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We consider the laminar viscous channel flow with the lateral surface of the
channel containing surface irregularities. It is supposed that a uniform pressure
gradient is maintained in the longitudinal direction of the channel. After studying the
corresponding boundary layers, we obtain rigorously the Navier friction condition. It
is valid when the size and amplitude of the imperfections tend to zero. Furthermore,
the coefficient in the law is determined through an auxiliary boundary-layer type
problem, and the tangential drag force and the effective mass flow are determined up
to order O(=3�2). The value of the effective coefficient is shown to be independent with
respect to the position of the mean surface in the range of O(=). � 2001 Academic Press

Key Words: boundary with irregularities; roughness; boundary homogenization;
Navier's boundary condition.

1. INTRODUCTION

The flow conditions at a solid wall are well-established. First, the fluid
cannot penetrate the solid and the normal velocity is zero. For a viscous
flow we should add more conditions, and it was observed in experiments
that the tangential velocity is also zero. This experimental fact was not
always accepted in the past, and another approach was to suppose that a
layer of stagnant fluid existed close to the wall. Its thickness was assumed
to be a function of the geometry, temperature, and fluid structure, and at
the wall the fluid was allowed to slip. Navier claimed that the slip velocity
should be proportional to the shear stress (see [16]). Navier's model can
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be confirmed, at least heuristically, by kinetic-theory calculations. However,
the conclusion is that the proportionality constant in Navier's law is propor-
tional to the mean free path divided by the continuum length (see [17]).
Hence it is zero for most practical proposes.

Nevertheless, Navier's condition is used for simulations of flows in the
presence of complex boundaries, e.g., as in geophysical fluid dynamics (see
[18]). Using it, we reduce the rough boundary to a parameter in the effective
boundary law and solve the Navier�Stokes system in a smooth domain. In
general, the approach of replacing the no-slip condition at rough boundaries
with the non-penetration condition plus a relation between the tangential
velocity and the shear stress, is called the wall laws.

Rough boundaries cause boundary layers for the velocity gradient and
we expect to get wall laws by corresponding multiscale expansions.

An extensive reference for the wall laws is the papers [1�3, 15] by
O. Pironneau and his collaborators. The short note [1] presents a rigorous
approach to the derivation of a wall law for the Laplace operator in an
annular domain with rough perforations. Using a cell problem, an effective
boundary condition of Robin's type was obtained. Paper [15] discusses
wall laws used for simulation of viscous flows over a rough surface and
over a wavy sea surface, respectively. Finally, References [2, 3] concern
derivation of wall laws for incompressible viscous flows at high Reynolds
numbers by a formal multiscale expansion. For such flow a Navier-type
wall law and its nonlinear correction are obtained and the effective constants
are calculated using semi-infinite cell problems.

It should be mentioned that the presence of a rough boundary influences
the hydrodynamic drag. The influence of riblets on a longitudinal flow can be
modeled by the Laplace equation in the transversal 2D section. For more
details we refer the reader to the work [5] by Amirat and Simon. The same
authors studied in [4] the Stokes flow between two infinite plates, one mov-
ing at a given velocity and other being at rest and having periodic asperities.
Using a particular expansion, adapted to their problem, they have obtained
the approximation for the velocity, pressure, and drag force to any order.

A somewhat related problem, studying the influence of the boundary
layers on the effective behavior of the solution for the contact problems
between a porous medium and a nonperforated domain under Dirichlet's
conditions on the boundaries of the solid part, is studied in a number of
recent papers by Ja� ger and Mikelic� [11�13]. The article [13] is on the
rigorous derivation of the effective boundary conditions at the contact
interface between a porous medium and a viscous incompressible fluid.
More precisely, in Beavers and Joseph [7] the effective law

�u{

�&
=:(K =)&1�2 (u{&uD

{ ) on 7,
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was found, where 7 is the interface between media, = is the characteristic
pore size, : is a dimensionless constant depending only on the structure of
the porous medium, K = is the scalar permeability tensor, and u{ denotes
the tangential effective velocity in the channel. The filtration velocity uD

satisfies the Darcy law

uD=&
K =

+
{p=&=2 K

+
{p,

where K depends only on the geometry of the porous medium. A theoretical
approach to deriving the law of Beavers and Joseph at a physical level of rigor
is made in Saffman [19]. Since the filtration velocity in the porous medium
is much smaller than the effective velocity in the channel, Saffman deduced
in [19] that the correct condition was

�u{

�&
=:(K =)&1�2 u{+O(=) on 7. (1)

It is interesting that in the case of the flow across a rough boundary a wall
law analogous to (1), but with different parameters and called in this
situation Navier's slip condition or Navier's friction condition, is used.

The rigorous justification of the interface constitutive law (1) in [13]
was based on the boundary layers constructed in [11], and it was possible
not only to prove the convergence of the homogenization process but also
to determine the constants. In this paper we are going to derive the Navier
slip condition rigorously from the first principles. Our approach will follow
[11] and [13] but the corresponding asymptotic expansions have analogies
with those from [1�3]. However, it should be noted that we have a semi-
infinite cell problem with a transmission-type condition at the interface,
aiming to correct the shear stress created by the zeroth order approxima-
tion. In [1] one has a finite cell problem.

This paper concludes with an approximation for the tangential drag
force, but we leave the interpretation of the result and its extension to a
general profile for a forthcoming paper. Similarly, the case of a flow at
higher Reynolds numbers from [2] and [3] is not considered here. As
precisely stated in Section 2, we concentrate on the laminar channel flow at
moderate Reynolds numbers.

We start by fixing the problem setting.
We consider the laminar viscous two-dimensional incompressible flow

through a domain 0= consisting of the channel 0=(0, b)_(0, h), the inter-
faces 71=(0, b)_[0] and 72=(0, b)_[h], and the layers of roughness
0=

j , j=1, 2.
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We assume that the structure of the layers is periodic and generated by
translations of a hump domain Y ===(Y&(0, 1)), where Y is a domain
inside the standard cell, Z=(0, 1)2, with a continuous boundary. It is
assumed that |�Y & [ y2=1]|>0 and that points (0, 1) and (1, 1) are from
the boundary of Y (i.e., they are among the highest, resp., lowest, points of
the hump). �Y # C2 in some neighborhood of [ y2=1].

