Structural Constants. I*

Adilson Gonçalves
Department of Mathematics, University of Brasilia, Brasil
Communicated by W. Feit

Received February 15, 1972

Introduction

Let G be a finite group, P a Sylow p-subgroup of G for an odd prime p, and $G=g=p \cdot g_{0},\left(p, g_{0}\right)=1$.

Fix an element $\pi \in G$ such that $P=\langle\pi\rangle$, and assume $C_{G}(P)=P, q=$ $\left[N_{G}(P): P\right]=p-1 / t \neq p-1$, where $C_{G}(P), N_{G}(P)$ denote the centralizer of P in G and the normalizer of P in G, respectively.

Let $\pi=\pi_{1}, \pi_{2}, \ldots, \pi_{t}$ be the representatives of conjugacy classes of elements of order p, where $\pi_{i} \in P, 1 \leqslant i \leqslant t$. For $1 \leqslant i, j, k \leqslant t$, denote by $s_{i j k}$ the number of times a product of a conjugate of π_{i}, in $N_{G}(P)$, by a conjugate of π_{j}, in $N_{G}(P)$, equals π_{k}.

Denote by $C_{i j k}$ the number of times a product of a conjugate of π_{i}, in G, by a conjugate of π_{j}, in G, equals π_{k}.

In this paper we study the relation between these numbers $s_{i j k}$ and $C_{i j k}$, $1 \leqslant i, j, k \leqslant t$.

We denote $\pi_{i}{ }^{*} \in P$ for the representative of π_{i}^{-1}. Herzog, in his paper "A characterization of the simple group PSL($2, p$), $p>3$ " (see [13]), by assuming the situation we are considering here and also the condition $c_{i j k}=s_{i j k}$ for all $(i, j, k) \neq\left(i, i, i^{*}\right), \mathrm{I} \leqslant i, j, k \leqslant t$, was able to show that: "If G is a simple group, then G is isomorphic to $\operatorname{PSL}(2, p), p>3$."

Considering some relations between $c_{i 11}$ and $s_{i 11}, \mathrm{l} \leqslant i \leqslant t$, we are successful in proving, among other things, some similar results to that of Herzog.

We shall prove in this paper the following results:

Theorem 1. If G is a simple group and $s_{i 11}=c_{i 11}$, for all $i \in\{1, \ldots, t\}$, then G is isomorphic with $\operatorname{PSL}(2, p), q=(p-1) / 2$ odd, $p \geqslant 7$.

[^0]For the other results we assume G satisfying the condition (*) $C_{i 11}=0$ whenever $s_{i 11}=0$ and $1 \leqslant i \leqslant t$.

We also define the rational number $r=-r(G, p)$ by

$$
\left.r(G, p)=\max \left|\frac{c_{i 11}}{s_{i 11}}\right|_{s_{i 11} \neq 0}^{1 \leqslant i \leqslant t}\right\} .
$$

P.S. I. This number r has some interesting properties as, e.g.,
(i) $r=1(\bmod p)$ as a rational number;
(ii) $\lim _{p \rightarrow \infty} r\left(A_{p}, p\right)=\infty$ where A_{p} is the alternating group on p letters.

Theorem 2. If G is a simple group and $r(G, p) \leqslant 2(p+2) / 3$, then G is isomorphic with PSL $(2, p), p \geqslant 7$.

We denote through this paper $\Sigma s_{i 11} / t$ by $a(p, t)=a$ (average of $s_{i 11}$'s), and $r(G, p)$ by r.

Theorem 3. If G is a simple group with $a=2$ and $r^{2}<28 p$, then G is isomorphic with one of the following groups:
(i) $\operatorname{PSL}(2,11)(p=11, r=1)$;
(ii) M_{11}, the Mathieu group on 11 letters $(p=11, r=35 / 2)$.

Theorem 4. If G is a simple group with $a \approx 1$ and $r^{2}<1760 p$, then G is isomorphic with one of the following groups:
(i) $\operatorname{PSL}(2,7)(p=7, r=1)$;
(ii) A_{7}, the alternating group on 7 letters $(p=7, r=36)$;
(iii) $U_{3}(3)$, unitary group of dimension 3 over $\mathrm{GF}(3)(p==7, r \cdots 106)$.
P.S. 2. To reduce the length of this paper we will prove Theorem 4 in the particular case $s_{111}=\cdots=s_{t 11}=1$.
P.S. 3. There is a conjecture involving this number r and A_{7}, the alternating group on 7 letters.

Let x be the degree of the exceptional character in the principal p-block of G. Assume G satisfies our initial conditions.

If G is a simple group and $|G|=g=r p x$, is G isomorphic with A_{7} ?

Preliminaries

Here we present some results and notations (see Brauer [2] and W. Feit [6]) concerning the irreducible characters of $N_{G}(P)$ and those of G.

The irreducible characters of $N_{G}(P)$ are in two categories. The first one consists of t characters $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{t}$ of degree $q=\left[N_{G}(P): P\right]$, vanishing outside P. The second one consists of q linear characters which contain P in their kernel, and the following holds:

$$
\begin{align*}
& \sum_{s=1}^{t} \zeta_{s}\left(\pi_{i}\right) \cdot \zeta_{s}\left(\pi_{j}^{-1}\right)=\gamma_{i j}=\left\{\begin{array}{lll}
0 & \text { if } i \neq j \\
1 & \text { if } i=j \\
i \neq j
\end{array}\right. \tag{1}\\
& \sum_{s=1}^{t} \zeta_{s}\left(\pi_{i}\right)=-1
\end{align*}
$$

The exceptional characters of G associated with the ζ_{i} 's will be denoted by $\psi_{i}, i=1,2, \ldots, t$.

