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SUMMARY

Pombe Cdc15 homology (PCH) proteins play
an important role in a variety of actin-based
processes, including clathrin-mediated endo-
cytosis (CME). The defining feature of the
PCH proteins is an evolutionarily conserved
EFC/F-BAR domain for membrane association
and tubulation. In the present study, we solved
the crystal structures of the EFC domains of
human FBP17 and CIP4. The structures re-
vealed a gently curved helical-bundle dimer of
�220 Å in length, which forms filaments
through end-to-end interactions in the crystals.
The curved EFC dimer fits a tubular membrane
with an�600 Å diameter. We subsequently pro-
posed a model in which the curved EFC fila-
ment drives tubulation. In fact, striation of
tubular membranes was observed by phase-
contrast cryo-transmission electron micros-
copy, and mutations that impaired filament
formation also impaired membrane tubulation
and cell membrane invagination. Furthermore,
FBP17 is recruited to clathrin-coated pits in
the late stage of CME, indicating its physiolog-
ical role.
INTRODUCTION

Cell membranes change their shapes upon various activ-

ities, such as cytokinesis, cell motility, and endocytosis

(Farsad and De Camilli, 2003; McMahon and Gallop,

2005; Zimmerberg and Kozlov, 2006). In these processes,

a number of membrane-associated proteins are involved

in the generation of membrane curvature. These include

dynamins, amphiphysins, endophilins, and epsins, which

all play a role in clathrin-mediated endocytosis (CME)

and deform liposomes into tubules in vitro through differ-

ent mechanisms. Dynamins form ring- or spiral-like fila-

ments, which constrain the lipid bilayer into a tubular

shape of about 200 Å in diameter (Takei et al., 1995;

Hinshaw and Schmid, 1995; Schweitzer and Hinshaw,

1998; Chen et al., 2004; Roux et al., 2006). Amphiphysins

and endophilins possess the Bin/amphiphysin/Rvs (BAR)

domain, which itself can deform the lipid bilayer into a

tubule of �200 Å or larger in diameter (Takei et al.,

1999). This tubulation activity is mainly attributed to the in-

trinsic banana-like shape of the BAR-domain homodimer,

which binds to the membrane with its concave surface

(Peter et al., 2004). Epsins insert an amphipathic a helix

into one leaflet of the lipid bilayer, which results in an

area difference between the inner and outer membrane

leaflets, leading to membrane tubulation (Ford et al.,

2002). Endophilin BAR domains use a similar insertion
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mechanism to cause membrane curvature (Masuda et al.,

2006; Gallop et al., 2006).

CME plays an important role in receptor internalization,

synaptic vesicle recycling, and somatic nutrient uptake

(Perrais and Merrifield, 2005). The formation of clathrin-

coated vesicles (CCVs) involves three steps (Merrifield

et al., 2005; Kaksonen et al., 2005; Perrais and Merrifield,

2005). First, the clathrin coat assembles on the flat mem-

brane with other proteins, such as AP-2, and captures the

cargo to form a hemispherical clathrin-coated pit (CCP).

Second, the CCP slowly invaginates, and the actin poly-

merizes. Third, scission proteins are recruited to the neck

of the invaginated CCP for the separation of the newly

formed CCV from the plasma membrane. Epsins partici-

pate in the initial clathrin assembly and CCP formation

steps (Ford et al., 2002), while dynamins play a role in

the scission step (Praefcke and McMahon, 2004). The

BAR-domain proteins are involved in multiple steps of en-

docytosis, among which their involvement in the scission

step may be the most common function in CME (McMa-

hon and Gallop, 2005; Kaksonen et al., 2005; Ren et al.,

2006).

Pombe Cdc15 homology (PCH) proteins are involved in

a wide variety of actin-based processes, such as cytoki-

nesis, filopodia formation, CME, and clathrin-independent

endocytosis (Lippincott and Li, 2000; Kessels and Qual-

mann, 2004; Ho et al., 2004; Itoh and De Camilli, 2006;

Dawson et al., 2006). The PCH proteins are characterized

by the presence of an evolutionarily conserved FER-CIP4

homology (FCH) domain, and they induce tubular mem-

brane invagination in vivo and deform liposomes into tu-

bules in vitro (Aspenström, 1997; Lippincott and Li,

2000; Itoh and De Camilli, 2006; Dawson et al., 2006).

The membrane binding and tubulation activities of the

PCH proteins were attributed to a domain of �300 amino

acid residues encompassing the FCH domain and an ad-

jacent coiled-coil region, which has been redefined as the

extended FCH (EFC) or FCH and BAR (F-BAR) domain

(Itoh et al., 2005; Tsujita et al., 2006). The EFC domain

shares weak sequence homology with the BAR domain,

and like the self-association of the BAR domain in dimer

formation, it also self-associates (Kessels and Qualmann,

2004; Itoh and De Camilli, 2006; Dawson et al., 2006). A

clear difference exists between the EFC- and BAR-in-

duced tubular membranes: the diameters of the EFC-in-

duced tubular membranes are several times larger than

those of the tubular membranes induced by the BAR do-

main, as revealed by in vitro liposome tubulation experi-

ments (Itoh et al., 2005; Tsujita et al., 2006). The tubular

membrane invagination induced by the PCH proteins

may be the outcome of imbalanced endocytic vesicle for-

mation caused by enhanced invagination and/or a defi-

ciency of dynamin- and actin polymerization-dependent

scission (Itoh et al., 2005; Tsujita et al., 2006).

