lemma 4.4 follows. 
Now, we claim the following. 
The cases t 7-z 3, 5, 6 cannot happen. 
For t = 3, p -:= 13, q my 4. Here, following Lemma 2. I, Q, .: [ I, 5, I 2, 8). 

Sow, since p + I i2 ~~ 7 6 Q, -3. sill is even; hence this case is out. 
B? the same reasons the cases f 5 and 6 are out. 

Ixam.~ 2.2. Let g mm pq(mp -:- 1). The~l, we haze 

(i) f -: 2,p : 7, q 3; 

(ii) ‘y =m 21(7m + I), where 13 :.: IW ..I 77. 111 13--4/C k -= 
0, 1 ,..., 16. 

Z’ro?f. (i) IVe have just proved it. 

(ii) sow, Z’ -= (q - 1)(/J 1 qyp - q -~ 2 10’4 5, 

Thus, s’:pq 7m - 1 -< Y es s-c 5 :.: 1 I2 560 /II :; 79. Sow, <? :: 

21 (7111 + I) and G simple implies 112 odd. 
_Ilso 111 ;’ p + 2 :: 9 -:- Wz ; z 1 ] . 
But if m m_ 11 +- 4k, we have ,y m-m 21 . [7(1 1 - 4k) .- I]. 
Therefore <y 21 .(78 t 28k) 2 i 21(14k ~- 39) and bv a theorem of 

Burnside (see [I I]), we cannot have G simple. 
Thus we ha\-c nz y- I3 - 4k, k 0, I ,..., 16, and this proves Lemma 2.2. 

I23VZIA 2.3. The only simple gvoups appearing are (a) A7 ; (b) i?‘,(3), 
nrd this.finishes the pYmf of Theorem 4, sitLce they are not countere.ramp[es. 

I’m!f. By Lemma 2.2, we have t ~-= 2, p 7, q 3, ,:’ 21(7/r? ~~~ I), 
13 ‘1 111 :.: 77, nz I3 -AL 4h, ii o,..., 16. 

0) ?Tl ~~ ]3,,0--22.3.7.23 

$31 ‘26:s; 
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Let S be the Sylow 23-subgroups of G. Let n :=- [G: KG(S)] and assume 
n ;i- 1. Since [A’,(S): C’,(S)] divides 22 and I I does not divideg, by Burnsidc 
([l I]) we may assume [IV,(S): C,(S)] :- 2. 

Xow II +c I implies 7 divides n and bj, calculation we found no such ~2 I 
(mod 23) and so this case is out. 

(ii) 111 = 17, g ~- 2” . 3” . 5 7 -f7 

Here &-f7 satisfies our hypothesis for p 7 with value r 36, and il, is 
the only simple group with its order. 

(iii) 111 21 ) g -~ 2” 3 7 37. 

Let S be the Sylow 37-subgroup of G. Let II ~~-. [G: n’,(S)], ?z I (mod 37). 
By calculation we see that II 1 is the only possibility. Hence, this case is 
out. 

(iv) nz ~ 25, R -= 2d 3 7 I I. 

Let S -== Splow 1 I subgroup of G. Let II -~ G: N(S), and assume n 7: I _ 
Hence. :\;(S)/C(S)~ divides IO and, bv Burnside [7], \ve may assume 
/ N(S)/C(.S)~ :-- 2. 

As before, 7//z, and by calculation we SW that the only possibility for II 
is I2 7 8 56. 

Let f,, ~~- degree of irreducible exceptional character in &( I I) : prin- 
cipal 1 l-block, and let fi == degree of irreducible, nonidentity. nonexcep- 
tional character in B,( 11). 

As before, f0 ,fJy?z ~~: 16 jj 7, (j,, , fi) 1, and fU +2(mod 1 I), 
fi : 1. I (mod 1 I), and this implies that one of fi SC: 21 2 .*I I I ~- 1 and, 
by “Stanton condition,” C(S) S, a contradiction since c‘(S) m=: I1 >, 3. 