We also have

$$
\begin{align*}
\psi_{i}(1) & =x \equiv \gamma / t(\bmod p), \quad \text { where } \quad \gamma=\operatorname{sign}= \pm 1,1 \leqslant i \leqslant t \\
\psi_{i}\left(\pi_{j}\right) & =\epsilon \zeta_{i}\left(\pi_{j}\right)+c, \quad \text { where } \epsilon-\operatorname{sign}= \pm 1, \quad 1 \leqslant i, j \leqslant t \tag{2}
\end{align*}
$$

and c is a rational integer neither depending on i nor on j.
The nonexceptional irreducible characters of G, nonvanishing on $P^{*}=$ $P-\{1\}\left(\right.$ i.e., in $B_{0}(p)$, the principal p-block of $\left.G\right)$ will be denoted by η_{i}, $i=1, \ldots, q$, where $\eta_{1}=1_{G}$, the principal character of G.

We know that each of theses characters η_{i} is constant on $P^{*}=P-\{1\}$ and also, if $\eta_{i}(1)=n_{i}$ and $\eta_{i}\left(\pi_{j}\right)=\epsilon_{i}, 1 \leqslant j \leqslant t, 1 \leqslant i \leqslant q$, then the following is true: $\epsilon_{i}--\operatorname{sign}= \pm 1, \epsilon_{1}=1$, and $n_{i} \equiv \epsilon_{i}(\bmod p), 1 \leqslant i \leqslant q$.

Let $l=\sum_{i=1}^{q} \epsilon_{i} / n_{i}$. Since $\epsilon_{1}=1$ it is easily seen that

$$
\begin{equation*}
l \geqslant 1-\frac{q-1}{p-1}=\frac{p-q}{p-1} \quad \text { or } \quad(p-1) l \geqslant p-q . \tag{3}
\end{equation*}
$$

It is also well known that

$$
\begin{equation*}
s_{i j k}=\frac{p q}{p^{2}}\left(q+B_{i j k}\right)=\frac{q}{p}\left(q+B_{i j k}\right) \tag{4}
\end{equation*}
$$

where

$$
\begin{gather*}
q B_{i j k}=\sum_{s=1}^{t} \zeta_{s}\left(\pi_{i}\right) \cdot \zeta_{s}\left(\pi_{j}\right) \cdot \zeta_{s}\left(\pi_{k}^{-1}\right), \quad 1 \leqslant i, j, k \leqslant t \\
C_{i j k}=\frac{g}{p^{2}}\left(l+A_{i j k}\right) \tag{5}
\end{gather*}
$$

where $|G|=g$,

$$
x A_{i j k}=\sum_{s=1}^{t} \psi_{s}\left(\pi_{i}\right) \cdot \psi_{s}\left(\pi_{j}\right) \cdot \psi_{s}\left(\pi_{k}^{-1}\right), \quad 1 \leqslant i, j, k \leqslant t
$$

and x is the degree of the exceptional character in $B_{0}(p)$. Then

$$
\begin{equation*}
t t^{2}=2 \epsilon c, \tag{6}
\end{equation*}
$$

where ϵ is the same sign used in (2).
As a corollary we have, c the same rational integer used in (2),

$$
\begin{equation*}
t \geqslant 3 \approx c=0 . \tag{7}
\end{equation*}
$$

Also, if $c=0$, we get

$$
\begin{equation*}
x A_{i j k}=\epsilon q B_{i j k} . \tag{8}
\end{equation*}
$$

1. 'Theorems 1 and 2

Before we prove Theorems 1 and 2 we will prove some lemmas.

Lemma 1.1 .

(a)

$$
\sum_{i=1}^{1} s_{i 11}=q-1
$$

(b)

$$
\sum_{i=1}^{1} q B_{i 11}=q-p .
$$

Proof.
(a) It is quite clear since the orbit of $\pi=\pi_{1}$ has q elements and there is no $i, 1 \leqslant i \leqslant t$, such that $\pi_{i} \cdot \pi=\pi$.

$$
\begin{equation*}
s_{i 11}=\frac{q}{p}\left(q+B_{i 11}\right), \quad p s_{i 11}=q^{2}+q B_{i 11} . \tag{b}
\end{equation*}
$$

By $(\mathrm{a}), p(q-1)=q^{2} t \rightharpoondown \sum_{i=1}^{t} q B_{i 11}$.
Now, since $q t=p-1$ we have (b).
Proposition 1.2. $r(G, p)-1(\bmod p)$ as a rational number.
Proof. Since $\sum_{i=1}^{i} s_{i 11}-q-1 \neq 0=$ some $s_{i 11} \neq 0$.
Thus it is enough for us to show that

$$
C_{i 11}=s_{i 11}(\bmod p) .
$$

But for this, look at P acting on the set $\Omega:\left\{\left(x_{i}, x_{1}\right) \in G \times G \mid x_{i} \cdot x_{1}=\pi_{1}\right.$;, by the rule $\left(x_{i}, x_{1}\right)^{c}=\left(x_{i}{ }^{c}, x_{1}{ }^{c}\right)=\left(c^{-1} \cdot x_{i} \cdot c, c^{1} x_{1} c\right)$.

Since P is self-centralized, then

$$
\left(x_{i}, x_{1}\right) \notin N_{G}(P) \times N_{G}(P) \neq\left(x_{i}, x_{1}\right)^{c}=\left(x_{i}{ }^{c}, x_{1}{ }^{r}\right) \notin N_{G}(P) \times N_{G}(P)
$$

and also $\left(x_{i}, x_{1}\right)^{\prime} \neq\left(x_{i}, x_{1}\right)$.