Let / be the characteristic function of Y&(0, 1), extended by periodicity
in y1 to R_(0, 1). We set /=(x)=/( x

= ), x # R_(&1, 0), and define 0=
1 by

0=
1=[x # (0, b)_(&=, 0) | /=(x)=1]. 0 =

2 is defined analogously, with a
periodic but in general different structure of impurities, as a subset of
(0, b)_(h, h+=1) with =1=C0=. Now, the flow region is 0==0 _ 71 _ 0 =

1

_ 72 _ 0 =
2 . It is assumed that b�= and b�(C0 =) # N.

Therefore, our rough boundary is assumed to consist of a large number
of periodically distributed humps of characteristic length and amplitude =,
small compared with a characteristic length of the macroscopic domain.

A uniform pressure gradient is maintained in the longitudinal direction
in 0=. More precisely, for a fixed =>0 we define [u=, p=] by the equations
of motion and mass conservation,

&+ q u=+(u={) u=+{p==0 in 0=, (2)

div u==0 in 0=, (3)

u==0 on �0="�0, (4)

p== p0 on [0]_(0, h) and p== pb on [b]_(0, h), (5)

u=
2=0 on ([0] _ [b])_(0, h), (6)

where +>0 is the viscosity and p0 and pb are given constants.
Now we want to study the effective behavior of the velocities u= and

pressures p= as = � 0, i.e., when the characteristic size of the irregularities
tends to zero.

It is clear that in 0 the flow continues to be governed by the Navier�
Stokes system. The presence of the irregularities would only contribute to
the effective boundary conditions at the lateral boundary and the main
goal of this paper is finding the effective behavior of [u=, p=] on 7 in the
limit = � 0.

As in the case of the contact between a channel flow and a porous
medium, the main difficulty comes from the appearance of the boundary
layers in the neighbourhoods of the contact surface, where the gradient of
the solution differs greatly from the behavior inside the interiors of the
domains and, as in the paper [13], the crucial role is played by an
auxiliary problem. It reads as follows:
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Find [;bl, |bl] that solve

&qy ;bl+{y |bl=0 in Z+ _ (Y&(0, 1)) (7)

divy ;bl=0 in Zbl (8)

[;bl]S( } , 0)=0 on S (9)

[[{y ;bl&|bl I] e2 ]S ( } , 0)=e1 on S (10)

;bl=0 on (�Y&(0, 1)), [ ;bl, |bl ] is y1-periodic, (11)

where S = (0, 1)_[0], Z+ = (0, 1)_(0, +�), and Zbl = Z+ _ S _
(Y&(0, 1)).

Let V=[z # L2
loc(ZBL)2 : {y z # L2(ZBL)4 ; z=0 on ((�Y"�Z)&(0, 1));

divy z=0 in ZBL and z is y1 -periodic]. Then the Lax�Milgram lemma
implies the existence of a variational solution [;bl, |bl] # V & C�(Z+ _
(Y&(0, 1)))2_C �(Z+ _ (Y&(0, 1))) to (7)�(11), where ;bl is unique and
|bl is unique up to a constant.

In the neighborhood of S we have ;bl&(( y2& y2
2 �2) e&y2 H( y2), 0)) #

W2, q and |bl # W1, q, \q # [1, �).
Then we have

Lemma 1 [11]. Any solution [;bl, |bl] satisfies

|
1

0
;bl

2 ( y1 , a) dy1=0, \a # (0, +�),

|
1

0
|bl( y1 , a1) dy1=|

1

0
|bl( y1 , a2) dy1 , \a1>a2�0,

(12)

|
1

0
;bl

1 ( y1 , a1) dy1=|
1

0
;bl

1 ( y1 , a2) dy1 , \a1>a2�0,

C bl
1 =|

1

0
;bl

1 ( y1 , 0) dy1=&|
ZBL

|{;bl( y)|2 dy.

Lemma 2. Let a>0 and let ;a, bl be the solution for (7)�(11) with S
replaced by Sa=(0, 1)_[a] and Z+ replaced by Z+

a =(0, 1)_(a, +�).
Then we have

C a, bl
1 =|

1

0
;a, bl

1 ( y1 , a) dy1=C bl
1 &a. (13)

Proof. By (12),

C a, bl
1 =|

1

0
;a, bl

1 ( y1 , c) dy1 , \c�a.
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Let 0�c1<a<c2 . Integration of the first component of (7),

div[{;a, bl
1 &|a, ble1]=0,

over (c1 , c2) gives

|
1

0 {
�;a, bl

1

�y2

( y1 , c2)&
�;a, bl

1

�y2

( y1 , a+0)

+
�;a, bl

1

�y2

( y1 , a&0)&
�;a, bl

1

�y2

( y1 , c1)= dy1=0.

Hence from (10) and Lemma 1

d
dy2

|
1

0
;a, bl

1 ( y1 , y2) dy1=&1, for c1< y2<a,

and

|
1

0
;a, bl

1 ( y1 , y2) dy1=a& y2+C a, bl
1 , for 0� y2�a. (14)

The variational equation for ;a, bl&;bl reads

|
ZBL

{(;a, bl&;bl) {. dy=&|
1

0
(.1( y1 , a)&.1( y1 , 0)) dy1 , \. # V.

Testing with .=;a, bl&;bl and using (14), we obtain

|
ZBL

|{(;a, bl&;bl)|2 dy=&|
1

0
(;a, bl

1 ( y1 , a)&;a, bl
1 ( y1 , 0)) dy1=a.

On the other hand,

|
ZBL

|{(;a, bl&;bl)|2 dy=|
ZBL

|{;a, bl |2 dy+|
ZBL

|{;bl | 2 dy

&2 |
ZBL

{;a, bl {;bl dy=C bl
1 &C a, bl

1 ,

and (13) is proved. K
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This simple result will imply the invariance of the obtained law on the
position of the interface 7.