Most of the PCH proteins contain Src homology 3 (SH3)

domains at the carboxyl terminus, and these domains

bind to various target molecules, including dynamins

and neural Wiskott-Aldrich syndrome protein (N-WASP)
762 Cell 129, 761–772, May 18, 2007 ª2007 Elsevier Inc.
(Lippincott and Li, 2000; Kessels and Qualmann, 2004;

Itoh and De Camilli, 2006; Tsujita et al., 2006; Dawson

et al., 2006; Takenawa and Suetsugu, 2007). N-WASP

plays a primary role in actin nucleation in various cytoskel-

etal processes (Miki and Takenawa, 2003). The actin dy-

namics are crucial for the scission step of CME (Merrifield

et al., 2005; Kaksonen et al., 2006).

Formin-binding protein 17 (FBP17), Cdc42-interacting

protein 4 (CIP4), and transducer of Cdc42-dependent

actin assembly (Toca-1) share high sequence homology

among each other and constitute a clearly defined sub-

family in the PCH protein family (Ho et al., 2004), and

thus they are designated hereafter as FBP17/CIP4-related

PCH (FCRP) proteins. The FCRP proteins participate in

filopodia formation and in clathrin-dependent and -inde-

pendent endocytosis (Ho et al., 2004; Itoh and De Camilli,

2006; Dawson et al., 2006).

To better understand the mechanisms of membrane tu-

bulation by the EFC domain, we solved the crystal struc-

tures of the EFC-domain dimers of human FBP17 and

CIP4 at 2.6 and 2.3 Å resolution, respectively. The struc-

tures exhibit a gently curved six-helix bundle, which binds

and tubulates the lipid membrane with its concave sur-

face. Both proteins form a filament in the crystals, and

the filament formation is required for their tubulation activ-

ities. On this structural basis, we proposed a mechanistic

model in which a ring- or spiral-like EFC filament winds

around the tubular membrane. In striking agreement with

this model, phase-contrast cryo-transmission electron

microscopy (cryo-TEM) revealed striation of the tubular

membranes. FBP17 was recruited to the CCPs late in

CME, suggesting that it plays a role in the invagination

and/or scission steps in CME.

RESULTS

Overall Structures of the EFC Domains of Human

FBP17 and CIP4

Initial expression trials in a cell-free translation system,

using 26 constructs of human CIP4 with different N- and

C-terminal boundaries, yielded several soluble fragments.

Among them, one fragment, EFCDNCIP4 (residues 10–

303), was expressed at the highest level and yielded crys-

tals suitable for structure determination. After the struc-

ture determination of EFCDNCIP4, the crystals of a human

FBP17 fragment, EFCFBP17 (residues 1–300), were ob-

tained and the crystal structure was determined by the

molecular replacement method, using the structure of

EFCDNCIP4 as a search model. The models were built for

residues 10–56 and 64–288 for EFCDNCIP4 and residues

1–56 and 64–288 for EFCFBP17. The rest of the residues

could not be modeled due to poor/disordered electron

densities. The two crystal structures are similar to each

other, in agreement with the high amino acid sequence

identity for the corresponding regions between FBP17

and CIP4 (54%, Figures 1A, 1D, and S1B). Superimposi-

tion of the EFC-domain structures gave an rmsd of

2.15 Å between the corresponding Ca atoms over 272



Figure 1. Three-Dimensional Structures

of EFCFBP17 and EFCDNCIP4

(A) Ribbon diagram of the structure of

EFCFBP17. N and C indicate the amino and car-

boxyl termini of the molecule. The secondary

structure elements are colored as in

Figure S1B. Broken lines indicate regions that

could not be modeled.

(B) Side view of the EFCFBP17 dimer. One mol-

ecule is depicted as in (A), while the other mol-

ecule is colored magenta.

(C) Top view of the EFCFBP17 dimer. The dimer

is rotated by 90� relative to (B).

(D) Ribbon diagram of the structure of

EFCDNCIP4. N and C indicate the amino and

carboxyl termini of the molecule. The second-

ary structures are colored as in (A). Broken lines

indicate regions that could not be modeled.

(E) Side view of the EFCDNCIP4 dimer. The mol-

ecules are depicted as in (B).

(F) Top view of the EFCDNCIP4 dimer. The dimer

is rotated by 90� relative to (E).

(G–I) Electrostatic potential surfaces of the

EFCFBP17 dimer, indicated with blue as positive

and red as negative. (G) Top view (convex side);

(H) side view; (I) bottom view (concave side).

(J–L) Conserved surface residues of the

EFCFBP17 dimer. The surface is colored accord-

ing to the rate of sequence conservation

among the 70 PCH protein sequences (Pupko

et al., 2002) in a gradient from cyan (most vari-

able residues) to white to magenta (most highly

conserved residues). (J) Top view (convex

side); (K) side view; (L) bottom view (concave

side). Residues mutated in the present and pre-

vious studies are indicated.
residues (Figures S2A and S2B). The structure of the EFC

domain is composed of a short N-terminal helix, three long

a helices, and a short C-terminal helix followed by an ex-

tended peptide of 17 amino acids (Figure 1A).

EFCDNCIP4 lacks helix a1, as the N-terminal region of

nine residues is deleted (Figure 1D). The classical FCH do-

main, defined as the N-terminal ca. 60-residue sequence,

corresponds to helix a2 in our structures (Figures 1A, 1D,

and S1B). From the present structures, it is now evident

that all five helices, including helix a2, constitute a structur-

ally integrated domain (Figures 1A and 1D). The C-terminal

17-residue extended peptide is also part of the structural

domain, as it is involved in homodimerization (see below).

We hereafter designate this peptide (residues 272–288) as

the EFC extended peptide (EEP). Together, residues 1 and

288 of FBP17 define the structural domain boundaries,

which agree well with those identified as the functional do-

main for membrane interaction (Itoh et al., 2005; Tsujita

et al., 2006).