Thus P acts $f . p . f$ on set

$$
\Omega^{*}=\left\{\left(x_{i}, x_{1}\right) \in G \times G \left\lvert\, \begin{array}{l}
x_{i} \cdot x_{1}=\pi_{1} \\
\left(x_{i}, x_{1}\right) \notin N_{G}(P) \times N_{G}(P)
\end{array}\right.\right\} .
$$

Then, $\left|\Omega^{*}\right| \equiv 0(\bmod p)$ and $c_{i 11}=s_{i 11}-\mid \Omega^{*}$.
Lemma 1.3. If $t=2$, we have (8^{\prime})

$$
x A_{i j k}=\epsilon^{\prime} \cdot q \cdot B_{i j k}
$$

where $\epsilon^{\prime}= \pm \epsilon$ is a sign.
Proof. Assume $t=2$.
If $c=0$, there is nothing to prove by (8).
Let c be different from zero. From (6) we have $c=\epsilon= \pm 1$.
We have two exceptional characters ψ_{1}, ψ_{2} and since $\zeta_{1}\left(\pi_{j}\right) \cdot \mid \zeta_{2}\left(\pi_{j}\right)=-1$, $1 \leqslant j \leqslant 2$, we obtain

$$
\Psi_{1}\left(\pi_{j}\right)=\epsilon \zeta_{1}\left(\pi_{j}\right)+c=\epsilon\left(\zeta_{1}\left(\pi_{j}\right)+1\right)=-\epsilon \zeta_{2}\left(\pi_{j}\right), \quad \Psi_{2}\left(\pi_{j}\right)=-\epsilon \cdot \zeta_{1}\left(\pi_{j}\right)
$$

Thus,

$$
x \cdot A_{i j k}=\sum_{k=1} \Psi_{s}\left(\pi_{i}\right) \cdot \Psi_{s}\left(\pi_{j}\right) \Psi_{s}\left(\pi_{k}^{-1}\right)=-\epsilon q B_{i j k} \quad \text { for } 1 \leqslant i, j, k \leqslant 2
$$

Remark. Thus we can use

$$
\begin{equation*}
x A_{i 11}=\epsilon^{\prime} \cdot q B_{i 11} \tag{9}
\end{equation*}
$$

with $\epsilon^{\prime}=\operatorname{sign}= \pm 1$ for any $t \geqslant 2$.
Lemma 1.4. Assume G is a simple group neither of type $(\mathrm{A}) G \approx \operatorname{PSL}(2, p)$ nor of type $(\mathrm{B}) G \approx \mathrm{SL}(2, p-1)$, where $p-1=2^{a}, a \geqslant 2$. Then

$$
\left|G: N_{G}(P)\right|=g \mid p q \leqslant r \cdot v
$$

where $v:=(q-1) \cdot(p+q) / p-q$.
Proof. Let x be the degree of exceptional character in $B_{0}(p)$, the principal p-block of G.

By a Theorem of Feit (see [7]), we have $x \geqslant p+q$.
Now, $C_{i 11} \leqslant r s_{i 11}$ for all $i \in\{1, \ldots, t\}$.
By (9), $x A_{i 11}=\epsilon^{\prime} q B_{i 11}$, where $\epsilon^{\prime}= \pm 1$.

Thus we obtain

$$
\frac{g}{p^{2}}\left(\frac{\epsilon^{\prime} q B_{i 11}}{x}+l\right) \leqslant \frac{r q^{2}}{p}+\frac{r q^{2}}{p} \frac{r q B_{i 11}}{p}, \quad \text { all } i \in\{1, \ldots, t\}
$$

and from this we obtain

$$
\begin{equation*}
\left(\frac{g_{\epsilon}^{\prime}}{p x}-r\right) q R_{i 11} \leqslant r q^{2}-\frac{g l}{p} . \tag{10}
\end{equation*}
$$

Applying Lemma 1.1, we have

$$
\left(\frac{g_{\epsilon}^{\prime}}{p x}-r\right)(q-p) \leqslant r q(p-1)-\frac{g l t}{p} .
$$

Therefore

$$
\frac{g}{p}\left[\frac{\epsilon^{\prime}(q-p)}{x}+l t\right] \leqslant r q(p-1)+r(q-p)=r \cdot p(q-1) .
$$

So

$$
g\left[\frac{\epsilon^{\prime}(q-p)}{x}+t t\right] \leqslant r p^{2}(q-1)
$$

Multiplying both sides by q, we have

$$
g\left[\frac{\epsilon^{\prime} q(q-p)}{x}+l(p-1)\right] \leqslant r p^{2} q(q-1) .
$$

Now, we prove that $D=\epsilon^{\prime} q(q-p) \mid x+l(p-1)>0$. Indeed, by (3) we have

$$
D=\frac{\epsilon^{\prime} q(q-p)+l(p-1) x}{x} \geqslant \frac{\epsilon^{\prime} q(q-p)+(p-q) x}{x} .
$$

Since $x \geqslant p+q$, we obtain

$$
D \geqslant \frac{\epsilon^{\prime} q(q-p)+(p-q)(p+q)}{x}=\frac{p-q}{x}\left[(p+q)-\epsilon^{\prime} q\right]=0 .
$$

Thus we get

$$
g \leqslant \frac{r p^{2} q(q-1)}{D}=\frac{r p^{2} q(q-1)}{\frac{\epsilon^{\prime} q(q-p)}{x}+l(p-1)} .
$$

By (3) we have

$$
\begin{equation*}
g \leqslant \frac{r p^{2} q(q-1)}{(p-q)\left[1-\frac{\epsilon^{\prime} q}{x}\right]} . \tag{11}
\end{equation*}
$$

Case 1. $\epsilon^{\prime}=-1$.
Here we obtain

$$
g \leqslant \frac{r p^{2} q(q-1)}{p-q}
$$

Therefore

$$
g \left\lvert\, p q \leqslant \frac{r p(q-1)}{p-q} \leqslant r(q-1) \frac{p+q}{p-q}=r \cdot v .\right.
$$

Case 2. $\epsilon^{\prime}=+1$.
Here,

$$
g \left\lvert\, p q \leqslant \frac{r p(q-1)}{(p-q)\left[1-\frac{q}{x}\right]}\right.
$$

But

$$
x \geqslant p+q \Rightarrow g \left\lvert\, p q \leqslant \frac{r p(q-1)}{(p-q)\left(1-\frac{q}{p+q}\right)}=\frac{r p(q-1)(p+q)}{(p-q) p}=r \cdot v\right.
$$

and this proves Lemma 1.4.
Lemma 1.5. Let G be a simple group. If $C_{111}=0$, then $p<q^{2}$.
Proof. Let us assume $C_{111}=0$ and $p>q^{2}$.
From $C_{111}=0=s_{111}$, we obtain (using (4), (5), (9)) $B_{111}=-q$ and $l+\epsilon^{\prime} q B_{111} / x=0$.