In the next step we determine the decay in Z+ by reduction to the
Laplace operator. We choose the free constant in the pressure field in the
way that �1

0 |bl( y1 , 0) dy1=0. We note that in such a situation the decay
can be obtained by using Tartar's lemma from [14], but because of (12)
the averages with respect to y1 are always constant or zero. Then, by using
the separation of variables, we obtain

Lemma 3.

|D: curly ;bl( y1 , y2)|�Ce&2?y2, y2>0, : # N2 _ (0, 0),

|;bl( y1 , y2)&(C bl
1 , 0)|�C($) e&$y2, y2>0, \$<2?,

(15)
|D:;bl( y1 , y2)|�C($) e&$y2, y2>0, : # N2, \$<2?,

||bl( y1 , y2)|�Ce&2?y2, y2>0,

Following the approach from [13], the Navier friction condition should
correspond to taking into account the next-order corrections for the velocity.
Then formally we get

u==v0&=;bl \x
=+

�v0
1

�x2

+=C bl
1 \�v0

1

�x2

e1+d 1+ H(x2)+O(=2),

where v0 is the Hagen�Poiseuille velocity in 0 and d 1 corresponds to the
counterflow generated by the boundary condition d 1=&(�v0

1��x2 ) e1 on 7.
Then on the interface 7,

�u=
1

�x2

=
�v0

1

�x2 \1&
�;bl

1

�y2 \
x
=+++O(=) and

1
=

u =
1=&;bl

1 \x
=+

�v0
1

�x2

+O(=).

After averaging we obtain the familiar form of the Navier slip condition,

ueff
1 =&=C bl

1

�ueff
1

�x2

on 7, (NFC)

where ueff is the average over the impurities and C bl
1 is defined by (12). The

higher order terms are neglected.
The rest of the paper contains the rigorous justification of the interface

law (the Navier Friction condition). In order to cover realistic flows from
the physical literature (see [18, 19] and the references therein), we give the
proof for the Navier�Stokes equations (2)�(6) rather than for the simplified
model from [11]. The solvability of the system (2)�(6) and the uniform a
priori estimates are given in Section 2. In Section 3, we first construct an
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approximation for the velocity and pressure field in 0= and an outer boundary
layer. Then we define a correction of order O(=3�2) for the velocity. This result
enables us to establish the justification of the Navier friction condition (NFC)
in Theorem 2 and to compare the physical velocity with the effective one.
Finally, the effective mass flow and the tangential drag force are determined
with an error of order O(=3�2).

2. SOLVABILITY OF THE =-PROBLEM AND
UNIFORM A PRIORI ESTIMATES

In this section we first address the existence of solutions for the =-problem
(2)�(6). The existence for fixed = and a small pressure difference is proven
in [8]. Similar results, but with the dynamic pressure p=+ 1

2 |u=| 2 given
instead of p=, were obtained in the exhaustive paper [10]. For the equa-
tions (2)�(6) in general geometries global existence results for arbitrary
data do not seem to be known. As pointed out in [6], the non-homo-
geneous boundary conditions for the pressure lead to cubic terms in
velocity which cannot easily be estimated. Consequently, we can, in
general, expect existence only for small | pb& p0 |.

Let us note that for the somewhat similar problem of nonstationary
incompressible flow through the filter, considered in [12], it was possible
to prove the global existence, uniqueness, and regularity, regardless of the
size of the pressure at the boundary. As in the case of the porous filter, here
the rough boundary is expected to considerably slow down the flow and
help us to obtain the global existence. But since we are interested in the
channel flow with Reynolds numbers corresponding to the laminar flow, it
is natural to consider the system (2)�(6) with | pb& p0 | not too large.

Since we need not only existence for a given =, but also the a priori
estimates independent of =, we give a direct proof of existence and unique-
ness, leading to uniform a priori estimates. It should be noted that in fact
our result implies the nonlinear stability of the Poiseuille flow with respect
to the perturbation of the boundary by the small impurities. Our proof
follows the corresponding one from [13].

First, we observe that the classic Poiseuille flow in 0, satisfying the
no-slip conditions at 71 _ 72 , is given by

v0=\ pb& p0

2b+
x2(x2&h), 0+ for 0�x2�h,

(16)

p0=
pb& p0

b
x1+ p0 for 0�x1�b.
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For | pb& p0 |�C(b, h) +2, (16) defines the unique solution to (2)�(7)
between all those lying in the ball

B0=[z # H 1(01)2 | &z&L4 (01 ) 2�C(b, h) +].

We extend it to 0="0 by setting v0=0 and keeping the same form of p0.
The idea is to construct the solution to (2)�(6) as a small perturbation to
the Hagen�Poiseuille flow (16). Before the existence result, we prove an
auxiliary lemma:

Lemma 4. Let . # H1(0="0) be such that .=0 on �0= "�0. Then we
have

&.&L2 (0="0)�C= &{.&L2 (0="0) 2 , (17)

&.&L2 (71 _ 72 )�C=1�2 &{.&L2 (0= "0) 2 , (18)

|
b

0
( |.(x1 , 0)|+|.(x1 , h)| ) dx1�C - = " �.

�x2 "L2(0 ="0)

. (19)

Proof. The estimate (17) is well known. For the estimate (18) we refer
the reader to [11].

It remains to prove (19). Using the boundary conditions we get

|
b

0
|.(x1 , 0)| dx1�|

0= "0 }
�.
�x2 } dx�C - = " �.

�x2 "L2(0= "0)

,

implying (19). K

Now we are in a position to prove the desired non-linear stability result:

Proposition 1. There exists a constant C(b, h) such that for | pb& p0 |�b+
�C(b, h) + and =�=0 the problem (2)�(6) has a solution [u=, p=] # H2(0=)2_
H1(0=) satisfying

&{(u=&v0)&L2 (0 =) 4�C - =. (20)

Moreover, after a possible modification of C(b, h), all solutions lying in the
ball

B=[z # H 1(01)2 | &z&L4(01 ) 2�C(b, h) +]

are equal to [u=, p=].

