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INTRODUCTION

Let G be a finite group, P a Sylow p-subgroup of G for an odd prime p,
and |G| =g =p"g,(p &) = I

Fix an element 7 € G such that P = (&), and assume C;(P) == P, q —=
[NG(P): P] = p — ljr +# p — 1, where C;(P), No(P) denote the centralizer
of P in G and the normalizer of P in G, respectively.

Let = -2 @, my,...,m be the representatives of conjugacy classes of
elements of order p, where m, e P, 1 <{7 <(t. For | <{4,j, k < ¢, denote
by s, the number of times a product of a conjugate of 7, in Ny(P), by a
conjugate of 7; , in Ny(P), equals 7, .

Denote by C;;;, the number of times a product of a conjugate of 7, , in G,
by a conjugate of 7, , in G, equals 7, .

In this paper we study the relation between these numbers s;;, and Cy;,.
| <45, k<t

We denote 7,* € P for the representative of 7; 1. Herzog, in his paper “A
characterization of the simple group PSL(2, p), p > 37 (see [13]), by assuming
the situation we are considering here and also the condition ¢;;, = s, for all
(1,7, k) # (1, 1,7%), | <4,j, k < t, was able to show that: “If G is a simple
group, then G 1s isomorphic to PSL(2, p), p > 3.

Considering some relations between ¢;q; and 5,1, , | <7 <C ¢, we are success-
ful in proving, among other things, some similar results to that of Herzog.

We shall prove in this paper the following results:

TreEOREM 1. If G is a simple group and 54, = c;q1, for alli € {1,..., t}, then
G is isomorphic with PSL (2, p), g = (p — 1)/2 0dd, p = 7.

* This research is part of the author’s Ph.D. Thesis at the University of Chicago,
1971; it was supported by C.N.Pq, Brasil.
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For the other results we assume G satisfying the condition (*) C;;; = 0
whenever 5,4, = 0and 1 <7 < ¢.
We also define the rational number r = r(G, p) by

HG, p) — max }Gm | T =i

Usin bsm# 0V
P.S. 1. This number r has some interesting properties as, e.g.,

(1) 7 == 1 (mod p) as a rational number;

(i) Hm,,7(4,,p) == o where A, is the alternating group on p
letters.

TarOREM 2. If G is a simple group and v(G, p) < 2(p + 2)/3, then G 1s
isomorphic with PSL (2, p), p = 7.
We denote through this paper Xs;j;/t by a( p, t) = a (average of s,,,’s),
and 7(G, p) by r.
Turorem 3. If G is a simple group with a = 2 and r* < 28p, then G is
isomor phic with one of the following groups:
(1) PSL(2, ID)(p == 11,7 = 1);
(i) M,y , the Mathieu group on 11 letters (p = 11, v = 35/2).

Turorem 4. If G is a simple group with a == 1 and v* < 1760p, then G is
isomor phic with one of the following groups:
(1) PSLQ2,7)(p =7, = 1);
(i) A, the alternating group on 7 letters (p = 7,7 = 36);
(i)  Uy(3), umtary group of dimension 3 over GF(3)p = 7,7 - 106).

P.S.2. To reduce the length of this paper we will prove Theorem 4
in the particular case s,y == " = 83 = L.

P.S.3. There is a conjecture involving this number # and 4., the
alternating group on 7 letters.

Let x be the degree of the exceptional character in the principal p-block of
G. Assume G satisfies our initial conditions.

If G is a simple group and | G| == g == rpx, is G isomorphic with 4,?

PRELIMINARIES

Here we present some results and notations (see Brauer [2] and W. Feit [6])
concerning the irreducible characters of N(P) and those of G.
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The irreducible characters of Ny (P) are in two categories. The first one
consists of ¢ characters {;, {y ..., {; of degree ¢ = [Ng(P): P], vanishing
outside P. The second one consists of ¢ linear characters which contain P
in their kernel, and the following holds:

Y L) L) = v — |

&=]1

The exceptional characters of G associated with the {;’s will be denoted
by ¢, = 1,2, ¢t
We also have

gy(1) = x == y/t(mod p), where y =sign = 41, | <7< 4

2
di(m;) = (7)) + ¢, where e —=sign = 41, 1 =04, j {4,

and ¢ is a rational integer neither depending on z nor on .