Now, from (3) we have $l \geqslant(p-q) /(p-1)>0$ and we have

$$
l=\frac{\epsilon^{\prime} q^{2}}{x}>0 \Rightarrow \epsilon^{\prime}=-1
$$

Let $x=a p+q$. Thus $a p+q=q^{2} l$, and

$$
\begin{aligned}
(a p-q) & =\frac{(p-1) q^{2}}{(p-1) l} \leqslant \frac{(p-1) q^{2}}{p-q}, \\
(a p+q)(p-q) & \leqslant(p-1) q^{2} .
\end{aligned}
$$

If $a \geqslant 1$, we have

$$
(p+q)(p-q) \leqslant(a p+q)(p-q) \leqslant(p-1) q^{2}, \quad p^{2}-q^{2} \leqslant p q^{2}-q^{2},
$$

and then $p^{2} \leqslant p q^{2}$, i.e., $p \leqslant q^{2}$, a contradiction and thus $a=0$ and $x=q<(p-1)$.

By a theorem of Feit we must have G is either of type (A) $G \approx \operatorname{PSL}(2, p)$ or of type (B) $G \approx \operatorname{SL}(q, p-1), p-1=2^{a}$.

But in type (A), $q=(p-1) / 2$ and

$$
p>q^{2} \div 4 p>(p-1)^{2} \Rightarrow p^{2}-6 p+1<0 \Rightarrow p \leqslant 5 .
$$

By our hypothesis, $p=5, q=t=2$, and $G \approx \operatorname{PSL}(2,5) \approx A_{5}$. But here $s_{111}=0 \neq C_{111}$, a contradiction.

Now, in type (B) we have $s_{111}=0 \neq C_{111}$, a contradiction.
This proves Lemma 1.5.
Proof of Theorem 1. Assume G simple and $s_{i 11}=c_{i 11}$ for all $i \in\{1, \ldots, t\}$. From (4), (5), and (9) we have

$$
\begin{equation*}
\left(\frac{g_{\epsilon}{ }^{\prime} q}{p x}-q\right) B_{i 11}=q^{2}-\frac{g l}{p} . \tag{12}
\end{equation*}
$$

Now since $\left(g \epsilon^{\prime} q\right) /(p x)-q=0 \Rightarrow g=p x \rightarrow g<x^{2}$, a contradiction.
We must have $\left(g \epsilon^{\prime} q\right) /(p x)-q \neq 0$ and (12) determines the $B_{i 11}$'s and, moreover, $B_{111}=B_{211}=\cdots=B_{t 11}$.

But this implies,
$s_{111}=s_{211}=\cdots-s_{t 11}=c_{t 11}=\cdots-c_{111}, \quad A_{111}-A_{211} \cdots \cdots=A_{t 11}$.
From $s_{111}=s_{211}=\cdots=s_{t 11}$, we have that G cannot be of type (B) since in this type we have $q=2$ and this gives $\sum_{i=1}^{t} s_{i 11}=q-1=1 \Rightarrow t s_{111}=$ $1 \Rightarrow t=1$, a contradiction.

If G is of type (A), we are done since the group $\operatorname{PSL}(2, p)$, with $q=p-1 / 2$ even, does not satisfy $s_{i 11}=c_{i 11}$ for all $i \in\{1, \ldots, t\}$.

Thus we have, by Lemma 1.3, that

$$
g \left\lvert\, p q \leqslant r \cdot v=1 \cdot v=v=(q-1) \frac{p+q}{p-q} .\right.
$$

Now,

$$
\begin{aligned}
& p+q=p+\frac{p-1}{t}=\frac{(t+1) p-1}{t} \\
& p-q=p-\frac{p-1}{t}=\frac{(t-1) p+1}{t} \Rightarrow \frac{p+q}{p-q}<\frac{t+1}{t-1} .
\end{aligned}
$$

Since $(t+1) /(t-1)=1+2 /(t-1)$ is a decreasing function of t and $q-1=(p-1 / t)-1=p-(t+1) / t$, we have for $t \geqslant 2$,

$$
v \leqslant 3 \cdot \frac{p-3}{2} \quad \text { and } \quad g / p q=m p+1 \leqslant \frac{3(p-3)}{2} .
$$

Then,

$$
m<\frac{3(p-3)}{2 p} \leqslant \frac{p+3}{2} .
$$

By a Theorem of Brauer (see [3]), we have G is of type (A) or (B), and this proves Theorem 1.

Proof of Theorem 2. Assume G is simple and a counter example for Theorem 2.

We first claim that G is not of type (A) or (B). For, G cannot be of type (A) since there either $r=1$ or $r=5(p-1) /(p-5)$ (depending if q is odd or even, respectively) and in both situations we do not have G, a counterexample for Theorem 2.

Now, G cannot be of type (B) since for $\operatorname{SL}(2, p-1) p-1=2^{n}$, we have $s_{111}-0$ and $c_{111} \neq 0$.

As in the proof of Theorem $1, v \leqslant(p-3 / 2) \times 3$. Hence

$$
g^{\prime} / p q \leqslant r \cdot v=\frac{2(p+2)}{3} \times \frac{(p-3) 3}{2}=(p+2)(p-3) .
$$

Thus, $g / p q=m p+1 \leqslant(p+2)(p-3) \Rightarrow m<p+2$.
Now, by theorems of Brauer and Nagai ([8]) we must have one of the possibilities for G :
(i) M_{11};
(ii) $\operatorname{PSL}(3,3)$;
(iii) type (A);
(iv) type (B);
(v) $\operatorname{SL}(2, p+1), p+1=2^{a}$.

The possibility (i) is out since there $m=p+2$.
The possibilities (iii) and (iv) are out as we saw previously.
The possibility (ii) is out since there we have $s_{111}=0 \neq c_{111}$, by Lemma 1.5.

Finally, the possibility (v) is also out because there we have $q=2$ and this implies $s_{11 I}=0$.

But, by Lemma 1.5, it is not difficult to see that $C_{111} \neq 0$, and this proves Theorem 2.