Proof. We search u= in the form u==v0+w=. Let

Z==[z # H 1(0=)2 : z=0 on �0="�0; z2=0 on ([0] _ [b])_(0, h)].
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Then we are looking for w= # W==[. # Z= : div .=0 in 0=] such that

+ |
0=

{w= {.+|
0=

(w={) w=.+|
0 =

v0
1

�w=

�x1

.+|
0=

w=
2

�v0
1

�x2

.1

=+
�v0

1

�x2

(0) |
71

.1&+
�v0

1

�x2

(h) |
72

.1&
pb& p0

b |
0 ="0

.1 , \. # W=.

(21)

The proof of solvability for (21) consists of several steps:

(a) Let H=[. # H1(0)2 : .2=0 on ([0] _ [b])_(0, h)] and let
|(�, .) be a bilinear form on H_H given by

|(�, .)=+ |
0

{� {.+|
0

v0
1

��
�x1

.+|
0

�2

�v0
1

�x2

.1 . (22)

For the last two terms in (22) we have

|
0

v0
1

��
�x1

�+|
0

�2

�v0
1

�x2

�1

=|
0

v0
1�2 curl �+|

0
v0

1�1 \��1

�x1

&
��2

�x2 + , \� # H. (23)

Let m= 1
2b �b

0 (�1(x1 , 0)+�1(x1 , h)) dx1 . Using (23), we conclude that
there is a constant C=C(b, h) such that for | pb& p0 |�b+�C(b, h) + we
have

+
2 |

0
|{�|2�&|

0
v0

1�2 curl �&|
0

v0
1(�1&m) \��1

�x1

&
��2

�x2 + , \� # H.

(24)

The estimate (24) implies, under the same condition on the pressure difference,

|(�, �)�
+
2 |

0
|{�|2&m |

0
v0

1 \��1

�x1

&
��2

�x2 + , \� # H. (25)

(b) Now let wk # W=, &wk &H1 (0 =) 2�R. We consider the problem

|(wk+1, .)++ |
0= "0

{wk+1 {.+|
0 =

(wk {) wk+1.

=+
�v0

1

�x2

(0) |
71

.1&+
�v0

1

�x2

(h) |
72

.1&
pb& p0

b |
0 ="0

.1 , \. # W=.

(26)
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We want to prove the unique solvability of (26) in W=. Obviously, it is
enough to have a convenient estimate for the third term on the left hand
side. Using Poincare� 's inequality in 0="0 and interpolation we obtain
for . # W=,

}|0="0
(wk{) �.}�CR - = &{�&L2 (0="0) 4 &{.&L2 (0= "0)4 ;

}|0
(wk{) �.}� } |0

(wk {) �(.&me1) }+|m| }|0
(wk {) �1 } (27)

�CR(1+- =) &{�&L2 (0=)4 &{.&L2(0=)4 .

Therefore, for R�C� (b, h) + and =�=0=C+4, we have

|(., .)++ |
0 ="0

|{.|2+|
0=

(wk {) ..�
+
4 |

0=
|{.|2 \. # W=, (28)

and the problem (26) has a unique solution wk+1 # W=.

(c) Now we define a nonlinear mapping T by

T(wk)=wk+1. (29)

Let us check if T is a continous map, T: W= � W=.
Let z j # W=, j=1, 2, and let w j=Tz j, j=1, 2. Furthermore, let

z=z1&z2 and w=w1&w2. Then we have

&|
0=

(z{) w2w=|(w, w)++ |
0 ="0

|{w|2+|
0 =

(z1{) ww�
+
4 |

0=
|{w|2,

leading to

|
0 =

|{w| 2�C &z&L4 (0=) 2 &w&L4 (0 =)2 &{w&L4 (0 =)2 , (30)

which proves the continuity.

(d) It remains to check that T(BR)/BR for R�C� +, as a map from
L(W=, W=). By Lemma 4, we have

}|7
.1 }�C - = &{.&L2 (0="0)4 , \. # Z=. (31)
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Consequently, (26) and (28) imply

+
4

&{wk+1&L2 (0 =)4�C - =

and, for =�=0 , T(BR)/BC - = /BR .

Therefore, by (31), for =�=0 , T has a fixed point w= # W= satisfying the
estimate (20). Uniqueness in B and regularity are obvious. K

Proposition 2. For the solution to (2)�(6), satisfying (20), we have the
a priori estimates

&u=&L2 (0= "0)2�C= - =, (32)

&u=&L2 (71 _ 72)2�C=, (33)

&u=&v0&L2(0)2�C=, (34)

}|71

�u=
1

�x2

(x1 , 0) dx1+
pb& p0

2+
h}

+}|72

�u=
1

�x2

(x1 , h) dx1&
pb& p0

2+
h }�C=, (35)

&p=& p0&L2 (0=)�C - =. (36)

Proof. The inequalities (32) and (33) are direct consequences of Poincare� 's
inequality and the trace inequality in 0="0, respectively.

In order to get the estimates (34) and (36) we note that w==u=&v0 and
?== p=& p0 satisfy the system

&qw=+{?=+v0
1

�w=

�x1

+w=
2

�v0
1

�x2

e1+(w={) w==0 in 0,

div w==0 in 0,
(37)

w==!= on 71 _ 72 ,

w=
2=0 and ?==0 on ([0] _ [b])_(0, h),

where |!=|L2(71 _ 72)2�C=, by (33).
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The theory of the very weak solutions for the Stokes system was
developed in [9]. By using the analogous very weak variational formula-
tion for Oseen's problem (37), we get (34). The estimate (36) follows from
the first equation in (37) and Nec� as' inequality in 0.