The nonexceptional irreducible characters of G, nonvanishing on P¥ —=
P — {1}(i.e., in By(p), the principal p-block of G) will be denoted by 7,
7 == I,..., ¢, where 5; = 1, the principal character of G.

We know that each of theses characters »; is constant on P* = P — {I}
and also, if 5 (1) = n; and n,(m) = ¢;, | <<j<{t, 1 <{i<Cgq, then the
following is true: e, == sign = +1, ¢ = 1, and n; == ¢; (mod p), | <7 < q.

Let ] = Y7, e/n; . Since ¢, — | it is easily seen that

2T T p or (p— Dl =p—q 3)
It 1s also well known that
s = 580+ B = (¢ + B, (4)

where

t
qBijk - Z Zb("’r C (77) : (771& )1 l < i) jv k \\:1 t,

$=1

C?’_ik = % (l +- ‘41'1'1\:)) (5)
where | G| =g,

Aisi Zsb ) h(m) ), 1 < i k<t
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and x is the degree of the exceptional character in By(p). Then
te? = 2ec, (6)

where ¢ is the same sign used in (2).
As a corollary we have, ¢ the same rational integer used in (2),

t 23 0. (7
Also, if ¢ = 0, we get
wdy - eqByy, (8)

1. THEOREMS | AND 2

Before we prove Theorems | and 2 we will prove some lemmas.

Lemma 1.1,

!
(a) Zsi11:IQ" I
iea1

(b) Z qB;1y == ¢ — p.

i=1
Proof.

(a) It is quite clear since the orbit of 7 == 7, has ¢ elements and there is

noi | <=7 < t,such that 7, - 7= = 7.
(b) sar =@ F Bad pay = 6P B
By (a), plg — 1) = ¢* + L1 4Bt -
Now, since gt = p ~- 1 we have (b).
ProposItioN 1.2, #(G, p) == | (mod p) as a rational number.

.. ]
Proof. Since >, ; s;y = ¢ — 1 # 0 = some s;3; =~ 0.
Thus it is enough for us to show that

Ciyy =+ sy (mod p).

But for this, look at P acting on the set £ - {(x;, %) e G X G| x, -y, =7,
by the rule (x; , x)¢ = (%%, %,) = (¢! - &, * ¢, ¢ 1xy0).
Since P is self-centralized, then

(%7, 81) & No(P) x No(P) = (v, , xp)" = (3% 0,°) € Ng(P) X Ng(P)

and also (x; , x)° # (x;, xy).
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Thus P acts f.p.f on set

X; Xy ==y, {

S T % G )
7 =l € GG L) E Ne(P) < No(P))

{
Then, | 2% | = 0 (mod p) and ¢,y == $;3y — | 2% .
Lemwma 1.3, If t = 2, we have (8')
xd; =€ - q- By, (8"

where € = —J-¢ is a sign.

Proof. Assumet = 2.

If ¢ == 0, there is nothing to prove by (8).

Let ¢ be different from zero. From (6) we have ¢ == ¢ = +1.

We have two exceptional characters i, , #, and since () + Lo(m)) = —1,
| <{j <2, we obtain

i) = eli(m) + ¢ = e(ly(m) + 1) = —elylmy),  ¥olm) = —e Li(m).
Thus,

XA = Z PACARR HCN BU‘,.(WZI) = —eqB;;,  for 1 ¢, 7, k<2
x=1

Remark. 'Thus we can use
2l =€ ¢Bm 9
with €' = sign = 4] forany ¢ > 2.

Levma 1.4.  Assume G is a simple group neither of type (A} G ~ PSL(2, p)
nor of type (B) G &~ SL(2, p — 1), where p — 1 = 2%, a 2= 2. Then

| G: No(P) = glpg <7 v,

wherev = (g — 1) - (p + 9)p — ¢-

Proof. Let x be the degree of exceptional character in B p), the principal
p-block of G.