The EFC-Domain Dimer

Helices a2, a3, and a4 form an intimately packed, six-helix

bundle with a neighboring symmetry-related molecule, re-

sulting in a gently curved dimer (Figures 1B, 1C, 1E, 1F,

S2A, and S2B). The EFC-domain dimers bury large areas
of the dimer interfaces (4765 and 4020 Å2 per molecule for

EFCFBP17 and EFCDNCIP4, respectively, Figures 1B, 1C,

1E, and 1F). The dimer interfaces are mainly hydrophobic,

with several charged residues, and involve several prom-

inent patches of conserved residues (Figures S3A and

S3B). One of the patches is located close to the rotational

axis between two monomers and consists of the most

highly conserved residues, Arg35, Glu39, Tyr42, Leu46,

and the surrounding residues in helix a2 (Figures S1B,

S3B, and S3C). The replacement of Tyr42 with Glu drasti-

cally reduced the solubility of a longer CIP4 fragment,

EFCCIP4 (residues 1–303), in the cell-free translation

(data not shown), indicating the importance of dimer for-

mation in the function of the EFC domain. Another patch

of conserved residues was identified in the more distal

part of the dimer interface on helices a3 and a4 (Fig-

ure S3B). The conserved residues in this patch bind to

the latter half of the EEP of the second molecule (Figures

S3B and S3D). A CIP4 fragment lacking the EEP was ex-

pressed as a soluble protein in the cell-free translation

(data not shown), suggesting that the EEP is not critical

for dimer formation but stabilizes the formed dimer. The

high conservation of the residues involved in the dimer

interfaces suggests that all of the PCH proteins adopt

similar dimeric structures.
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Figure 2. Membrane Binding and Tubu-

lation Activities of the Wild-Type

EFCFBP17 and Its Mutants

(A) Negative staining electron microscopy. Li-

posomes (0.2 mg/ml) were incubated with the

indicated EFC-domain proteins (0.1 mg/ml)

and were then observed by electron micros-

copy.

(B) Liposome-binding assay by sedimentation.

The indicated proteins (0.1 mg/ml) were incu-

bated with or without liposomes (1 mg/ml)

made with brain lipids. After centrifugation,

the pellet (P) and the supernatant (S) were ana-

lyzed by SDS-PAGE.

(C) Summary of the tubulation and the binding

ability of the indicated proteins. Proteins cose-

dimented with liposomes (P) are expressed as

percentages of the total protein (S + P). The rel-

ative tubulation ability of each protein is ex-

pressed as ++++ (very strong), +++ (strong),

++ (moderate), + (weak), or �/+ (almost noth-

ing). N/A: not available.

(D) COS-7 cells were transfected with GFP-

tagged, full-length FBP17 bearing each muta-

tion, and the localization of FBP17 was ob-

served by GFP fluorescence.
To confirm that the EFC domain exists as a dimer in so-

lution, we measured the molar masses of the EFC-domain

fragments by analytical ultracentrifugation (Figure S4).

Sedimentation equilibrium analyses of EFCFBP17 and

EFCCIP4 yielded molecular masses of 71.5 and 72.1 kDa,

which are very close to the masses expected for the

EFCFBP17 dimer (72.0 kDa) and EFCCIP4 dimer (71.4

kDa), respectively, based on their primary structures. No

evidence was found for the presence of either monomeric

or higher oligomeric species in the sedimentation velocity

experiment (data not shown). Therefore, EFCFBP17 and

EFCCIP4 exist almost exclusively as dimers under these

measurement conditions.

The EFC Domain Binds to the Phospholipid

Membrane with Its Concave Surface

The surface representation of the EFC domain revealed

clustering of positively charged residues in wide areas of

the concave surfaces (Figures 1G–1I and S2C–S2E). The

conserved residues are also clustered, especially on the

concave surface (Figures 1J–1L). Therefore, the positively

charged, conserved residues on the concave surface may

be important for the interaction of the EFC domain with the

phospholipid membrane. In agreement with this predic-

tion, several double mutations of the positively charged

residues on the concave surface of EFCFBP17, such as
764 Cell 129, 761–772, May 18, 2007 ª2007 Elsevier Inc.
K33Q+R35Q, K51Q+K52Q, and R113Q+K114Q, reduced

the membrane association and tubulation in vitro and im-

paired the in vivo membrane invagination induced by the

overexpression of EFCFBP17 (Tsujita et al., 2006; Figure 1L).

To confirm this hypothesis, we introduced point mutations

into the residues on the concave surface of EFCFBP17. The

replacement of Lys33 with Glu significantly reduced the

membrane binding and tubulation activities in vitro (Fig-

ures 1L and 2A–2C). This mutation also abolished the

membrane invagination induced by GFP-FBP17 in vivo

(Figure 2D). In contrast, the replacement of Asp168 with

Ala did not significantly affect the membrane-binding

and tubulation activities (Figures 1L and 2A–2C). In addi-

tion to this mutation, the D168N and D168R mutations

also did not affect the membrane invagination induced

by GFP-FBP17 in vivo (Figure 2D). These results indicate

that the EFC domain binds and tubulates the

phospholipid membrane by electrostatic interactions, us-

ing the positively charged residues distributed on its

concave surface.

The EFC and BAR Domains Bind to and Induce

Tubular Membranes with Different Diameters

The EFC domain forms an antiparallel, six-helix bundle in

the middle of the dimer, which is a structural feature

shared with the BAR domain and the IRSp53/MIM



Figure 3. Three-Dimensional Structures

of the EFC Domain, Amphiphysin BAR

Domain, and IRSp53 IMD

(A–C) Ribbon diagrams of the dimers of (A)

EFCFBP17, (B) amphiphysin BAR domain, and

(C) IRSp53 IMD. The first and second mole-

cules are colored cyan and magenta, respec-

tively.