It remains to prove (35). We test the expression for the tangential drag
by .=(.1(x2), 0), where .1=(1&2x2 �h)2 for 0�x2�h�2. Then, by using
(32)�(34), we get

}|71

�(u =
1&v0

1)
�x2

(x1 , 0) dx1 }
= }|

b

0
|

h�2

0
div(({(u=

1&v0
1)&( p=& p0) e1) .1 ) }

� }|
b

0
|

h�2

0
((u={) u=

1&(v0{) v0
1 ) .1 |+ }|

b

0
|

h�2

0

�(u=
1&v0

1)
�x2

�.1

�x2 }
� }|

b

0
|

h�2

0
((u=&v0){) u=

1.1 }+ }|
b

0
|

h�2

0
v0

1

�u=
2

�x2

.1 }+ }|71

(u=
1&v0

1)
�.1

�x2 }
+}|

b

0
|

h�2

0

�2.1

�x2
2

(u =
1&v0

1)}�C=. (38)

This proves the proposition. K

Therefore, we have obtained the uniform a priori estimates for [u=, p=].
Moreover, we have found that Poiseuille's flow in 0 is an O(=) L2-approxima-
tion for u=. Following the formal asymptotic expansion from Section 1, the
Navier friction law should correspond to the next order velocity correction.

3. THE NEXT ORDER VELOCITY CORRECTION AND
NAVIER'S FRICTION LAW

The leading contribution for the estimate (20) was the interface integral
terms �7j

.1 . Following the approach from [11], we eliminate it by using
the boundary-layer-type functions

;bl, =(x)==;bl \x
=+ and |bl, =(x)=|bl \x

=+ , x # 0=. (39)
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We have, for all q�1,

1
=

&;bl, =&=(C bl
1 , 0)&Lq (0)2+&|bl, = &Lq (0)+&{;bl, =&Lq (0)4=C=1�q,

(40)
&;bl, =(0, } )&=(C bl

1 , 0)&Lq (0, h)2=C=1+1�q,

and

&|bl, =(0, } )&H&1�2 (R)+- = &|bl, =(0, } )&L2 (R)=C=,
(41)

=&1�2 &;bl, =(0, } )&=(C bl
1 , 0) H( } )&L2(R) 2+"�;bl, =

�x2

(0, } )"H&1�2 (R)2
=C=.

Finally,

&q;bl, =+{|bl, ==0 in 0="71 (42)

div ;bl, ==0 in 0= (43)

[;bl, =]7 ( } , 0)=0 on 71 (44)

[[{;bl, =&|bl, =I] e2 ]71
( } , 0)=e1 on 71 . (45)

An analogous boundary layer corresponds to 72 . Without loss of the
generality we can neglect it and restrict our considerations to 71 . As in
[11], stabilization of ;bl, = toward a nonzero constant velocity =(C bl

1 , 0) at
the upper boundary generates a counterflow. It is given by the Oseen system
in 0

&+qd+{g+v0
1

�d
�x1

+d2

�v0
1

�x2

e1=0 in 0,

div d=0 in 0, (46)

d=e1 on 71 , d=0 on (0, b)_[h],

d2=0 and g=0 on ([0] _ [b])_(0, h).

Under the assumption | pb& p0 |�b+�C(b, h) + from Proposition 1, the
problem (46) has a unique solution in the form of 2D Couette flow d=
(1&x2 �h) e1 and g=0.

There is an analogous counterflow at 72 , and, as with the boundary
layers, we do not write it.
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Now, we want to prove that the following quantities are o(=) for the
velocity and O(=) for the pressure:

U=
0(x)=u=&v0+(;bl, =&=(C bl

1 , 0) H(x2))
�v0

1

�x2

(0)

+=C bl
1

�v0
1

�x2

(0) H(x2) \1&
x2

h + e1 , (47)

P=
0= p=& p0+|bl, =+

�v0
1

�x2

(0). (48)

We note that the boundary layers corresponding to 72 are omitted for sim-
plicity. Then we have the following result.

Proposition 3. Let U=
0 be given by (47) and P=

0 by (48). Then U=
0 #

H1(0=)2, U=
0=0 on �0="�0, and div U =

0=0 in 0=. Furthermore, we have the
following estimate

}+ |
0 =

{U=
0 {.&|

0=
P=

0 div .+|
0 =

v0
1

�U=
0

�x1

.+|
0 =

(U=
0)2

�v0
1

�x2

.1 }
� }+ �v0

1

�x2

(0) |
h

&L
|bl, =(0, x2) .1 }+ }+ �v0

1

�x2

(0) |
h

&L
|bl, =(b, x2) .1 }

+}|0="0
&

pb& p0

b
.1 }

+C=3�2 &{.&L2(0=)4 , \. # Z=. (49)

Proof. First, we note that for . # Z= the equation (21) reads

+ |
0 =

{(u=&v0) {.&|
0=

( p=& p0) div .+|
0

v0
1

�(u=&v0)
�x1

.+|
0

u =
2

�v0
1

�x2

.1

=&|
0=

((u=&v0) {)(u=&v0) .++
�v0

1

�x2

(0) |
71 _ 72

.1&|
0 ="0

{p0..

(50)

Next, the variational form of the problem (46) is

|
0

(+ {d {.&g div .)+|
0

v0
1

�d
�x1

.+|
0

d2

�v0
1

�x2

.1

=+ |
72

�d1

�x2

.1&+ |
71

�d1

�x2

.1+|
71

g.2 , \. # Z=, (51)
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and, moreover, for [;bl, =, |bl, =] we have

|
0=

({(;bl, =&=(C bl
1 , 0) H(x2)) {.&|bl, = div .)