2. Theorems 3 and 4

Proof of Theorem 3. Let G be a counterexample for Theorem 3.
We claim that G is not of type (A) nor of type (B). Indeed, if G is of type (A), $\operatorname{PSL}(2, p)$ implies that $p=a t^{2}+t+1=2 t^{2}+t+1=11$ and $G \approx \operatorname{PSL}(2,11)$ and G is not a counterexample.

If G is of type (B), SL $(2, p-1), p-1=2^{a}$ implies that $q=2=$ $a t+1=2 t+1$, a contradiction.

Thus by Lemma $1.4 \mathrm{~g} / p q \leqslant r \cdot v$.
Assume $t>2, p=2 t^{2}+t+1$, and p prime number $\Rightarrow t \geqslant 4 \Rightarrow p>37$ and $t \div 1 / t(t-1) \leqslant 5 / 12$.

But

$$
g^{\prime} p q=m p+1 \leqslant r \cdot v \leqslant \sqrt{28 p} \cdot \frac{p-(t+1)}{t} \cdot \frac{t+1}{t-1} .
$$

Thus

$$
g \left\lvert\, p q=m p+1 \leqslant(p-5) \cdot \frac{5}{12} \cdot \sqrt{28 p}\right.
$$

Therefore $m p<\sqrt{28 p}(p-5) 5 / 12$. But $p \geqslant 37 \Rightarrow \sqrt{28 p}<p$.
So $m<5 / 12(p-5)<p-5 / 2<p+3 / 2$ and by a theorem of Brauer (sce [3]) we have a contradiction.

Thus $t=2, p=2 t^{2}+t \div 1=11, q-5$.
We also have $\sqrt{28 p}=\sqrt{28 \times 11}<18$, hence

$$
v=(q-1) \frac{p-q}{p-q}=4 \cdot \frac{16}{6}=\frac{32}{3} .
$$

Then, $g \mid p q=m \times 11+1 \leqslant r v<18 \cdot 32 / 3 \cdots 192$.
Therefore $11 m<191$. So $m \leqslant 17$.
Also by the theorems of Braver and Nagai (see [8]), we may assume $m>p+2=13$.

Thus we have $15 \leqslant m \leqslant 17, g \div 55 \cdot(11 m+1)$.
Since G is simple, we may consider only m odd.
(i) For $m=15, g=2 \cdot g^{\prime}, g^{\prime}$ odd, so G is not simple by Burnside (see [11]).
(ii) For $m=17, g=4 \times 5 \times 11 \times 47$. Again G is not simple by Burnside (sec [11]). And this proves Theorem 3.

Proof of Theorem 4. Assume G is a counterexample for Theorem 4. As before G cannot be of type (A) or (B). Thus, by Lemma 1.3, $g / p q \leqslant r \cdot v$.

We also have $q-1=\sum_{i=1}^{t} s_{i 11}=a t=t$, and this gives $p=t^{2}+t+1$, $q=t-1$.

We also may assume by the theorems of Brauer and Nagai (see [8]) that

$$
\frac{g}{p q}=m p+1
$$

where $m>p+2$. Thus we have

$$
(p+2) p+1<g / p q \leqslant r \cdot v<\sqrt{1760} \sqrt{p} \cdot \frac{p-(t+1)}{t} \cdot \frac{t+1}{t} .
$$

We claim that $t<8$.
For, assume $t \geqslant 8$. Then $p \geqslant 8^{2}+8+1=73$, and

$$
p \cdot(p+2)<\sqrt{1760} \sqrt{p}(p-7) \frac{9}{56} .
$$

Therefore

$$
(p+2)<\sqrt{1760} \sqrt{p} \cdot \frac{9}{56}<\sqrt{1760} \cdot \sqrt{p+2} \cdot \frac{9}{56} .
$$

So

$$
\sqrt{p+2}<\sqrt{1760} \cdot \frac{9}{56} \quad \text { and } \quad p+2<\frac{1760 \times 81}{(56)^{2}} .
$$

Then

$$
75 \leqslant p+2<\frac{1760 \times 81}{56 \times 56}
$$

Finally,

$$
75<\frac{142560}{3136}<46
$$

a contradiction.
Considering also that for $t=4, p=21$ not prime; for $t=7, p=$ $49+7+1=57$ not prime, we have the following possibilities for p :

$$
\begin{array}{lll}
t=2, & p=7, & q=3 \\
t=3, & p=13, & q=4 \\
t=5, & p=31, & q=6 \\
t=6, & p=43, & q=7
\end{array}
$$

Now we will assume, as we mention in the introduction, $s_{111}=\cdots=-$ $s_{t 11}=1$ (instead of $a=1$) to shorten this proof.

Lemma 2.1. Let $\left|N_{G}(P)\right|=p \cdot q$ and let $n<p$ be a solution for $n^{a}=1$ $(\bmod p)$ and such that $n^{8} \neq 1(\bmod p)$ for $s<q$.

Define the sets $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{t}$ as follows:

$$
\begin{aligned}
& \Omega_{1}=\left\{1, n, n^{2}(\bmod p), n^{3}(\bmod p), \ldots, n^{q-1}(\bmod p)\right\} \\
& \Omega_{2}=\left\{\alpha_{2}, \alpha_{2} n(\bmod p), \alpha_{2} n^{2}(\bmod p), \ldots, \alpha_{2} n^{q-1}(\bmod p)_{\}}^{\prime}\right.
\end{aligned}
$$

where α_{2} is the first integer $\in\{1,2, \ldots, p-1\}-\Omega_{1}=\left\{x \in\{1, \ldots, p-1\} \mid x \notin \Omega_{1}\right\}$. Then

$$
\Omega_{3}=\left\{\alpha_{3}, \alpha_{3} n(\bmod p), \alpha_{3} n^{2}(\bmod p), \ldots, \alpha_{3} n^{2-1}(\bmod p)\right\}
$$

where α_{3} is the first integer $\in\{1,2, \ldots, p-1\}-\left(\Omega_{1} \cup \Omega_{2}\right)$.