By a Theorem of Feit (see [7]), we have x = p + ¢.

Now, C;yy <75, forallie{l,..., t}.

By (9), x4,y = €'qB;;1 , where € = 1.
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Thus we obtain

g (Equ n 1) 19 1g* rqBiy
IS p f & 1

and from this we obtain

(55 _ ) By < rgt — & (10)
\Px , X L X p
Applying Lemma 1.1, we have
LGN P BRI L
(px r) (g—p)=rglp— 1) —

Therefore

p[ (9* ). tlt]g g(p—1) -rlg—p)=7plg— 1)
So
¢[CUD ) < g1,

Multiplying both sides by ¢, we have
o[FHLL iy ] < rprgtg — 1)

Now, we prove that D = €'ql¢ — p)/x - {(p — 1) > 0. Indeed, by (3) we
have

p_SUg=p) A Up— Dy  <elg—p) 4 (P gk

X ! X

Since x = p + ¢, we obtain

P>+~ Py, gy g0

Thus we get

o Palg =1 (g — 1) .
o b a4 =2 +Up—1)
By (3) we have
g e (11)
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Casel. € = —1.
Here we obtain

L= 1)

S T P—‘_‘q
Therefore
g/P9<1P[Eq{EI—)<r(q“1);§_i%:r.v
Case2. € = +1
Here,
, —1
ipg < —2= 1
(p—qft—1
But
v oprgogpge——2e=D o ne—Neted_, .,
(p~q)(1~_i,) (r — 9
Ptq

and this proves Lemma 1.4.

LemMa 1.5, Let G be a simple group. If Cyy = 0, then p << ¢%

Proof. Let us assume Cyy; = 0 and p > g%

From Cyy; = 0 = s;;, we obtain (using (4), (5), (9)) By, = —g and
I+ €gBy/x = 0.

Now, from (3) we have ! = (p — g)/(p — 1) > 0 and we have

Let » = ap + q. Thus ap -+ ¢ = ¢%l, and

ab oy P DNE _(p—1D)g
@)= S oy

(@ +a(p—9) < (p— D¢

If @ > 1, we have

(p+g(p—q@ <(@+q9p—9 <(p—1d¢ pP—¢@<pi®~— ¢,

and then p? < pg?, te., p < ¢ a contradiction and thus a = 0 and
¥ =qg<(p-—1)

By a theorem of Feit we must have G is either of type (A) G &~ PSL(2, p) or
of type (B) G ~ SL(q,p — 1), p — | == 22,
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But in type (A), ¢ = (p — 1)/2 and
P@ dp > (p— 1P =pP—6p 4 1 <O > p =I5,
By our hypothesis, p == 5, ¢ ==t == 2, and G ~ PSL(2,5) ~ 45. But

here s;3; = 0 # Cyy, a contradiction.
Now, in type (B) we have §,y; = 0 5= (), , a contradiction.
This proves Lemma 1.5.

Proof of Theorem |. Assume G simple and s;; == ¢,y for all ie{l,..., t}.
From (4), (5), and (9) we have

(% - Q) By, = ¢* — gpi : (12)

Now since (ge'q)/(px) — ¢ == 0 = g = px - g < x?, a contradiction.

We must have (ge'q)/(px) — g £ 0 and (12} determines the B,,’s and,
moreover, By, == By == - = By, .

But this implies,

Sip = Sy = U Sy = g = = Oy, Ay = Aeyy o = Ay

From s53; = $3;; == *** = $§;31, we have that G cannot be of type (B) since
in this type we have ¢ = 2 and this gives 22:1 sy =g — 1 =1 =>ts5; =
] =t = 1, a contradiction.

It Gis of type (A), we are done since the group PSL(2, p), with g = p — 1/2
even, does not satisfy s;;; = ¢;; for all7 e {1,..., t}.