+|
0

v0
1

�;bl, =

�x1

.+|
0

;bl, =
2

�v0
1

�x2

.1

=|
h

&L
(|bl, =(0, x2) .1&|bl, =(b, x2) .1 )&|

7
.1

+|
0

;bl, =
2

�v0
1

�x2

.1&|
h

0
(;bl, =

1 &=C bl
1 )(0, x2) v0

1.1

+|
h

0
(;bl, =

1 &=C bl
1 )(b, x2) v0

1.1&|
0

v0
1 ( ;bl, =&=(C bl

1 , 0))
�.
�x1

,

\. # Z=. (52)

Because of the estimates (40)�(41), we have for . # Z=

}|0
;bl, =

2

�v0
1

�x2

.1&|
h

0
(;bl, =

1 &=C bl
1 )(0, x2) v0

1 .1+|
h

0
(;bl, =

1 &C bl
1 )(b, x2) v0

1.1 }
+}|0

v0
1 (;bl, =&=(C bl

1 , 0))
�.
�x1 }

�C=3�2 &{.&L2(0=)4 , (53)

}=C bl
1 |

7 \&+
�d1

�x2

.1+ g.2+}�C=3�2 &{.&L2 (0="0)4 . (54)

Furthermore, a simple interpolation argument and the estimates (20) and
(32)�(36) imply

}|0=
((u=&v0) {)(u=&v0) .}�C=3�2 &{.&L2(0=)4 . (55)

Now the variational equations (50)�(52), the definition of U=
0 and P=

0 , and
the estimates (53)�(55) give the estimate (49). K

At this stage we want to follow the ideas from [11], take .=U=
0 as the

test function, and get the required higher order a priori estimate. Nevertheless,
here we are in the presence of the physical outer boundaries and U=

0 � Z=.
At (0, b)_[h] the velocity field U=

0 is exponentially small with respect to
x2 and we can suppose it to be zero without losing generality.
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At the inflow�outflow boundaries ([0] _ [b])_(0, h) the situation is
different. We are going to correct the values of U=

0 there. For this purpose
we introduce the outer boundary layer in (0, l)_(0, +�), l<1,

sbl
1 ( y)=&

l

3 \1&
y1

l +
3 �;bl

1

�y1

(0, y2), (56)

sbl
2 ( y)=\1&

y1

l +
2

;bl
2 (0, y2), (57)

�bl( y)=&
2+
l

�;bl
1

�y1

(0, y2) \y1&
y2

1

2l++
l2+
12

�3;bl
1

�y1 �2y2
2

(0, y2) \\1&
y1

l +
4

&1+ .

(58)

Obviously,

divy sbl=0 in (0, l)_(0, +�)

and

divy (+ {ysbl
1 &�ble1)=0 in (0, l)_(0, +�), (59)

sbl
2 (0, y2)=;bl

2 (0, y2) and �bl(0, y2)=0.

We make an incompressible H 2-extension of sbl to a function defined on
(Y&(0, 1)) & ]0, l[_]&1, 0[ and having the zero trace on �[(Y&(0, 1))
& [0, l]_[&1, 0]]. Analogously, we make an H1-extension of the
pressure field �bl.

Then we set

s=(x)==sbl \x
=+ , x1 # [0, =l); s=(x)=0 for x1 # [=l, b&=l]

(60)

�=(x)=�bl \x
=+ , x1 # [0, =l); �=(x)=0 for x1 # [=l, b&=l]

and analogously for x1 # (b&=l, b]. Because of the symmetry, we shall
systematically neglect the right lateral boundary [b]_(0, h) and present
the calculations only for the left one, [0]_(0, h).
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Then, for every q # [1, +�], we have

1
=

&s=&Lq (0=)2+&{s=&Lq (0=)4+&�=&Lq (0=)�C=2�q

&2s=&Lq (0=)2+&{�=&Lq (0=)2�C=2�q&1 (61)

"�s =
1

�x2"Lq (7j )

�C=1�q.

After introducing all auxiliary functions we are in a position to prove our
main result,

Theorem 1. Let

U=(x)=u=&v0+(;bl, =&s=)
�v0

1

�x2

(0)&=C bl
1

�v0
1

�x2

(0) H(x2)
x2

h
e1 , (62)

P==p=& p0+(|bl, =&�=) +
�v0

1

�x2

(0), (63)

where [v0, p0] is defined by (16), [;bl, =, |bl, =] by (39), and [s=, �=] by (60).
Then we have the estimates

&{U=&L2 (0=)4�C= (64)

&U=&L2 (0="0)2�C=2 (65)

1

- =
&U=

2&H&1�2 (71 _ 72)+&U=&L2 (71 _ 72)2�C=3�2 (66)

&U=&L2 (0) 2�C=3�2 (67)

&P=&L2(0)�C=. (68)

Proof. In analogy with Proposition 3 and after using (40) and (41), we
have

}+ |
0=

{U= {.&|
0=

P= div .+|
0

v0
1

�U=

�x1

.+|
0

U=
2

�v0
1

�x2

.1 }
�C= &{.&L2 (0 =)4++ } �v0

1

�x2

(0)} }|0=
({s= {.&�= div .)} , \. # Z=.
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By the definition of [s=, �=] and (61),

}|0=
({s= {.&�= div .)}�C= &{.&L2(0=)4 , \. # Z=.

Therefore, we obtain the estimate

} + |
0=

{U= {.&|
0=

P= div .+|
0

v0
1

�U=

�x1

.+|
0

U=
2

�v0
1

�x2

.1 }
�C= &{.&L2 (0=)4 , \. # Z=. (69)

Now let us note that U= # Z= and div U==0. Hence it is possible to take
.=U=. With this choice we get the estimate (64). Poincare� 's inequality
(17) applied to (64) gives (65). Equation (66) is a consequence of (18) and
(68) follows from (64).

It remains to prove (67). We note that [U=, P=] satisfies the following
Oseen system in 0,

&+qU=+{P=+v0
1

�U=

�x1

+(U=)2

�v0
1

�x2

e1=G= in 0,

div U==0 in 0,
(70)

U==!= on 71 _ 72 , &!=&L2 (71 _ 72)2�C=3�2,

U=
2=0 and P==|bl, = on ([0] _ [b])_(0, h),

where

G==v0
1

�
�x1

(;bl, =&s=)+(;bl, =
2 &s=

2)
�v0

1

�x2

e1+e2 (div(+ {s =
2&�=e2)). (71)

The adjoint problem for (70) reads

&+q8+{'&v0
1

�8
�x1

+81

�v0
1

�x2

e2=g� in 0,

div 8=z in 0,
(72)

8=0 on 71 _ 72 ,

82=0 and '&v0
181=+z on ([0] _ [b])_(0, h).

