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needed to cover any vector space V over any field. If V is a finite set,

this is related to the problem of partitioning V into subspaces.
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1. The main theorem

Consider the following well-known problem in linear algebra (which is used, for example, to

produce vectors not on root hyperplanes in Lie theory):

No vector space over an infinite field is a finite union of proper subspaces.

The question that we answer in this short note, is:

Given any vector space V over a ground field F, and k ∈ N, what is the smallest number (or in general,

indexing set) of proper subspaces of codimension k, whose union is V?

To state our main result, we need some definitions.

Definition 1.1. (1) Compare two sets I, J as follows: J > I if there is no one-to-one map f : J → I.

Otherwise J � I.

(2) Given a vector space V over a field F, define P(V) to be the set of lines in V ; thus, P(V) is in

bijection with (V \ {0})/F×.

This paper is devoted to proving the following theorem.
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Theorem 1.2. Suppose V is a vector space over a field F, and I is an indexing set. Also fix 1� k <
dimF V , k ∈ N. Then V is a union of “I-many" proper subspaces of codimension at least k, if and only

if I � ν(F, V , k), where

ν(F, V , k):=
⎧⎪⎨
⎪⎩
�|P(V)|/|P(V/Fk)|�, if |V | < ∞;
N, if |F| = dimF V = ∞;
Fk ∐{∞}, otherwise.

(We will see in the proof, that the countable cover in the case of dimF V = |F| = ∞ is different in

spirit from the constructions in the other cases.)We nowmention a few examples and variants, before

proving the theorem in general.

(1) No finite-dimensional vector space over R (hence, also over C) is a union of countably many

proper subspaces.Here isa simplemeasure-theoreticproofbyS.Chebolu: supposeV = ⋃
n>0 Vn,

with Vn�V ∀n ∈ N. Letμ be the Lebesguemeasure on V ; recall thatμ is countably subadditive.

We now get a contradiction:

μ(V) = μ

(⋃
n

Vn

)
�
∑
n∈N

μ(Vn) = 0,

since each Vn has measure zero, being a proper subspace.

(2) On the other hand, suppose V is a finite-dimensional vector space over a finite field F = Fq (with

q elements); how many proper subspaces would cover it? (Hence, k = 1 here.) The answer is

the same for all V ; wemention a proof (by R.Walia; see [7]) for the simplest example of V2 = F2
q .

Lemma 1.3. V2 is a union of q + 1 lines (but not q lines).

Proof. Consider the lines spanned by (1,α) (for each α ∈ Fq) and (0, 1). These are q + 1 lines, and

each pair of lines has only the origin in common (since two points determine a line). Since each line

has q points, the union of all these lines has size 1 + (q + 1)(q − 1) = q2 (where the “1"counts

the origin). This counting argument also shows that a smaller number of lines can not cover all of

V2. �

Remark 1.4. Thus, we should really think of q + 1 as F
∐{∞} = P(F2).

(3) Note that the proof of Lemma 1.3 shows that the q + 1 lines actually provide a partition of the

finite vector space V2 – namely, a set of subspaces that are pairwise disjoint except for the origin,

and cover all of V .

The theory of partitions of finite vector spaces has been extensively studied – see, for instance,

[1-5]. We remark that this theory of partitions keeps track of the dimensions of the subspaces

involved. Moreover, it has applications in error-correcting codes and combinatorial designs –

see [3, Section 1] for more references.

(4) There is a school of thought that considers vector spaces over “F1 (the field with one element)",

to morally be defined – andmore precisely, they are finite sets. The way to get results using this

philosophy, is to work the analogous results out for finite fields Fq, and take q → 1+ (though it

is a non-rigorous procedure, given that there usually is more than one generalization to Fq).

As for our twoproblems, the results are clear: a set of size> 1 (which is analogous todimFq
(V) >

1) is a union of two proper subsets – where 2 = 1 + 1 = q + 1 – but not of one proper subset.

The analogue for codimension k subspaces, is: howmany subsetsW ⊂ V with |V \ W| � k, does

it take to cover V?