(D) Negative staining electron microscopy. Li-

posomes of defined maximum diameters

(0.2 mg/ml), made with a filter apparatus,

were incubated with N-BAR- or EFC-domain

proteins (0.1 mg/ml) and then were observed

by electron microscopy. The degree of tubula-

tion is expressed in the table as ++++ (very

strong), + (weak), or �/+ (almost nothing).

(E) A stereo figure of Pro210 and the surround-

ing residues in helix a4. Pro210 is colored ma-

genta. Note that Pro210 breaks the hydrogen

bonds in helix a4, thereby introducing a kink.

Residues are shown as stick models.
homology domain (IMD) (Peter et al., 2004; Millard et al.,

2005; Suetsugu et al., 2006; Masuda et al., 2006; Figures

3A–3C). The BAR domain is involved in membrane bind-

ing, membrane curvature sensing, and membrane tubula-

tion (Takei et al., 1999; Peter et al., 2004). Positively

charged residues on the concave surface of the BAR do-

main are important for its binding to and tubulation of the

negatively charged phospholipid membrane (Peter et al.,

2004), in a manner similar to that of the phospholipid-bind-

ing residues of the EFC domains.

Although the EFC and BAR domains share similar di-

meric architectures, several aspects of the EFC-domain

structure are markedly different from those of the BAR do-

main. First, helices a3 and a4 are more than 20 residues

longer than the corresponding helices of the BAR domain,

resulting in a more elongated molecular shape (Figures 3A

and 3B). Second, the diameter of the tubular membrane

that fits the concave surface of the EFC dimer (�600 Å)

is larger than those of the Drosophila amphiphysin BAR

domain (�220 Å) and the human endophilin BAR domain

(�280 Å) (Peter et al., 2004; Masuda et al., 2006; Figures

3A and 3B). This larger diameter is partly due to the smaller

intersection angle between the three long helices of the

first and second molecules in the dimer (Figures 3A and

3B). Consistent with this, the dimer-interface residues

are not conserved between the EFC and BAR domains.

The present finding that the EFC and BAR domains fit dif-
ferent diameters of tubular membrane correlates well with

the fact that the diameter of the EFC-induced tubular

membrane is several times larger than that of the BAR-

induced one (Itoh et al., 2005; Tsujita et al., 2006).

To address whether the BAR domain and the EFC do-

main exhibit different selectivity for the sizes of the lipo-

somes, the tubulation activities of the amphiphysin

N-BAR domain and EFCFBP17 were compared using lipo-

somes with various defined diameters (Figure 3D). The

N-BAR domain exhibited the highest tubulation activity

for liposomes with diameters of 50 and 100 nm, while

EFC FBP17 was more selective for liposomes with diame-

ters larger than 100 nm (Figures 2A and 3D). Thus, the

EFC domain is more selective for liposomes with lower

curvature than the BAR domain, as expected from their

structures. Note that the amphiphysin N-BAR domain

can induce a longer tubular membrane than that expected

from a single liposome, which suggests that it fuses lipo-

somes upon tubulation, as reported for the endophilin

N-BAR domain (Gallop et al., 2006). Parts of helices a3

and a4 form a long, kinked, coiled-coil structure protrud-

ing from the six-helix bundle (Figures 1B and 1C). A kink

is caused in helix a4 by Pro210 (Figure 3E). This Pro resi-

due is strictly conserved among the FCRP proteins (Fig-

ure S1B) but is replaced by other amino acids in the other

subfamilies, such as S. pombe Cdc15, mammalian

PACSINs/syndapins/FAP52, PSTPIP1, PSTPIP2/MAYP,
Cell 129, 761–772, May 18, 2007 ª2007 Elsevier Inc. 765



Figure 4. The EFC Filaments in the Crys-

tals and a Model of Membrane Tubulation

by the EFC Domain

(A) Filamentous structures of EFCFBP17 (left)

and EFCDNCIP4 (right) in the crystals.

(B) A stereo figure of the dimer-dimer interfaces

of the EFCFBP17 filament. Broken lines indicate

hydrogen bonds. Lys166 is labeled. The prime

symbol denotes residues in the symmetry-

related molecule.

(C) A schematic representation showing the di-

mer-dimer interfaces. Helices a3 and a4 are in-

dicated. The prime symbol denotes helices in

the symmetry-related molecule. The ‘‘�’’ and

‘‘+’’ symbols indicate negative and positive

charges at the carboxyl and amino termini of

helices a3 and a4, respectively. The black bro-

ken lines indicate the hydrogen bonds in the in-

terfaces. The red broken line indicates the

hinge axis around which the dimer-dimer inter-

faces bend.

(D) The FBP17 EFC filaments, bent around the

hinge region by 0, 20, or 30 degrees. Each

EFC dimer is colored differently.

(E) A ring-like EFC filament, bent around the

hinge by 42 degrees. The inner and outer diam-

eters of the ring are indicated.

(F) A spiral filament.

(G) A spiral filament winding around a

cylinder.

(H) Surface representations of the stacked

EFC spirals of FBP17 (upper) and CIP4 (bot-

tom), viewed from the convex side. Each

EFC dimer is colored differently. The EFC

filaments are placed to minimize the spaces between the two adjacent filaments. Note that the relative positions of the two adjacent filaments

are different between FBP17 and CIP4.