Recursively, define $\Omega_{4}, \ldots, \Omega_{t}$ (note: $p-1-q \cdot t$).
Let π_{i}, be a representative of the class containing $\pi^{\alpha_{r}}$, for $k=1, \ldots \uparrow$, and $\alpha_{1} \ldots$ 1. (Note: $\pi_{i_{1}} \cdots \pi_{1}$.) Then

$$
\begin{aligned}
& s_{111}=\left|\left\{(x, y) \in \Omega_{1} \times \Omega_{1} \mid x+y=1(\bmod p)\right\}\right|, \\
& s_{i_{2} 11}==\left|\left\{(x, y) \in \Omega_{2} \times \Omega_{1} \mid x+y \quad 1(\bmod p)\right\}\right| \\
& \vdots \\
& s_{i_{1} 11}=\left|\left\{(x, y) \in \Omega_{t} \times \Omega_{1} \mid x+y \quad=1(\bmod p)\right\}\right|
\end{aligned}
$$

Proof. First, q divides $p-1$ and $q \neq 1, p-1$. Let $U=\{Z \mid p Z-\{0\} ; x\}$ be the multiplicative group of the field $Z / p Z . U$ is cyclic of order $p-1$. Since $q \backslash p-1$, there exists $W \subseteq U$ such that W is a subgroup of order q and the unique one of such order. Let $W=\bar{n}\rangle, n<p, \bar{n}=-n+p Z \epsilon U$. Then, $n^{\prime \prime}=i$ in $U \cdots n^{\prime}=1(\bmod p)$ and $n^{*} \neq 1(\bmod p)$ for $s<q$, since $W=q$.

Thus, the q elements of W are $1, \bar{n}, \bar{n}^{2}, \ldots, \bar{n}^{q-1}$. This also says that the set $\Omega_{1} \ldots\left\{1 ; n, n^{2}(\bmod p), \ldots, n^{q-1}(\bmod p)\right\}$ is uniquely determined by any solution n, of $n^{q}=1(\bmod p)$ and $n^{s} ; \neq(\bmod p)$ for $s<q$.

Now we can choose $\alpha_{1}=1, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{t}$ integers as we wish such that

$$
U=W \cup W \cdot \bar{x}_{2} \cup \cdots \cup W \cdot \bar{\alpha}_{1}, \text { where } \bar{\alpha}_{i}-\alpha_{i}+p Z, 1 \leqslant i \leqslant \dagger .
$$

Then, the sets $\Omega_{i}, 1 \leqslant i \leqslant t$, are uniquely determined by the cosets $W \cdot \bar{x}_{i}, 1 \leqslant i \leqslant t$, and, moreover, the sets Ω_{i} 's are pairwise disjoint and $\Omega_{i} \cdots q, 1 \leqslant i \leqslant t$.
Now, let $N(P) / C(P)=\sigma, \sigma$ an automorphism of $P, \sigma \mid=q$.

$$
\pi=\pi_{1}, \quad \pi^{\sigma}=\pi^{a_{\sigma}}
$$

a_{0} an integer >1.
Also,

$$
\left(\pi^{\sigma}\right)^{\sigma}=\left(\pi^{\prime \prime \sigma}\right)^{\sigma}=\left(\pi^{\sigma}\right)^{\pi^{\sigma} \sigma}=\pi^{\prime \prime u^{2}} .
$$

Hence, the elements conjugate to π in $N_{G}(P)$ are

$$
\pi^{\mathrm{N}(P)}=\left\{\pi, \pi^{\prime \prime}, \pi^{\prime \prime} \sigma^{2}, \ldots, \pi^{u_{\sigma} \sigma_{\sigma}-1}\right\}
$$

Since $\sigma^{4}=1$, we have a_{σ} as a solution of equation $n^{4} \cdots 1(\bmod p), n^{s} \neq 1$ $(\bmod p)$ if $s<q$. Hence,

$$
\Omega_{1}=\left\{1, a_{\sigma}, a_{\sigma}{ }^{2}(\bmod p), \ldots, a_{\sigma s}^{q-1}(\bmod p)\right\} .
$$

Now $s_{111}=n^{0}$ of times $\pi^{a_{\sigma}} \cdot \pi^{a_{\sigma}}{ }^{j}=\pi=n^{0}$ of times $\pi^{k} \cdot \pi^{l} \cdots \pi$ with $k, l \in \Omega_{1}=n^{0}$ of pairs $(k, l) \in \Omega_{1} \times \Omega_{1}$ such that $k+l \equiv 1(\bmod p)$.

Now, look at α_{2} and choose i_{2} such that $\pi_{i_{2}}$ is a representative for $\pi^{\alpha_{2}}$. Then

$$
\pi_{i_{2}}^{N(P)}=\left\{\pi_{i_{2}}=\pi^{\alpha_{2}}, \pi_{i_{2}}^{\alpha_{\sigma}}=\pi^{\alpha_{2} u_{\sigma}}, \ldots, \pi^{\alpha_{2} \alpha_{\sigma}^{\prime \prime}}\right\} .
$$

Let $\Omega_{2}-\left\{\alpha_{2}, \alpha_{2} a_{c}(\bmod p), \ldots, \alpha_{2} a_{\sigma}^{\mu-1}(\bmod p)\right\}$.
$s_{i_{2} 11}=n^{0}$ of times $\pi^{\alpha_{2} a_{c}} \cdot \pi^{a_{\sigma}}=\pi=n^{0}$ of times $\pi^{\prime \cdot} \cdot \pi^{\prime} \cdots \pi$.
$k \in \Omega_{2}, l \in \Omega_{1}=n^{0}$ of pairs $(k, l) \in \Omega_{2} \times \Omega_{1}$ such that $k-1=1(\bmod p)$.
Recursively, we finally obtain

$$
\Omega_{t}=\left\{\alpha_{t}, \alpha_{t} a_{\sigma}(\bmod p), \ldots, x_{t} a_{t}^{q \cdots 1}(\bmod p){ }^{q}\right.
$$

and $s_{i_{+11}}=n^{0}$ of pairs $(k, l) \in \Omega_{l} \not \because \Omega_{1}$ such that $k-1 \quad 1(\bmod p)$. Hence, Lemma 4.4 follows.