The answer to this question is 2 if V is infinite, and if |V | = n, then the answer is

⌈
n

n − k

⌉
. Note

that this is exactly the statement of Theorem 1.2 for finite vector spaces V in both cases, because

P(V)/P(V/Fk
q) = (qn − 1)/(qn−k − 1), and for 0 < k < n,



A. Khare / Linear Algebra and its Applications 431 (2009) 1681–1686 1683

lim
q→1+

⌈
qn − 1

qn−k − 1

⌉
=
⌈

n

n − k

⌉
.

(5) The next variant involves modules over a finite-dimensional F-algebra A, when F is infinite. It

generalizes Theorem 1.2 when k = 1.

Proposition 1.5. Suppose dimF A < ∞ = |F|. Now if M = ⊕
i∈I Ami is any direct sum of cyclic A-

modules, thenM isaunionof “J-many"proper submodules if andonly ifM isnot cyclic and J � ν(F,M, 1).

In other words, M is a union of “F-many" proper submodules if I is finite (and not a singleton),

and a countable union if I is infinite, since F and F
∐{∞} are in bijection if F is infinite.

Proof. If M is cyclic, the result is clear, since some submodule must contain the generator. So

now assume that M is not cyclic; note that each cyclic A-module is a quotient of A, hence finite-

dimensional. So if I is finite, then dimF M < ∞, and every proper submodule is a subspace of

codimension between 1 and dimF M. By Theorem 1.2, we then need at least “F-many" proper

submodules to cover M.

On the other hand, |M| = |F|, and for each m ∈ M, we have the submodule Am containing it. The

result follows (for finite I) if we can show that Am is a proper submodule for all m ∈ M. But if

Am = M for some m = ∑
i∈I aimi, then we can find bj ∈ A such that bjm = mj ∀j ∈ I, whence

bjai = δij ∀i, j. This is a contradiction if |I| > 1, since it implies that every ai ∈ A× is a unit, hence

annihilated only by 0 ∈ A.

On the other hand, if I is infinite, then for any sequence of subsets

∅ = I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ I,
⋃
n∈N

In = I, In /= I ∀n,

define the proper A-submodule Mn := ⊕
i∈In

Ami. Then M = ⋃
n∈N Mn yields a countable cover

by proper A-submodules. Evidently, finitely many proper submodules cannot cover M (again by

Theorem 1.2), since F is infinite, and each submodule is a subspace as well. �

(6) The last variant that we mention, is the following question, which generalizes Theorem 1.2 for

finite F:

Given a finitely generated abelian group G, how many proper subgroups are needed to cover it?

For instance, if G = (Z/5Z) ⊕ (Z/25Z) ⊕ (Z/12Z), then G has a quotient: G → (Z/5Z)2 =
F2
5 → 0. Now to coverG by proper subgroups, we can cover F2

5 by six lines (by Theorem 1.2), and

lift them to a cover of G. Moreover, it can be shown that G cannot be covered by five or fewer

proper subgroups.

Thus, the question for abelian groups seems to be related to the question for fields. We explore

this connection in a later work [6].

2. Proof for infinite fields

In this section, we show Theorem 1.2 for infinite fields (and some other cases too). Define projective

k-space FPk := P(Fk+1).

Remark 2.1. (1) Inwhat follows,we freely interchange the use of (cardinal) numbers and setswhile

comparing themby inequalities. For instance, I � A/B and I � nmean, respectively, that I × B � A

and I �{1, 2, . . . , n}. Similarly, dimF V may denote any basis of V – or merely its cardinality.

We also write ∼= below, for bijections between sets (in other contexts and later sections, ∼= may

also denote bijections of F-vector spaces).
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(2) FPk is parametrized by the following lines:

(1,α1, . . . ,αk); (0, 1,α2, . . . ,αk); . . . ; (0, 0, . . . , 0, 1),

where all αi are in F. If F is infinite, then this is in bijection with each of the following sets:

F, Fk , F
∐{∞}, Fk ∐{∞}.

We now show a series of results, that prove the theorem when F is infinite.

Lemma 2.2 (F, V , k, I as above). If I � FPk, then V is a union of “I-many" proper subspaces of codimension

at least k, if and only if dimF V > k.