Thus we have, by Lemma 1.3, that

o Pty
i < =19 - = — =z,
glpg <r-v v =T = (g )p—q
Now,
o p—1 ”_(t+l)p—l
pra=pr t Lbtg til
— 1 t— 1 1 —q “t—1°
P*qlpwpx _ y+ p—q

Since (¢ + 1)/(t — 1) = 1 + 2/(# — 1) is a decreasing function of ¢ and
g—1=(p—1/t) =1 =p — (t + 1)/t, we have for t == 2,

7)<3-p;3 and g/pg::mp-irlixp‘z:}—).

Then,

3p—-3) _p+3
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By a Theorem of Brauer (see [3]), we have G is of type (A) or (B), and this

proves Theorem 1.

Proof of Theorem 2. Assume G is simple and a counter example for
Theorem 2.

We first claim that G is not of type (A) or (B). For, G cannot be of type (A)
since there either » = 1 or r = 5(p — 1)/(p — 5) (depending if ¢ is odd or
even, respectively) and in both situations we do not have G, a counter-
example for Theorem 2.

Now, G cannot be of type (B) since for SL(2, p — ) p — 1 == 24, we have
S = 0 and ¢y # 0.

As in the proof of Theorem |, v < (p — 3/2) x 3. Hence

glbg <r-v = AP_;LQ X @—Eﬂé = (p +2)(p—3)

Thus, glpg =mp + 1 < (p +2)(p —3) >m <p+ 2.
Now, by theorems of Brauer and Nagai ([8]) we must have one of the
possibilities for G:

(i) My

(i) PSL(3,3);

(i) type (A);

(iv) type (B);

(v) SLZ,p+ 1), p+1=2%

The possibility (1) is out since there m = p + 2.

The possibilities (iit) and (1v) are out as we saw previously.

The possibility (i1) is out since there we have s;; = 0 # ¢, by
Lemma 1.5.

Finally, the possibility (v) is also out because there we have ¢ = 2 and this
implies s;;; = 0.

But, by Lemma 1.5, it is not difficult to see that Cyy; 0, and this proves
Theorem 2.

2. THEOREMS 3 AND 4

Proof of Theorem 3. Let G be a counterexample for Theorem 3.

We claim that G is not of type (A) nor of type (B). Indeed, if G is of type
(A), PSL (2,p) implies that p = a4+ ¢ 1 =224t -1 =11 and
G ~ PSI. (2, 11) and G is not a counterexample.
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If G is of type (B),SL (2,p— I}, p— 1 = 2% implies that g = 2 -=
at -+ 1 == 2t + 1, a contradiction.

Thus by Lemma 1.4 g/pg <7 - v.

Assumc t>2,p =224t -+ I,and p prime number =t >4 = p > 37
and ¢ - 1/8(t — 1) << 5/12.

But
P+ t+1

t t— 1"

ghpg=mp + 1 <r-v<v28p-
Thus

l U1

gipg =mp + 1 < (p—5)- - V28p.

I\)

Therefore mp < V28p (p — 5)5/12. But p = 37 = V28p < p.

Som < 5/12(p — 5) < p — 5/2 < p -+ 3/2 and by a theorem of Brauer
(see [3]) we have a contradiction.

Thust =2, p =22+ ¢t -+ 1 = 1l, ¢ == 5.

We also have V28p = V28 x 11 < 18, hence

P9 6 32
v o= (¢g— )= =4 — = .
(g )p —q 6 3
Then, g/pg = m < 11 + 1 <Cro < 18 - 32/3 = 192
Therefore 11m < 191. So m < 17,
Also by the theorems of Brauu and Nagai (see [8]), we may assume
m > p -2 =13
Thus we have 15 <Cm =<l 17,6 ~ 55-(1lm + 1).
Since G is simple, we may consider only # odd.
(1) Form =15 g =2 g, ¢ odd, so G is not simple by Burnside
(see [11]).
(1) For m = 17, g =4 x 5« [1 2 47. Again G is not simple by
Burnside (see [11]). And this proves Theorem 3.
Proof of Theorem 4. Assume G is a counterexample for Theorem 4.
As before G cannot be of type (A) or (B) Thus, by Lemma 1.3, g/pg << 7 - 0.
We also have ¢ — 1 = Zl 1S4 = at = t,and this gives p = 2 - 1 - 1,
q = f 'ﬁ 1.
We also may assume by the theorems of Brauer and Nagai (see [8]) that