Now, we claim the following.
The cases $t=3,5,6$ cannot happen.
For $t=3, p=13, q=4$. Here, following Lemma 2.1, $\Omega_{1}=\{1,5,12,8\}$.
Now, since $p+1 / 2=7 \notin \Omega_{1} \Rightarrow s_{111}$ is even; hence this case is out.
By the same reasons the cases $t=5$ and 6 are out.
Lemana 2.2. Let $g=p q(m p+1)$. Then, we have
(i) $t=2, p=7, q=3$;
(ii) $g=21(7 m+1)$, where $13 \leqslant m \leqslant 77, \quad m \quad 13+4 k, \quad k=$ $0,1, \ldots, 16$.

Proof. (i) We have just proved it.
(ii) Now, $v=(q-1)(p-q) / p-q=2 \cdot 104=5$,

$$
r \leqslant 11760 \times 7<112
$$

Thus, $g \mid p q \because 7 m+1 \leqslant r \cdot v<5 \times 112=560 \cdots m \leqslant 79$. Now, $g=$ $21 \cdot(7 m+1)$ and G simple implies m odd.

Also $m>p+2=-9 \Rightarrow m \geqslant 11$.
But if $m=11+4 k$, we have $g=21 \cdot[7(11+4 k)-1]$.
Therefore $g=21 \cdot(78+28 k)=2 \times 21(14 k-39)$ and by a theorem of Burnside (see [11]), we cannot have G simple.

Thus we have $m=13 \therefore 4 k, k \div 0,1, \ldots, 16$, and this proves Lemma 2.2.
Lemma 2.3. The only simple groups appearing are (a) A_{7}; (b) $U_{3}(3)$, and this finishes the proof of Theorem 4 , since they are not counterexamples.

Proof. By Lemma 2.2, we have $t=2, p=7, q=3, g-21(7 m-1)$, $13 \leqslant m \leqslant 77, m=13+4 k, k=0, \ldots, 16$.
(i) $m=13, g=2^{2} \cdot 3 \cdot 7 \cdot 23$.

Let S be the Sylow 23-subgroups of G. Let $n=\left[G: N_{G}(S)\right]$ and assume $n \neq 1$. Since $\left[N_{G}(S): C_{G}(S)\right]$ divides 22 and 11 does not divide g, by Burnside ([11]) we may assume $\left[N_{G}(S): C_{G}(S)\right]=2$.

Now $n \neq 1$ implies 7 divides n and by calculation we found no such $n: 1$ $(\bmod 23)$ and so this case is out.
(ii) $m=17, g=2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \quad A_{7}$.

Here A_{7} satisfies our hypothesis for $p \quad 7$ with value $r-36$, and A_{2} is the only simple group with its order.
(iii) $m=21, g=2^{2} \cdot 3 \cdot 7 \cdot 37$.

Let S be the Sylow 37 -subgroup of G. Let $n=\left[G: N_{G}(S)\right], n=1(\bmod 37)$. By calculation we see that $n=1$ is the only possibility. Hence, this case is out.
(iv) $m=25, g=2^{4} \cdot 3 \cdot 7 \cdot 11$.

Let $S==$ Sylow 11 subgroup of G. Let $n=G: N(S)$ and assume $n \neq 1$. Hence, $N(S) / C(S)$ divides 10 and, by Burnside [7], we may assume $|N(S)| C(S) \mid=2$.

As before, $7 / n$, and by calculation we see that the only possibility for n is $n \quad 7 \times 8=56$.

Let f_{0} degree of irreducible exceptional character in $B_{0}(11)=$ principal 11-block, and let $f_{1}=$ degree of irreducible, nonidentity, nonexceptional character in $B_{0}(11)$.

As before, $f_{0}, f_{1} / q n=16 \times 7,\left(f_{0}, f_{1}\right)=1$, and $f_{0}= \pm 2(\bmod 11)$, $f_{1}=1(\bmod 11)$, and this implies that one of $f_{i}<21-2 \times 11-1$ and, by "Stanton condition," $C(S)=S$, a contradiction since $C(S)=11 \times 3$.
(v) $M-29, g=2^{2} \cdot 3^{2} \cdot 7 \cdot 17$.

Let S Sylow 17-subgroup of G. Let $n=[G: N(S)]$. We know that $N(S) / C(S)$ is cyclic and $\mid N(S) / C(S)$ divides 16 and, by Burnside [7], $|N(S) / C(S)|=2$.

Assuming $n \neq 1,7 / n$. By calculation we found no number $n=1(\bmod 17)$ having $7 / n$. Hence, this case is out.
(vi) $m=--33, g=2^{3} \cdot 3 \cdot 7 \cdot 29$.

Let S - Sylow 29-subgroup of G. Let $n=[G: N(S)]$. First, if $7!N(S)$, then $n 24=n=1$, out.

Thus, w.m.a., $7 / n$. Also, by Burnside [7], $\mid N(S)_{\mid} C(S)_{4}=2$ or 4 .
By calculation we found no number $n, 7 / n$ such that $n=1(\bmod 29)$. Hence, this case is out.
(vii) $\quad m=37, g=2^{2} \cdot 3 \cdot 5 \cdot 13$.

Let $S=$ Sylow 13-subgroup of G. Let $n=[G: N(S)]$ and assume $n \neq 1$. Hence, $|N(S)| C(S) \mid$ divides 12. By Burnside, $|N(S) / C(S)|=2$, 3, or 6 .

Possibilities for n : After calculation the only possibility for n is

$$
n=14, \quad|N(S)=2 \times 3 \times 5 \times 13=5 \| C(S)|
$$

Now, if $3 /|C(S)| N(S) / C(S) \mid=2$ and $C(S)=S \times V,|V|=15$. Let $W, V, W=5 . W$ is the characteristic in $V \triangleleft N(S) \Rightarrow W \not W N(S)$ $\therefore[G: N(W)]$ divides 14 and W a S_{5}-subgroup of $G \Rightarrow G: N(W) \mid \therefore 1$, a contradiction. Thus, $3+|C(S)|$ and $N(S) / C(S)-q_{0}=3$ or 6 , and also $|C(S)|=13 \times 5 \times 2$ or 13×5.