It is easily seen that for g� # L2(0)2 and z # H1(0) the problem (72) has a
unique solution [8, '] # H2(0)2_H 1(0), which depends continuously on
the data.
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Following [9] we write the very weak formulation corresponding to (70) as

|
0

U=g� &(P=, z) 0

=|
71

(+ {8&'I ) e2 !=&|
72

(+ {8&'I ) e2!=

+|
0

(;bl, =
2 &s=

2)
�v0

1

�x2

81&|
0

v0
1 (;bl, =&s=&=(C bl

1 , 0))
�8
�x1

&|
[0]_(0, h)

(;bl, =
1 &s=

1&=C bl
1 ) v0

181&|
0

(+ {s =
2 {82&�=e2 {82+

\g� # L2(0)2, \z # H1(0). (73)

Thus, for every }>0, we have obtained the estimate

&U=&L2 (0)2�C[&!=&L2(71 _ 72)2+&;bl, =&=(C bl
1 , 0)&L1+} (0)+&s= &W 1, 1+} (0)2

+&�=&L1+} (0)2+&;bl, =
1 &s=

1&=C bl
1 &L1([0]_(0, h)) ]

�C(&!=&L2(71 _ 72)2+=2&}). (74)

Now (74) and (66) imply (67). K

The estimates (64)�(68) allow us to justify Navier's slip condition.
We start with a result related to the behavior of the velocity field u= at

the interface 71 . Let H 1�2
00 (71) be a subspace of L2(71) consisting of the

functions w for which there exists an element of H1(0) which is zero on
�0"71 and equal to w on 71 . Then we have the following result.

Theorem 2. Let u= be the velocity field determined in Proposition 1 and
let the boundary layer tangential velocity at infinity C bl

1 be given by (12).
Then we have

"u=
1+=C bl

1

�u=
1

�x2 "(H 00
1�2 (71))$

�C=3�2. (75)

Proof. Using the definition of the correction U=
0 , we get

"u =
1+=C bl

1

�u =
1

�x2 "(H 00
1�2 (71))$

�C=2+"U=
01+=C bl

1

�U=
01

�x2 "(H 00
1�2 (71))$

+C &;bl, =
1 (0, } )&=C bl

1 &(H 00
1�2 (71))$

+C= "�;bl, =
1

�x2

(0, } )"(H 00
1�2 (71))$

. (76)
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It should be noted that (H 1�2
00 (71))$=[L2(71), H&1(71)]1�2 and that

;bl, =
1 (0, } )&=C bl

1 and (�;bl, =
1 ��x2)(0, } ) are =-periodic functions with zero

mean.
Consequently, by the simple duality argument we obtain

&;bl, =
1 (0, } )&=C bl

1 &(H 00
1�2 (71))$+= "�;bl, =

1

�x2

(0, } )" (H 00
1�2 (71))$

�C=3�2. (77)

It remains to estimate the first term on the right-hand side of the
inequality (76). The difficulty comes from the derivative of U=

01 . Since we
have no information on the H2-norm of U=

0 , the only possibility is to use
the generalized Green formula.

First, we have

div (+ {U=
01&P=

0e1 )=v0
1

�U=
01

�x1

+U =
02

�v0
1

�x2

+v0
1

�;bl, =
1

�x1

+;bl, =
2

�v0
1

�x2

in 0.

(78)

Hence

&div(+ {U=
01&P =

0e1 )&L2 (0)�C - =. (79)

Now, by the generalized Green formula,

"�U=
01

�x2 "(H 00
1�2 (71))$

�C[&+ {U =
01&P=

0 e1 &L2 (0)2+&div(+ {U=
01&P=

0e1)&L2 (0)]

�C - =. (80)

Since (66) implies &U=
01&(H 00

1�2 (71))$�C=3�2, after inserting (77) and (80) into
(76) we obtain the estimate (75). K

Now we denote by C� bl
1 Navier's constant corresponding to 72 , and we

introduce the effective flow equations in 0 through the following boundary
value problem:

Find a velocity field ueff and a pressure field peff such that

&+queff+(ueff{) ueff+{peff=0 in 0, (81)

div ueff=0 in 0, (82)

ueff
2 =0 on ([0] _ [b])_(0, h), (83)

p== p0 on [0]_(0, h) and p== pb on [b]_(0, h), (84)
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ueff
2 =0 and ueff

1 +=C bl
1

�u eff
1

�x2

=0 on 71

(85)

ueff
2 =0 and ueff

1 &=C� bl
1

�u eff
1

�x2

=0 on 72 .

Under the assumptions of Proposition 1, the problem (81)�(85) has a unique
solution,

ueff=\pb& p0

2b+
(x2

2&h(x2&=C bl
1 )

h&2=C� bl
1

h&=(C bl
1 +C� bl

1 )+ , 0+ for 0�x2�h;

(86)

peff= p0=
pb& p0

b
x1+ p0 for 0�x1�b.

The effective mass flow rate through the channel is then

M eff=b |
h

0
ueff

1 (x2) dx2=&
pb&p0

12+
h3 h&4=(C bl

1 +C� bl
1 )+12=2C bl

1 C� bl
1 �h

h&2=(C bl
1 +C� bl

1 )
,

(87)

where C bl
1 and C� bl

1 are strictly negative.
Let us estimate the error made when replacing [u=, p=, M =] by

[ueff, peff, M eff ]. We have

Proposition 4. Under the assumptions of Proposition 1 we have

&{(u=&ueff )&L1 (0)4�C=, (88)

&u=&ueff&L2 (0)2�C=3�2&#, \#>0, (89)

|M =&M eff |�C=3�2. (90)

Proof. After also taking into account 72 , we have

u=&ueff=U=+v0&ueff&=C bl
1

�v0
1

�x2

(0) \1&
x2

h + e1+=C� bl
1

�v0
1

�x2

(h)
x2

h
e1

&(;bl, =&s=&=C bl
1 e1)

�v0
1

�x2

(0)+(;� bl, =&s� =&=C� bl
1 e1)

�v0
1

�x2

(h)

in 0. (91)
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After a simple calculation we find the identity

v0&ueff&=C bl
1

�v0
1

�x2

(0) \1&
x2

h + e1+=C� bl
1

�v0
1

�x2

(h)
x2

h
e1

=
pb& p0

2b+
(C� bl

1 &C bl
1 )

=C bl
1 h&x2(C bl

1 +C� bl
1 )

h&=(C bl
1 +C� bl

1 )
=2. (92)

Now (88) follows from (61) and (92). Equation (89) follows from the theory
of very weak solutions for the Oseen system (73) and from the estimates
on U=, ;bl, =, and s=.