£ mp + 1

where m >> p + 2. Thus we have
(P Dp+1 <glpg=r-ov<viteovp L. ?’551"'
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We claim that ¢+ < 8.
For, assume t > 8. Then p 2> 8 + 8§ + 1 == 73, and

195

9
p(p+2)< VIT0 VP (p— 1) = R
Therefore
— B
(p +2) < V1760 vp - % < A/1760 - Vp -2 - 5
So
9 - 1760 < 81
/T80 . L
Vp 2 <1760 - ¢ and  p 2 NGO
Then
1760 x 81
) PRy R e
Bsp 255
Finally,
142560
75 < 3736 46,

a contradiction.

Considering also that for ¢t == 4, p == 21 not prime; for t =7, p =
49 + 7 41 = 57 not prime, we have the following possibilities for p:

t = 2, p =1 q = 3;
t =3 p =13, q == 4
1 =5 p =31, q=:6;
t =6, p = 43, q=:17.

Now we will assume, as we mention in the introduction, s, = ' =

sy = | (instead of @ == 1) to shorten this proof.

Lemma 2.1,

(mod p) and such that #* == [ (mod p) for s < ¢.
Define the sets £, , 2, ..., £2, as follows:

1

{1, n, n3(mod p), n¥(mod p),...
-Qz == {

, aor(mod p), axn?(mod p),...

where a, is the first integere {1, 2,..., p — 1} — 2, = {xe{
Then
2, = {0y, agp(mod p), ayn}(mod p),...

where oy 1s the first integer € {1, 2,.

pon D — 1} = (2, U Q).

,n-i(mod p)};
, ' Y(mod p)},

Let | No(P)l = p - g and let = < p be a solution for »7 = |

(o p— 1M ag Q2

, azn?(mod p)},
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Recursively, define 2, ,..., 2, (note: p — | == ¢ - #).
Lct m,; be a representative of the class containing 7%, for £ = [,.... +, and
o (\Totc m; =~ m.) Then

sy == (v, ) €82y X 2y [ v -+ y = I(mod p)},
sia1 = H(w y) €82y % 8 fy o l(mod p)}

S Hx,y) el < 21y + v - I{mod p)il.

Proof. First,gdividesp — landg -/ |, p — 1. Let U = {Z/pZ — [0}; x}
be the multiplicative group of the field ZjpZ. U is cyclic of order p — 1.
Since ¢ | p — I, there exists W C U such that W is a subgroup of order ¢ and
the unique one of such order. Let W = Ay, n < p,#n = n -+ plel. Then,
#? = fin U = n7 = 1 (mod p)and #* 2= | (mod p) fors < g, since W' —gq

Thus, the ¢ elements of W are |, #, #%,..., #7771, This also says that the set
£, == {1; n, n? (mod p),..., n !t (mod p)} is uniquely determined by any
solution #, of #? = 1 (mod p) and #* == (mod p) for s < ¢.

Now we can choose o == 1, oy, ag ..., @, Integers as we wish such that

U=WUOUW- 3U-UW-a, where & — o, + pZ, | <i <+

I‘hcn the sets £;, 1 X7 <{¢, arc uniquely determined by the cosets
W&, 1 sy, and moreover, the sets £2’s are pairwise disjoint and

.Q A B A
\Iow ]et N(P)/C(P) =- <o), o an automorphism of P, ¢! = gq.

a, an integer - .

Also,
(ﬂ_o)o‘ - (”ua)o . (77,‘7)”{7 — e

Hence, the elements conjugate to = in Ng(P) are

i—1
g U )

AP g ey

13
m,m o,

Since o = 1, we have a, as a solution of equation n* 1 (mod p), n® =

(mod p) if s < ¢. Hence,
Q, =11, a,, a (mod p),..., a¥ '(mod p)}.