Again $W \leqslant C(S), W=5 \ldots W<^{\text {char }} \cdot C(S) \triangleleft N(S) \ldots N(W) \supseteq N(S)$ $\because[G: N(W)]$ divides $14 \cdots[G: N(W)]=1$, a contradiction. Hence, this case is out.

$$
\text { (viii) } m=41, g=2^{5} \cdot 3^{3} \cdot 7=\mid U_{3}(3)
$$

Here $r \cdots 106$ and, by Wales (see [16]), $C_{3}(3)$ is the only simple group with its order.

$$
\text { (ix) } m \ldots 45, g-2^{3} \cdot 3 \cdot 7 \cdot 79
$$

By calculation the Sylow 79-subgroup S of G is normal in G.

$$
\text { (x) } m=49, g=2^{3} \cdot 3 \cdot 7 \cdot 43
$$

By calculation, the Sylow 43-subgroup of G is normal in G, hence G is not simple.

$$
\text { (xi) } m-53, g=2^{2} \cdot 3^{2} \cdot 7 \cdot 31 \text {. }
$$

Let $S=$ Sylow 31-subgroup of G. Let $n=[G: N(S)]$. Assume $n \neq 1$. As before, $7 / n$.

By calculation the only possibility for n is $n=7 \times 9=63$.
Now, $N(S) / C(S)$ divides 30. By Burnside ([11]), since $5+g$, we may assume (since $9 / n)|N(S) / C(S)|-2$, and we also have $C(S)|\nmid S|$.

Let f_{0} be the degree of exceptional character in $B_{0}(31)=$ principal 3Iblock, and let f_{1} be the degree of nonidentity, nonexceptional, irreducible character in $B_{0}(31)$.

By Brauer ([2]), $f_{0}, f_{1} / 2 n=2 \times 9 \times 7,\left(f_{0}, f_{1}\right)=1$, and this implies that one of $f_{i}<(2 \times 31-1)=61$ and this contradicts the "Stanton Condition" ([15]).

$$
\begin{equation*}
\text { (xii) } m=57, \quad g=2^{4} \cdot 3 \cdot 5 \cdots \cdot 7 \tag{12}
\end{equation*}
$$

We eliminate this case using the following theorems:
Fong [9], Walter [17], Gorenstein-Walter [10], Alperin-BrauerGorenstein [1].

$$
\text { (xiii) } m=61, g=2^{2} \cdot 3 \cdot 7 \cdot 107
$$

Here the Sylow 107 is a normal subgroup of G and G is not simple.

$$
\text { (xiv) } m=65, g=2^{3} \cdot 3^{2} \cdot 7 \cdot 19
$$

By calculation we see that the Sylow 19-subgroup of G is normal in G. Hence, G is not simple.
(xv) $m=69, g=2^{3} \cdot 3 \cdot 7 \cdot(11)^{2}$.

We eliminate this case using the following theorems:
Brauer-Suzuki [5], Walter [17], Gorenstein-Walter [10].
(xvi) $m=73,2^{9} \cdot 3 \cdot 7$.

We eliminate this case by Wales [16].
(xvii) $m=77, g=2^{2} \cdot 3^{4} \cdot 5 \cdot 7$.

We eliminate this case by Gorenstein-Walter [10]. Thus we found there is no counterexample for Theorem 4.

Acknowledgment

The author wishes to thank Professor G. Glauberman, of the L niversity of Chicago, under whom his doctoral dissertation was written.

Referfences

1. J. L. Alperin, R. Bracer, And D. Gorensten, Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups. 1, Trans. Amer. Soc. 151 (1970).
2. R. Braler, On groups whose order contains a prime to the first power, I, II, Amer. J. Math. 63 (1942).
3. R. Brater, On permutation groups of prime degree and related classes of groups, Ann. Math. 44 (1943).
4. R. Bracer, On simple groups of order $5 \cdot 3^{\prime \prime} \cdot 2^{n}$, Dept. of Math., Harvard Eniv., Cambridge, 1967.
5. R. Brauer and M. Suzeki, On finite groups of even order whose 2-Sylow subgroups are a quaternion group, Proc. Nat. Acad. Sci. 45 (1959).
6. W. Feit, On a class of doubly transitive permutation groups, Illinois J. Math. 4 (1960).
7. W. Feit, On finite linear groups, J. Alg. 5 (1967).
8. W. Feir, The Current Situation in the Theory of Finite Simple Groups, Dedicated to Richard Brauer on the occasion of his 70th Birthday.
9. P. Fong, Sylow 2-subgroups of small order. I, unpublished.
10. D. Gorenstein and J. Walter, The characterization of finite groups with dihedral Sylow 2 -subgroups, 1, II, III, J. Alg. 2 (1965).
11. M. Hals, "The Theory of Groups," Macmillan, New York, 1959.
12. M. Hall, A search for simple groups of order less than a million, in "Computational Problems in Abstract Algebra," edited by J. Leech, Pergamon Press, New York, 1968.
13. M. Herzog, A characterization of the simple groups PSL($2, p$, $p \cdots 3$, Israel I. Math. 5 (1967).
14. D. Parrot, On the Mathieu groups M_{22} and M_{21}, J. Austrol. Math. Soc. XI, Part I (1970).
15. R. Stavton, The Mathieu groups, Canad. J. Math. 3 (1951).
16. D. B. Wales, Simple groups of order $7 \cdot 3^{a} \cdot 2^{i}$, J. Algebra 4 (1970).
17. J. Walter, The characterization of finite simple groups with Abelian Sylow 2-subgroups, Ann. Math. 189 (1969), 3.

[^0]: * This research is part of the author's Ph.D. Thesis at the University of Chicago, 1971; it was supported by C.N.Pq, Brasil.