(I) Schematic illustration showing how the EFC domain tubulates the lipid membrane from a liposome. An elongating EFC filament and the

incoming EFC dimers are shown around a nascent tubular membrane.
and NOSTRIN (Figure S1B and data not shown). In order

to determine if Pro210 is important for the gently curved

overall shape of the dimer (Figures 1B and 3A), a mutant

of EFCFBP17 with Pro210 replaced by Ala was prepared

and tested for its membrane-binding and tubulation activ-

ities. The P210A mutation did not affect the activities (Fig-

ures 2A–2D) but modestly increased the diameter of the

induced tubular membrane (Figure S5). Therefore, the

Pro210-induced kink in helix a4 participates in the mech-

anism that forms the gently curved shape and is likely to

play a role in fine tuning of the curvature.

Filament Formation by the EFC-Domain Dimer

Besides the interface for dimerization, we found additional

common crystal-packing interfaces between the crystals

of the two EFC domains; the dimers are arranged to

form filaments (Figure 4A). These interfaces involve sev-

eral hydrogen-bonding interactions between the neigh-

boring symmetry-related dimers (Figures 4B, 4C, S6A,

and S6B). First, the main-chain carbonyl and imino groups

in the loop for the turn from helix a3 to helix a4 (Figure 4C)

form four hydrogen bonds (Figures 4B, S6A, and S6B) in

the dimer-dimer interface. Second, Lys166, which is con-

served in the FCRP proteins (Figure S1B), forms hydrogen
766 Cell 129, 761–772, May 18, 2007 ª2007 Elsevier Inc.
bonds with three main-chain carbonyl groups of the adja-

cent dimer (Figures 4B and S6A). Furthermore, Thr165 is

conserved in the a3–a4 loop (Figures 1L, S1B, and S6B).

Thr165 is not directly involved in the dimer-dimer interac-

tions in the filament in the crystals (Figures 1L and S6B).

However, it contributes to the turn conformation by hydro-

gen bonding with the main-chain imino group of Asp168.

These intensive interactions seem to stabilize the filamen-

tous structure of the EFC-domain dimers in the crystals

(Figure 4A). Interestingly, filament formation by the

FBP17 EFC domain was observed by electron micros-

copy in the absence of liposomes (Itoh et al., 2005). The

length of the EFC dimer in the filament in the crystals cor-

responds well to that of one unit of the periodic structure in

the EFC filament, observed by negative staining EM (Itoh

et al., 2005). The EFCDNCIP4 crystals grew in the purifica-

tion buffer without any precipitant, indicating that the fila-

ment in the crystals is similar to that formed under some

solution conditions.

The replacement of Lys166 with Ala reduced both the

membrane-binding and tubulation activities of EFCFBP17

(Figures 1L, 2A–2C, and 4B). Moreover, the T165A and

K166A mutations both abolished the induction ofmembrane

invagination by FBP17 in cells (Figures 1L and 2D). These



results demonstrate the importance of filament formation in

membrane binding and tubulation by the EFC domain.

The EFC filament adopts a straight, periodic conforma-

tion in the crystals, and the observed dimer-dimer inter-

faces of the EFC filament seem to be flexible and to

form a hinge in the filament (Figures 4A–4C). When the

EFC filament bends at the hinges, the overall shape of

the filament becomes round (Figures 4D, S6C, and S6D).

Finally, a ring or spiral is formed (Figures 4E and 4F), which

may wind around the nascent tubular membrane to sup-

port the tubular shape, with the concave dimer surfaces

facing the tubular membrane (Figure 4G). When the EFC

spiral winds around the tubular membrane several times,

lateral interactions between the neighboring filaments

may be formed. The shapes of the EFC filaments are quite

complementary, and the tight spiral can cover the tubular

membrane with minimal uncovered areas and with no se-

vere clashes (Figure 4H). Helix a1 is one of the structural

elements that directly support the lateral interface resi-

dues (Figure 4H). Interestingly, EFCDNFBP17, which lacks

the N-terminal nine residues including helix a1, showed

a reduced tubulation activity, while its membrane-binding

activity was not affected (Figures 2A–2C). Since the EFC

domain is assumed to bind most tightly to the properly

curved membrane, the EFC dimers may accumulate at

the foot of the nascent tubular membrane and join the pre-

formed EFC filament to drive continuous membrane tubu-

lation (Figure 4I).

Tubular Membrane Striation with the EFC Filaments

Phase-contrast cryo-TEM with a Zernike phase plate

allows the observation of biological specimens with high

contrast (Danev and Nagayama, 2001), without any stain-

ing (Nagayama, 2005). Among the tubular membranes

observed by the phase-contrast cryo-TEM, we certainly

found those with striated structures, which probably rep-

resent the tight EFC spirals covering the tubular mem-

branes (Figures 5A–5C). The striations seemed to be

nearly perpendicular to the main axis of the tubular mem-

brane, and the average spacing between neighboring stri-

ations in Figure 5C was�41 Å, where the regularly spaced

striations gave rise to diffraction peaks in the Fourier im-

age, as shown in Figure 5D. The spacing of the striations

ranges from 40 Å to 50 Å (Figures 5A–5C), and the mini-

mum striation pitch agrees fairly well with the width of

the thickest part of the EFC filament in the crystals

(�35 Å). These properties correspond quite well to our

model of membrane tubulation (Figure 4I).

The diameters of the EFC-induced tubular membranes

observed by the negative staining EM range from 600 to

2000 Å or 400 to 2000 Å (Figure S5 and Itoh et al., 2005).

On the other hand, those observed by the phase-contrast

cryo-TEM range from 650 Å to 3300 Å. The maximum di-

ameter of the tubular membrane may be larger because

the EFC filaments were also observed on round liposomes

with larger diameters (>1 mm; data not shown). These ob-

servations suggest that the EFC domain binds to lipo-

somes with various diameters and constrains them into tu-
bules with diameters of 650 Å or larger (Figures 5A–5C).