It remains to prove the estimate (90). Using (91), (92), (40), (41), and (61),
we get the simple estimate

|M =&M eff |� } |
h

0
U=

1(0, x2) dx2 }+C=2. (93)

Now let 0<m<b and .=.(x1) # C 1[0, m], .(0)=1, and .(m)=0. Then
we have

&U=
1(0, x2)=|

m

0

�
�'

(U=
1(', x2) .(')) d'=|

m

0 \�U=
1

�'
.+U=

1

d.
d'+ d'

=|
m

0 \&
�

�x2

(U =
2.)+U=

1

d.
d'+ d', (94)

and (90) follows from (66), (67) and (93), (94). K

Our next step is to calculate the tangential drag force or the skin
friction

F=
t=|

b

0
+

�u=
1

�x2

(x1 , 0) dx1 . (95)

Theorem 3. Let the skin friction F=
t be defined by (95). Then we

have

}F=
t+

( pb& p0) h
2 \1+=

C bl
1 &C� bl

1

h +}�C=3�2. (96)
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Proof. Let 0<m<h and let .=.(x2) # C2[0, m], .(0)=1, and
.(m)=.$(m)=0. Let Q==P=&+(�v0

1 ��x2)(0) |bl, =(0, x2). Then we have

}+ |
b

0

�U=
1

�x2

(x1 , 0) dx1 }= }|0
div((+ {U=

1&Q=e1) .) }
� } |0

+
�U =

1

�x2

d.
dx2 }+ } |0

div(+ {U=
1&Q=e1) .} .

(97)

First, we estimate the second term on the left-hand side of (97). Let
w==u=&v0. Then we have

}|0
div(+ {U=

1&Q=e1) .}
= }|0

(u={) u=
1.}

= }|0 \w=
1

�w =
1

�x1

+v0
1

�w=
1

�x1

+w=
2

�w=
1

�x2

+w=
2

�v0
1

�x2+ .}
� }|0 \w=

1

�w =
1

�x1

+w=
2

�w=
1

�x2+ .}+ }|0 \
�

�x2

(v0
1w=

2)+ .}
+2 }|0

U=
2

�v0
1

�x2

.}+2+ } �v0
1

�x2

(0) } }|0

�v0
1

�x2

.(s=
2&;=

2) }
�C=3�2+ }|0 \

�
�x2

(v0
1w=

2)+ . } . (98)

Using that �7j
;bl, =

2 (x1 , 0) dx1=0, (98) implies

}|0
div(+ {U=

1&Q=e1 ) .}
�C=3�2+ }|71

v0
1U=

2 }+ }|0
v0

1

d.
dx2

U=
2 }

++ } �v0
1

�x2

(0) } }\&|
71

v0
1s=

2+|
0

v0
1

d.
dx2

(;bl, =
2 &s=

2)+}�C=3�2.

(99)
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Estimating for the first term on the left-hand side of (97) is much simpler.
We have

}|0

�U=
1

�x2

d.
dx2 }� }|71

U=
1

d.
dx2

(0) }+ }|0
U=

1

d 2.
dx2

2 }�C=3�2. (100)

After inserting (99) and (100) into (97), we obtain

}+ |
b

0

�U=
1

�x2

(x1 , 0) dx1 }�C=3�2. (101)

Now we note that �7 (�;bl, =
1 ��x2)(x1 , 0) dx1=0, and at x2=b the first com-

ponent of the boundary layer function is &s=
1(b&x1 , x2). Consequently,

the corresponding terms do not contribute to the tangential drag and (101)
implies (96). K

Corollary 1. Let

Feff
t =&

h( pb& p0)
2

h&2=C� bl
1

h&=(C bl
1 +C� bl

1 )

be the tangential drag force corresponding to the effective velocity ueff. Then
we have

|Feff
t &F =

t |�C=3�2. (102)

Remark 1. Let 0a==(0, b)_(a=, h&a=) for a>0 and let [ua, eff, pa, eff ]
be a solution for (81)�(85) in 0a= , with (85) replaced by

ua, eff
2 =0 and ua, eff

1 +=C a, bl
1

�ua, eff
1

�x2

=0 on 7a, 1

(103)

ua, eff
2 =0 and ua, eff

1 &=C� a, bl
1

�ua, eff
1

�x2

=0 on 7a, 2 .

Under the assumptions of Proposition 1, the unique solution [ua, eff, pa, eff ]
is given by

ua, eff=\pb& p0

2b+ \(x2&a=)2&(h&2a=)(x2&a=&=C a, bl
1 )

_
h&2a=&2=C� a, bl

1

h&2a=&=(C a, bl
1 +C� a, bl

1 )+ , 0+
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for a=�x2�h&a=, and

pa, eff= p0=
pb& p0

b
x1+ p0 for 0�x1�b.

By Lemma 2, C a, bl
1 =C bl

1 &a and

ua, eff (x)=ueff (x)&\2
x2(C bl

1 &C� bl
1 )+C bl

1 (h&2=C� bl
1 )

h&=(C bl
1 +C� bl

1 )
&a+ a=2( pb& p0)

2b+
e1 .

Therefore, a perturbation of the interface position of order O(=) implies a
perturbation in the solution of O(=2). Consequently, there is freedom in
fixing the position of 7j . This influences the result only at the next order
of the asymptotic expansion.
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