(v) .II 29, g 2” . 3” . 7 . 17. 

Let s Sylow I7-subgroup of G. I,ct II [G: A’(S)]. \\:e know that 
N(S)jC(S) is cyclic and I ;\~(S)/C(S) divides 16 and, by Burnside [7], 
1 N(S)/C(S)i 2. 

Assuming n f 1, 7/n. By calculation \ve found no number II -: 1 (mod 17) 
having 7/n. Hence, this case is out. 

(vi) ~2 - 33,g -z 2” 3 7 29. 

Let S Sylow 29-subgroup of G. Let II = [G: -V(S)]. First, if 7,’ 9(S) , 
then $24 -;. n ~- 1, out. 

Thus, w.m.a., 7/n. Also, by Burnside [7], i :V(S)jC(S), 2 or 4. 
By calculation we found no number n, 7/n such that R ~-1 1 (mod 29). 

Hence, this case is out. 

(vii) nl =- 37, g = 2” 3 5 13. 

Let S - Sylow 13-subgroup of G. Let IZ [G: N(S)] and assume IZ L I. 
Hence, I N(S),iC(S)i divides 12. By Hurnside, / N(S)/C(S)l 2, 3, or 6. 
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Possibilities for n: After calculation the only possibility for TV is 

n -= 14, 1 X(S) r- 2 i: 3 x 5 i 13 5:! C(S)l. 

how, if $1 C(S); :- 1 AV(S)/C(S)l -=- 2 and C(S) = S :- I’, 1 1. -=- 15. 
I,et rv, I’, ~ Ii,’ ~ = 5. TI’ is the characteristic in 1 T <I IV(S) :F IV <:I AV(S) 

[G: N(W)] divides 14 and IY a S,-subgroup of G _ ~ G: -\;( II’)1 -:: I, a 
contradiction. Thus, 3 7 ~ C(S)! and .V(S)/C(S) ~- q. ~~ 3 or 6, and also 

, C(S)! = 13 z 5 k 2 or 13 A: 5. 
Xgain W 5 C(S), ~ IF’ -~ 5 .’ IZ’ <I (“‘m C(S) .<I X(S) _- N( J;v) 1:) X(S) 

[G: N(ll’)] divides 14 [G: .V(lV)] 7~~ I, a contradiction. Hence, this 

case is out. 

(viii) 111 ~- 41,~ : 2” . 3” 7 -~~ ~ CTzs(3) . 

Here r 106 and, by Wales (see [ l6]), 7 ‘:&3) is the only simple group 
with its order. 

(ix) 711 :. 45,g = 2” . 3 . 7 . 79. 

By calculation the Sl;low 79-subgroup S of G is normal in G. 

(x) 111 =- 49, g =- 23 . 3 7 43. 

By calculation, the Sylow il.?-subgroup of G is normal in G, hence G is 
not simplr. 

(xi) 01 53,g= 2”.3”.7.3/ 

Let S == S! low 31-subgroup of G. Let II -z [G: 3(S)]. Assume r’l ,k 1. 
&\s before, 7/n. 

By calculation the only possibility for iz is II z= 7 >: 9 1 63. 
Non-, S(S),C(S)I divides 30. B!- Burnside ([I I]), since 5 %‘f, we ma! 

assume (since 9,ln) / /V(S)/C’(S)~ : 2, and we also have C(S)~ 71 1 S /. 
Let .fO be the degree of exceptional character in B&31) -: principal 31- 

block, and let fi be the degree of nonidentity, nonexceptional, irreducible 
character in B,(3 I). 

B!- Brauer ([2]), fo ,,fi,‘2n 2 ;: 9 .,, 7, (fO ,fi) --= 1, and this iimplies 
that one of fj < (2 x 31 - I) 7 61 and this contradicts the “Stanton 
condition” ([I 51). 