Note that the minimum diameter of the observed tubular

membranes is close to that of the tubular membrane

that fits the concave surface of the EFC domain

(�600 Å). We also observed a snapshot of a possible inter-

mediate state of membrane tubulation in which the EFC-

coated tubular membrane protrudes from a parental lipo-

some (Figure 5A).

FBP17 Is Recruited to CCPs in the Late Stage of CME

Knockdown experiments implicated FBP17 in the recep-

tor-mediated endocytosis of cholera toxin subunit B

(CTB), epidermal growth factor (EGF), and transferrin (Ka-

mioka et al., 2004; Itoh et al., 2005; Tsujita et al., 2006).

Consistent with this, CTB, EGF, and transferrin colocal-

ized with the FBP17-induced tubular membranes (Ka-

mioka et al., 2004; Tsujita et al., 2006). Thus, FBP17 is in-

volved in both clathrin-dependent and -independent

endocytosis. CIP4 and Toca-1 are also implicated in

CME (Itoh et al., 2005; Tsujita et al., 2006). To further

Figure 5. Striated Tubular Membranes Coated with the EFC

Ring/Spirals, Observed by Phase-Contrast Cryo-TEM in Vitri-

fied Ices

(A) A nascent tubular membrane protruding from a parental liposome.

The spacing of the striations ranges from 40 Å to 50 Å (average spacing

�44 Å).

(B) A narrow tubular membrane covered with sparse EFC spirals (aver-

age spacing �42 Å).

(C) A tubular membrane showing clear and regular striations (average

spacing �41 Å).

(D) A Fourier image of the striations shown in Figure 5C (upper). A

cross-section of diffraction in the Fourier image, showing a regular

spacing of about 40 Å (lower).
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Figure 6. Actin, N-WASP, and FBP17 Are

Recruited to CCPs in the Late Step of

CME

DsRed-monomer-tagged clathrin light chain

and GFP-tagged actin (A), N-WASP (B), or

FBP17 (C) were observed by total-internal-

reflection microscopy. The time of 50% de-

crease of the DsRed-clathrin fluorescence

was set to 0. The normalized fluorescence in-

tensities of clathrin, N-WASP, and FBP17

were plotted over time, and the averages of

30–40 events are shown in (D). Bars indicate

standard deviation.
address the role of FBP17 in CME, we used total internal

reflection fluorescence microscopy (TIRFM) to test

whether and when FBP17 is recruited to CCPs. Actin

and N-WASP were reportedly transiently recruited to

CCPs in the late stage of CME (Perrais and Merrifield,

2005; Merrifield et al., 2004; Yarar et al., 2005; Figures

6A and 6B). FBP17 was also recruited to CCPs for

a time period very similar to that of N-WASP, when clathrin

departed from the plasma membrane (Figures 6B–6D).

DISCUSSION

We have shown that FBP17 was transiently recruited to

CCPs in the late stage of CME, and that its retention

time roughly corresponds to those of actin and N-WASP

(Figures 6A–6D). Based on these and other data, we pro-

pose the following hypothetical model for the role of

FBP17 and other FCRP proteins in CME. Clathrin coats

that can accommodate a transport vesicle form a variety

of structures with various diameters larger than �700 Å

(Fotin et al., 2004). Interestingly, the EFC domain is selec-

tive for liposomes larger than 1000 Å in diameter, and it

generates tubular membranes with diameters larger than

650 Å. Hence, it is possible that the EFC domain of the

FCRP proteins senses the lower curvature at the foot of

hemispherical CCPs and accumulates at the beginning

of the invagination step (Figure 7). Subsequent self-oligo-
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merization of the EFC domain may drive CCP invagination

(Figure 7). Finally, the FCRP proteins may recruit dynamins

with the SH3 domain, to further narrow the diameter of the

invaginated tube to �200 Å (nonconstricted state) and

to �100 Å (constricted state) for scission to take place

(Figure 7; Chen et al., 2004). The FCRP proteins may

also activate the actin nucleation machinery, such as

N-WASP, at the foot of the CCP, and this machinery

may cooperate with dynamins to regulate endocytic vesi-

cle scission (Merrifield et al., 2005; Itoh et al., 2005; Tsujita

et al., 2006). Thus, the FCRP proteins may link clathrin-

mediated budding to dynamin-dependent scission through

their interaction with the membrane by the EFC domain in

CME.

We observed that FBP17 was colocalized with CCPs

(Figure 6). This result supports our model in which the

FCRP proteins are recruited to CCPs in the invagination

step after the clathrin assembly. Since the BAR domain

binds and deforms smaller liposomes than those pre-

ferred by the EFC domain (Figure 3), the BAR-domain pro-

teins may be recruited to CCPs for a shorter time period

after the recruitment of the EFC-domain proteins, i.e.,

just before or during the scission step. Thus, although

they share similar dimeric architectures, the PCH proteins

and the BAR-domain proteins may function at distinct

steps in endocytic vesicle formation due to the differences

in their overall structures.