Proof. The result is trivial if dimF V � k, and if not, then we start by fixing any F-basis B of V . Fix

v0, v1, . . . , vk ∈ B, and call the complement B′. Now define, for each 1� i � k and each x = (0, . . . , 0, 1,
αi,αi+1, . . . ,αk) ∈ FPk , the codimension k-subspace Vx of V , spanned by B′ and vi−1 +∑k

j=i αjvj .

We claim thatV = ⋃
x∈FPk Vx . Indeed, any v ∈ V is of the form v′ +∑k

j=0 βjvj , withβj ∈ F ∀j, and v′

in the spanofB′. Now ifβi is thefirst nonzero coefficient, then v ∈ Vx , where x = (0, . . . , 0, 1,β−1
i βi+1,

. . . ,β−1
i βk), with the 1 in the ith coordinate. �

Proposition 2.3. Suppose I < Fk ∐{∞}. If I or dimF V is finite, then V cannot be written as a union of

“I-many" subspaces of codimension � k.

Proof. This proof is long – and hence divided into steps.

(1) The first step is to show it for k = 1. Suppose we are given V and {Vi : i ∈ I}. Suppose the result

fails and we do have V = ⋃
i∈I Vi. We then seek a contradiction.

(a) We first find a subcollection {Vi : i ∈ I′ ⊂ I} of subspaces that cover V , such that no Vi is in

the union of the rest.

If I is finite, this is easy: either the condition holds, or there is some Vi that is contained in

the union of the others; now remove it and proceed by induction on |I|.
The case of finite-dimensional V is from [8]. We need to use induction on d = dimF V to

prove the result. It clearly holds if V = F1; now suppose that it holds for all d < dimF V . We

first reduce our collection {Vi : i ∈ I} to a subcollection indexed by I′ ⊂ I, say, as follows:

Every chain of proper subspaces of V is finite (since dimF V < ∞), whence its upper bound

is in the chain (note that this fails if |I| = dimF V = ∞). So for every chain of subspaces,

remove all of them except the upper bound.

We are left with {Vi : i ∈ I′}, where if i /= j in I′, then Vj�Vi, or Vi ∩ Vj�Vj . Now use the

induction hypothesis: no Vj is a union of “I-many" (hence “I′-many") proper subspaces. So

Vj�
⋃

i∈I′ ,i /=j

(Vj ∩ Vi) = Vj

⋂ ⋃
i∈I′ ,i /=j

Vi,

whence no Vj is contained in the union of the others, as desired.

(b) Having found such a subcollection, we now obtain the desired contradiction:

For all i ∈ I′, choose vi ∈ Vi such that vi /∈ Vj ∀i /= j. There are at least two such, so choose

v1 = vi1 , v2 = vi2 , with i1 /= i2 in I′. Now consider S := {v1 + αv2 : α ∈ F}∐{v2}. Since
V = ⋃

i∈I′ Vi, for each vector v ∈ S, choose some i such that v ∈ Vi. This defines a function

f : F
∐{∞} → I′, and this is not injective by assumption. Thus some two elements of S are

in the same Vi, and we can solve this system of linear equations to infer that both v1 and v2
are in Vi. Hence i1 = i = i2, a contradiction.

(2) We now show the result for general k. We have two cases. If F is infinite, then we are done by

the previous part and the final part of Remark 2.1. The other case is when F is finite – say F = Fq
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– whence I is finite. In this case, take any set of subspaces V1, . . . , Vi of codimension � k, with

i = |I| < qk + 1; we are to show that
⋃

j Vj�V .

We now reduce the situation to that of a finite-dimensional quotient V ′ of V as follows. First, we

may increase each Vi to a codimension k subspace. Next,

dimF (V1/(V1 ∩ V2)) = dimF ((V1 + V2)/V2) � dimF(V/V2) < ∞,

whence dimF V/(V1 ∩ V2) � dimF(V/V1) + dimF(V/V2) < ∞. Now proceed inductively to

show that V0 := ⋂i
j=1 Vj has finite codimension in V ; more precisely, dimF(V/V0) is bounded

above by
∑i

j=1 dimF(V/Vj).