(xii) 111 57, ,g 2” . 3 5 . 7. (12) 
IVe eliminate this case using the following theorems: 

Fang [9], Walter [ 171, C;orenstein-Walter [IO], Alperin-Brauer- 
Gorenstein [I]. 

(xiii) MI = 61,g = 2.3.7. 107. 

Here the Sylow 107 is a normal subgroup of G and G is not simple, 

(xiv) 111 = 65, g - 2” . 3” 7 . 19. 



B!; calculation we see that the S!;lox 19-subgroup of G is normal in G. 

Hence, G is not simple. 

(xv) 112 69, <y : 2” 3 . 7 . (1 I)‘. 

IVe eliminate this case using the following theorems: 

Brauer-Suzuki [5], IValter [ 171, Gorenstein-Walter [IO]. 

(xvi) m =-- 73, 2” 3 7. 

We eliminate this case 11~ IVales [ 161, 

(xvii) 111 77, x == 2’ . 31 . 5 7. 

We eliminate this case by Gnxxxtciw\Valter [IO]. ‘I’hus we found there is 
no counterexample for Theorem 4. 

The author wishes to thank Professor G. Glauberm;~n, of the L-niversity of Chicago. 

under xvhom his doctoral dissertation uxs written. 

1. J. 1,. .AI.P!aIx, Ii. BRXUER, ANI> I). <;ORFSSTEI~, l:inite groups with quasi-dihedral 

and wreathed Sylow 2-subgroups. 1, 7’lu~s. Anrcr. Sot. 151 (1970). 

2. R. BNACIER, On groups whose order contains ;I prime to the first pomxx, 1, 11, 

Amer. j. IWuth. 63 (1942). 
3. R. BHAI’ER, On permutation groups of prime degree and related classes of groups, 

A?zlr. ,vIuth. 44 (1943). 
4. R. BIIXUX, On simple groups of order 5 3,’ 2”, Lkpt. of M&., I-Iar\ard L.ni\-., 

Cambridge, 1967. 

5. R. BHAL’EH AND hl. S~IXKI, On finite groups of even order whose 2-Sylotv sub- 

groups are a quaternion group, Proc. d\-ut. Acad. Sci. 45 (1959). 
6. 11’. FEIT, On a class of doubly transitive permutation groups, Illinois J. Mutlr. 4 

(1960). 

7. TV. FEI~., On tinite linear groups, 1. Alg. 5 (I 967). 

8. W. F;Err, The Current Situation in the Theory of Finite Simple Groups, Dedicated 
to Richard Brauer on the occasion of his 70th Birthday. 

9. I’. Fo?;c, Sylow 2-subgroups of small order. 1, unpublished. 
10. 1). (;OHENSTETIL’ AND J. \\'TAI.TER, The characterization of finite groups \\lth 

dihedral Sylow- 2-subgroups, 1, II, III, /. -Wg. 2 (1965). 
1 I. ikl. HALI., “The Theory of Groups,” i\lacmillan, Se\\- York, 1959. 

12. iL1. H~I.L, A search for simple groups of order less than a million, ilz “Computu- 

tional Problems in Abstract Algebra.” edited by J. Ixech, Pergamon Press, 

New York, 1968. 
13. M. HERZMC, A charilcterizotiotl of the simple groups PSL(2, p), p 3, I.wcrel ,I. 

Mnth. 5 (1967). 
14. D. PARROT, On the Nathieu groups -VI,, and .I[,, , .I. rlmtroi. illutlr. Sot. XI, 

Part 1 (1970). 



STRLCTCRAI. CONSTANTS. 1 301 

15. Ii. ST-AXWN, The Slathieu groups, Ca~nd. /. Mesh. 3 (1951). 
16. U. B. IVALES, Sinlple groups of order 7 . 3” . 2, J. -4lgebra 4 (1970). 
17. J. \~.Al.TER, The characterization of finite simple groups with .Abrlian Syion 

l-subgroups, Am. Moth. 189 (I 969), 3. 