Figure 7. A Model for Coordinated Clathrin Assembly, Invagination, and Scission at a Single CCP

(1) First, the clathrin coats assemble. (2) Second, the EFC domain of the FCRP proteins senses the curvature of the clathrin-coated bud and poly-

merizes to drive CCP invagination. Concomitant actin polymerization may take place at the foot of the CCP. The SH3 domain recruits N-WASP

and the Arp2/3 complex for actin polymerization. Simultaneously, the SH3 domain also recruits dynamins. (3) The BAR-domain proteins are recruited

to the narrowed tubular membrane induced by the FCRP, N-WASP-induced actin polymerization, and the mechanical activity of dynamin. The BAR-

domain proteins then continue to recruit dynamin and/or N-WASP to the narrowed tubules. (4) Finally, a CCV leaves from the plasma membrane.
EXPERIMENTAL PROCEDURES

Initial Expression Trials

Twenty-six DNA constructs, encoding human CIP4 fragments with dif-

ferent N- and C-terminal boundaries, were amplified from the human

full-length cDNA clone, with the NCBI protein database code

gi:62897779. The amplified cDNA fragment was attached by overlap

PCR to the T7 promoter sequence, the ribosome-binding site, the

His-tag, the cleavage site for tobacco etch virus (TEV) protease, and

the T7 terminator sequence (Horton et al., 1989).

The fusion proteins were synthesized by the dialysis mode of the

cell-free protein expression system using PCR DNA templates, as de-

scribed (Kigawa et al., 1999, 2004; Sitaraman et al., 2004). The total re-

action mixtures were centrifuged to remove the insoluble proteins, and

the total and soluble fractions were subjected to SDS-PAGE to assess

the quantity and the solubility of the expressed proteins.

Protein Preparations

The selenomethionine (SeMet)-substituted EFCDNCIP4 was synthe-

sized in the cell-free system as a His-tagged protein with a TEV prote-

ase site. The protein was purified on a HisTrap column (Amersham Bio-

sciences), eluted with imidazole, cleaved with TEV protease, and

further purified by anion-exchange and gel-filtration chromatography.

The protein ran as a single band on an SDS-PAGE gel and was concen-

trated to approximately 3.8 mg/ml, using an Amicon Ultra-15 centrifu-

gal concentrator (Millipore), prior to crystallization.

The SeMet-substituted human EFCFBP17 was expressed as a GST-

fusion protein in E. coli B834 (DE3) (Novagen). The GST-fusion protein

was purified with Glutathione Sepharose HP, eluted by reduced gluta-

thione, cleaved by PreScission protease, and further purified by anion-

exchange and gel-filtration chromatography. The protein ran as a sin-

gle band on an SDS-PAGE gel and was concentrated to approximately

0.8–1.0 mg/ml in the same manner as for EFCDNCIP4. EFCFBP17

mutants were prepared in a similar manner to that for EFCFBP17. Point

mutations were introduced by the QuickChange protocol (Stratagene).

More detailed procedures are described in the Supplemental Data.

Crystallization, Data Collection, and Structure Determination

The EFCDNCIP4 crystals were grown at 4�C in 20 mM Tris-HCl buffer

(pH 8.0) containing 150 mM NaCl and 2 mM DTT. The crystals belong

to the space group C2, with unit-cell dimensions of a = 94.8 Å, b = 70.4

Å, c = 65.7 Å, and b = 107.2�. The crystals were transferred to a solution

containing 200 mM tri-sodium citrate dihydrate, 20% polyethylene gly-
col (PEG) 3350, and 10% glycerol and were flash-cooled in liquid nitro-

gen. A MAD data set was collected at the Southeast Regional Collab-

orative Access Team (SER-CAT) 22-ID beamline at the Advanced

Photon Source, Argonne National Laboratory (Table 1). A high-resolu-

tion data set was collected at the RIKEN Structural Genomics Beam-

line I (BL26B1) at SPring-8 (Table 1). Data were processed with the

HKL2000 program package (Otwinowski and Minor, 1997). Initial

phases were obtained with the MAD data set, and a readily interpret-

able electron density map was calculated after density modification

using the program CNS (Brunger et al., 1998). The initial model was

built with the program O (Jones et al., 1991). The model was refined

with the program CNS against the high-resolution data set. Iterative

rounds of refinement and model rebuilding improved the quality of

the simulated-annealing omit electron density maps, allowing us to

build additional residues in the model. The final model has an Rwork

of 22.8% and an Rfree of 27.9% at 2.3 Å resolution.

The EFCFBP17 crystals were grown at 20�C, using the hanging-drop

vapor-diffusion method, against 50 mM MES-NaOH buffer (pH 6.0)

containing 20 mM MgCl2 and 15% isopropanol. The crystals belong

to the space group C2, with unit-cell dimensions of a = 201.0 Å, b =

41.4 Å, c = 56.5 Å, and b = 105.1�. The crystals were transferred to

a reservoir solution containing 25% glycerol as a cryoprotectant and

were flash-cooled in liquid nitrogen. A native data set was collected

at BL26B1 at SPring-8 (Table 1). The data were processed with the

HKL2000 program package. The structure of EFCFBP17 was deter-

mined by the molecular replacement method, using the structure of

EFCDNCIP4 as a search model, with the program CNS. The model

building was completed in a similar manner to that for EFCDNCIP4

with the programs CNS and O. The final model has an Rwork of

21.2% and an Rfree of 26.7% at 2.6 Å resolution.

Figures were created using the programs MolScript (Kraulis, 1991),

Raster3D (Merritt and Murphy, 1994), PyMol (http://www.pymol.org),

and O. The buried surface areas were calculated by the program

AREAIMOL of the CCP4 suit of programs (CCP4, 1994).