Thus, we quotient by V0, and end up with codimension-k subspaces V ′
j covering the finite-

dimensional quotient V ′ = V/V0. Now if dimF V ′ = n, then we are covering qn − 1 nonzero

vectors in V ′ by proper subspaces V ′
j , each with at most qn−k − 1 nonzero vectors. Thus the

number of subspaces needed, is at least � qn−1

qn−k−1
> qk , as claimed. �

The following result concludes the proof for infinite fields, by the last part of Remark 2.1.

Lemma 2.4. If F and dimF V are both infinite, then V is a countable union of proper subspaces.

Proof (As for Proposition 1.5). Fix any (infinite) basis B of V , and a sequence of proper subsets ∅ = B0 ⊂
B1 ⊂ . . . of B, whose union is B. Now define Vn to be the span of Bn for all n. Then the Vn’s provide a

cover of V by proper subspaces, each of infinite codimension in V . �

3. Proof for finite fields

We now complete the proof. In what follows, we will crucially use some well-known results on

partitions of finite vector spaces. These are found in [2, Lemmas 2,4], though the first part below was

known even before [1]).

Lemma 3.1. Suppose V is an n-dimensional vector space over the finite field F = Fq (for some q, n ∈ N),
and we also fix d ∈ N.

(1) V can be partitioned using only d-dimensional subspaces, if and only if d|n. (The number of such

subspaces is (qn − 1)/(qd − 1)).

(2) Let 1 < d < n/2. Then V can be partitioned into one (n − d)-dimensional subspace, and qn−d

subspaces of dimension d.

We now show most of the main result, for finite fields.

Proposition 3.2. Suppose V is a finite set. Then V is covered by “I-many" subspaces of codimension at least

k, if and only if I � P(V)/(P(V/Fk)).

Proof. If V is finite, then so are F and dimF V . We may also assume that the subspaces that cover

V are of codimension exactly equal to k. Now suppose V is covered by “I-many" such subspaces,

and dimF V = n ∈ N. Then we need to cover qn − 1 nonzero vectors by proper subpaces, each with

qn−k − 1 nonzero vectors, whence

I �
qn − 1

qn−k − 1
= P(V)

P(V/Fk)
,

as required.
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We now show the converse: if dimF V = n, and (n − k)|n, then we are done by the first part of

Lemma 3.1, since there exists a partition. In the other case, we illustrate the proof via an example that

can easily bemade rigorous.We first fix F = Fq; now suppose n = 41 and k = 29.Wemust, then, find

�(q41 − 1)/(q12 − 1)� = q29 + q17 + q5 + 1 subspaces of codimension 29, that cover F41.

Now set d = 12 and apply the second part of Lemma 3.1; thus,

F41 = F29
∐

(F12)
∐

q29 .

In other words, we have q29 12-dimensional subspaces, and one extra subspace of dimension 29. Now

apply the same result again (with d = 12 and replacing n = 41 by 29) to get

F41 = F17
∐

(F12)
∐

q17
∐

(F12)
∐

q29 .

(For a general n, k, apply the result repeatedly with d = n − k and n replaced by n − d, n − 2d, . . .,
until there remains one subspace of dimension between d and 2d, and “almost disjoint" subspaces of

codimension k.)

To conclude the proof, it suffices to cover V1 = F17
q with q5 + 1 subspaces of dimension 12. To do

this, fix some 7-dimensional subspace V0 of V1, and consider V1/V0
∼=F10

q . By the first part of Lemma

3.1, this has a partition into (q5 + 1) 5-dimensional subspaces. Lift this partition to V1; this provides

the desired (remaining) q5 + 1 subspaces of codimension 29 in F41. �

The last part of the main result can now be shown, using this result.

Proof of Theorem 1.2. The above results show the theorem except in the case when F is finite, but

dimF V is not. In this case, by Proposition 2.3, we only need to show that V can be covered by qk +
1 subspaces of codimension k. To see this, quotient V by a codimension 2k subspace V0; now by

Proposition 3.2, V/V0 can be covered by

P(V/V0)

P((V/V0)/Fk)
= (q2k − 1)/(q − 1)

(qk − 1)/(q − 1)
= qk + 1

subspaces of codimension k. Lift these to V for the desired cover. �
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