. i j . _ ‘
Now §;44 == n® of times 7% - w% 7 == n of times 7% - ! - 7 with

k, 1€y == n° of pairs (k, [) € 2, x @, such that 2 - [ =: | (mod p).
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Now, look at o, and choose i, such that 7;_is a representative for 7%=, Then

]
. f . . L S L Xully
= 1771") =T, T, =TT seeey T Ve

WZ(P)
Let 2, -« {ay, ma, (mod p),..., aal™" (mod p)}.
8,11 = n° of times w200 - 7o’ < 7 = 50 of times 7* - 7 - 7
ke 2y, le Q) = n® of pairs (k, [} € 2, « £, such that & — [ == 1 (mod p).
Recursively, we finally obtain

Q, == {xy, xa,(mod p),..., xa (mod p);

and s, ;; = 2° of pairs (k, /) € £, > £, such that k — /1 (mod p). Hence,
Lemma 4.4 follows.

Now, we claim the following.

The cases ¢ == 3, 5, 6 cannot happen.

Fort = 3, p = 13, ¢ = 4. Here, following Lemma 2.1, 2, = {1, 5, 12, §}.
Now, since p -+ 1/2 =- 7 ¢ 82, = 5;;, is even; hence this case is out.

Bv the same reasons the cases ¢ - 5 and 6 are out.

Livvia 2.2, Let g = pg(mp -~ 1). Then, we have

(M t=2p="T9q -3
(n)y g =217m + 1), where 13 ="m =77, m 13— 4k, k==
0, 1,.., 16.
Proof. (1) We have just proved it.
() Now,v = (¢q—1}p—q¢)p—q=2-104 =35,

r V1760 < 7 <0 112,

Thus, gipg - Tm =+ 1<r v <5< 112560 - m <79. Now, g ==
21 - (7m + 1) and G simple implies m odd.

Alsom > p+2:=9 = m = 11

But if m == 1] =~ 4k, we have g = 21 - [7(11 + 4k) — 1].

Therefore g == 21 - (78 + 28k) = 2 < 21(14k — 39) and by a theorem of
Burnside (see [11]), we cannot have G simple.

Thus we have m == 13 -~ 4k, &k =0, 1,..., 16, and this proves Lemma 2.2.

LemMa 2.3, The only simple groups appearing are (a) A, ; (b) Uy 3),
and this finishes the proof of Theorem 4, since they are not counterexamples.

Proof. By Lemma 2.2, we have ¢t = 2, p == 7, ¢ - 3, g == 21(Tm — 1),
13<m <77, m-=13--4k k& -0,..,16.

() m-=13,g=22-3-7-23

481/26/2-3
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Let S be the Sylow 23-subgroups of G. Let n == [G: Ng(5)] and assume
n # 1. 8ince [N (S): C4(S)] divides 22 and 11 does not divide g, by Burnside
([11]) we may assume [Ng(S): Ce(S)] = 2.

Now 7 == | implies 7 divides # and by calculation we found no suchn - 1
(mod 23) and so this case is out.

(iy m-=17,g-=22-32-5-7- . .A; .

Here -, satisfies our hypothesis for p - 7 with value r - 36, and 4, is

the only simple group with its order.
() m - 21, g =2%-3-7-37.

Let S be the Sylow 37-subgroup of G. Let n —= [G: N(S)], 2~ | {mod 37).
By calculation we see that # = | is the only possibility. Hence, this case is
out.

(v) mo==25 g =2v-3-7-11L

Let S = Sylow 11 subgroup of G. Let n = . G: N(S); and assume n =~ |.
Hence, | N(S)/C(S)! divides 10 and, by Burnside [7], we may assume
| N(S)C(S) 2.

As before, 7/n, and by calculation we sce that the only possibility for n
isn 708 = 56.

Let f, — degree of irreducible exceptional character in By(11) += prin-
cipal l1-block, and let f; = degree of irreducible, nonidentity, nonexcep-
tional character in By(11).

As  before, fy, fifgn == 16 <7, (fy, f) = 1, and fy - 4+2(mod 11),
fi=7 41 (mod 11), and this implies that one of f; << 21 -2 » 1l — 1 and,
by “Stanton condition,” C(S) - - 5, a contradiction since © C(S)" == 11 x 3.