Liposome Preparation and Binding Assay

The liposome-binding assay was performed as described (Peter et al.,

2004). Liposomes were made from total bovine brain lipids (Folch frac-

tion 1, Sigma). Dried lipids were resuspended in 20 mM Hepes (pH 7.4),

150 mM NaCl, and 1 mM DTT by mixing with a vortex followed by hy-

dration at 37�C for 1 hr. This preparation resulted in the formation of

a mixture containing large-diameter (�1 mm) liposomes. Proteins (10

mg) were incubated with liposomes (100 mg) in 100 ml of buffer for 15
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Table 1. Data Collection, Phasing, and Refinement Statistics

EFCDNCIP4 EFCFBP17

Peak Edge

Diffraction Data

Temperature (K) 100 100 100 100

Space group C2 C2 C2 C2

Wavelength (Å) 1.0000 0.9794 0.9795 1.0000

Resolution (Å) 50.0–2.3 50.0–2.5 50.0–2.5 50.0–2.6

Unique reflections 16924 13557 13274 12632

Total reflections 82936 99326 94288 75084

I/s(I) 21.0 (3.5) 23.0 (8.8) 29.0 (8.2) 17.1 (4.6)

Rmerge
a (%) 7.2 (31.7) 6.8 (14.2) 6.1 (14.4) 10.1 (26.0)

Completeness (%) 91.7 (61.2) 94.0 (71.7) 91.3 (62.1) 90.8 (62.3)

Phasing Statistics

Number of sites 7 7

Rcullis (anomalous) acentrics 0.6049 0.7130

Mean over all figure of merit acentrics 0.5464

Refinement Statistics

Protein atoms 2238 2347

Water oxygens 139 120

Rwork
b (%) 22.8 21.2

Rfree
c (%) 27.9 26.7

Rms deviation from ideal values

Bond length, Å 0.006 0.007

Bond angles, degrees 1.0 1.0

Average B factor, Å2

Protein 59.8 46.3

Solvent 63.6 54.5

Values in parentheses are for the highest resolution shell.
a Rmerge =

P
h

P
ijIh,i � <Ih>j/

P
h

P
ijIh,ij, where h refers to unique reflection indices and i indicates symmetry-equivalent indices.

b Rwork =
P
jFO � FCj/

P
jFOj for the working set reflections (90% of the data) used for the refinement.

c Rfree =
P
jFO � FCj/

P
jFOj for the test set reflections (10% of the data) excluded from the refinement.
min at room temperature and were centrifuged at 60,000 rpm for 15

min at 25�C in a TL 100 rotor (Beckman). Supernatants and pellets

were subjected to SDS-PAGE, and the gels were stained with Coo-

massie Brilliant Blue. Liposomes with a defined maximum diameter

(50, 100, and 400 nm) were made by extrusion of the liposomes, pre-

pared as described above, through polycarbonate filter membranes

(Avanti Polar Lipids).

Negative Staining Electron Microscopy

Purified proteins (0.1 mg/ml) were incubated with liposomes (0.2 mg/

ml), prepared as above, in 20 mM Hepes buffer (pH 7.5) containing

150 mM KCl, 1 mM EDTA, and 1 mM DTT at 25�C for 20 min. This mix-

ture was applied to glow-discharged collodion- and carbon-coated

copper grids, which were washed in 100 mM Hepes (pH 7.9). The grids

were stained with 2% uranyl acetate. At each step, excess solution

was removed by filter paper. Dried grids were examined using an elec-

tron microscope (JEOL).
770 Cell 129, 761–772, May 18, 2007 ª2007 Elsevier Inc.
Phase-Contrast Cryo-TEM

Purified proteins (0.5 mg/ml) were incubated with liposomes (0.5 mg/

ml) in 20 mM Hepes buffer (pH 7.5) containing 100 mM KCl and 1

mM EDTA at 37�C for 15 min. Samples were dropped on a copper

grid coated with holey carbon film (Quantifoil). After blotting the excess

liquid carefully with the tip of a filter paper, to make a thin vitreous

film, the sample was frozen rapidly in liquid ethane using a LEICA

rapid-freezing apparatus (LEICA EM CPC). The vitrified specimen

was transferred to the pre-cooled specimen chamber of the TEM using

a cryo-transfer system. The experiments were carried out on a JEOL

JEM-3100FFC electron microscope equipped with a helium stage

and operated at 300 kV acceleration voltage with the minimum dose

system and Zernike phase plates (Danev and Nagayama, 2001).

Cell Culture and Microscopy

GFP-FBP17 was prepared as described previously (Tsujita et al.,

2006). GFP-actin was purchased (Clontech). To obtain GFP-N-



WASP, N-WASP was subcloned into the pEGFP vector (Suetsugu

et al., 2002). The human clathrin light chain cDNA was obtained by

PCR of human brain cDNA and was subcloned into the pDsRed-mono-

mer-C1 vector (BD Biosciences). COS-7 cells and NIH 3T3 cells were

maintained in DMEM containing 10% FCS and CS, respectively.

Transfection was performed using Lipofectamine 2000 (Invitrogen),

according to the manufacturer’s protocol. Fluorescent images were

taken through a microscope (Nikon) with a confocal microscopy sys-

tem (Biorad; Radiance 2000) at RT. The 603 oil immersion objective

NA = 1.40 (Nikon) was used. For live observation with total internal re-

flection microscopy, NIH 3T3 cells were grown on a glass-bottomed

dish. The images were acquired for 5–10 min at 5 s intervals with a to-

tal-internal-reflection (TIRF) microscopy system (Olympus) with

a 1003 oil immersion objective NA = 1.45 (Olympus) and the Meta-

Morph software. All images were processed with imageJ (NIH) and

Photoshop (Adobe). For each spot of clathrin in the TIRF images, the

fluorescence intensity was plotted over time. The fluorescence inten-

sity was normalized for each event of clathrin disappearance (endocy-

tosis) from the TIRF images. The average and the standard deviations

were calculated.

Supplemental Data

Supplemental Data include Experimental Procedures and six figures

and can be found with this article online at http://www.cell.com/cgi/

content/full/129/4/761/DC1/.
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