(vi M -29,g--22-3-7-17.

let S - Sylow 17-subgroup of G. Let n - [G: N(S)]. We know that
N(S)/C(S) 1s cyclic and | N(S)/C(S). divides 16 and, by Burnside [7],
| N(S)/C(S) - 2.

Assuming # = 1, 7/n. By calculation we found no number # = | (mod 17)
having 7/n. Hence, this case 1s out.

(Vi) m - 33,g 253729

Let & — Sylow 29-subgroup of G. Let n = [G: N(S)]. First, if 7)1 N(S),
then n/24 - n == [, out.

Thus, w.m.a., 7/n. Also, by Burnside [7], | N(S)/C(S), == 2 or 4.

By calculation we found no number #, 7/n such that n —= | (mod 29).
Hence, this case is out.

(vii) m = 37,g =22-3-5-13,

Let S = Sylow [3-subgroup of G. Let n = [G: N(S)] and assume n % 1.

Hence, | N(S)/C(S)| divides 12. By Burnside, | N(S)/C(S)| == 2,3, or 6.
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Possibilities for n: After calculation the only possibility for # is
ne=14, [N(S), = 2 %3 x5« 13 == 51C(S).

Now, if 3/ C(S)! = | N(S)/C(S)| = 2 and C(S)y = S x I, |V = 15.
Let W, V, | Wi = 5. W is the characteristic in 7 <1 N(S) = W <1 N(S)
- [G: N(W)] divides 14 and W a S;-subgroup of G - | G: N(W)| == |, a
contradiction. Thus, 3 11 C(S)] and | ¥(S)/C(S) = ¢, — 3 or 6, and also
P C(S)) = 13 x5 x 2or 13 « 5.

Again W = C(S), | W = 5 = W < - (C(S) < N(S5) - N(W) 2 N(S)

- [G: N(W)] divides 14 - [G: N(W)] = 1, a contradiction. Hence, this
case is out.

(viii) m =4l g =237 = | Uy3).
Here # - 106 and, by Wales (see [16]), U,(3) is the only simple group
with its order.
(ix) m == 459 =2%-3-7-79.
By calculation the Sylow 79-subgroup S of G is normal in G.
(x) m =49 ¢ = 2%-3-7 43,

By calculation, the Sylow 43-subgroup of G is normal in G, hence G 1s
not simple.

(s1) m - 53, g =-2%-3*-7 3L

Let S = Svlow 31-subgroup of G. Let n == [G: N(S5)]. Assume un = 1.
As before, 7/n.

By calculation the only possibility for nis # == 7 % 9 = 63.

Now, ' N(8)/C(S)| divides 30. By Burnside ([11]), since 5+ g, we may
assume (since 9/n) | N(S)/C(S)] = 2, and we also have 'C(S) ==|S|.

Let f, be the degree of exceptional character in By(31) == principal 3I-
block, and let f; be the degree of nonidentity, nonexceptional, irreducible
character in By(31).

By Brauer ([2)), fo,f1/2n == 2 9 < 7, (fy,f1) = 1, and this implies
that one of f; < (2 x 31 — 1) = 61 and this contradicts the “Sranton
Condition™ ([15]).

(xit) m = 57, g -~ 22-3-5 -7 (12)

We climinate this case using the following theorems:

Fong [9], Walter [17], Gorenstein-Walter [10], Alperin—-Brauer-
Gorenstein [1].

(xiii) m =61, g =:22-3-7-107.
Here the Sylow 107 1s a normal subgroup of G and & is not simple.
(xiv) m --65,¢g =23-32-7-19,
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By calculation we see that the Sylow 19-subgroup of G is normal in G.

Hence, G is not simple.

(xv) m = 69,g:-25-3-7-(11)
We climinate this case using the following theorems:
Brauer—Suzuki 5], Walter [17], Gorenstein-Walter [10].
(xvi) m =73,2"-3-7.
We eliminate this case by Wales [16].
(xvii) m 77, g =2-3"-5-7.

We climinate this case by Gorenstein-Walter [10]. 'Thus we found there is

no counterexample for Theorem 4.
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