
INFORMATION AND CONTROL 12, 549 552 (1968) 

A Note on Preservation of Languages by 
Transducers 1 

SEYMOUR GINSBURG AND GENE F. ROSE 

System Development Corporation, Santa Monica, California 90406 

An error in a previous paper is corrected. The rectified version in- 
volves pushdown transducers with accepting states instead of push- 
down transducers. Some properties of pushdown transducers with 
accepting states are then noted. 

Associated with any linear bounded au tomaton  (pushdown automa-  
ton) is a class of linear bounded transducers, abbreviated lbt  (pushdown 
transducers, abbreviated pdt),  in which each move gives rise to an output.  
I n  a previous paper  (Ginsburg and Rose, 1966) these transducers and 
their properties are studied. In  Theorem 3.2 of Ginsburg and Rose (1966) 
it is claimed tha t  2 if L = T(M)  for a p d a M  and S is a pdt  associated 
with M, then S(L)  is a context-free language. 8 Dr.  Joseph Ullian has 
pointed out to us tha t  the result is false. In  rectifying the theorem we were 
led to consider transducers with accepting states, i.e., transducers in 
which the output  is considered only when the s tate  of the device is a final 
or accepting state. The lat ter  par t  of this note shows that ,  with minor 
modifications, most of the results about  pdt  and lbt  in Ginsburg and 
Rose (1966) hold for pdt  with accepting states and lbt  with accepting 
states, respectively. 

We begin by  showing how incorrect Theorem 3.2 is. 4 The argument  is a 
var ian t  of the counterexample furnished us by  Dr.  Ullian. 

1 Research sponsored in part by the Air Force Cambridge Research Labora- 
tories, Office of Aerospace Research, USAF, under contract F1962867C0008, and 
by the Air Force Office of Scientific Research, Office of Aerospace Research, USAF, 
under AFOSR Grant No. AF-AFOSR-1203-67. 

We assume the reader is familiar with Ginsburg and Rose (1966) and we use 
the terminology and notation found therein. 

3 This statement also appears as Theorem 3.5.1 of Ginsburg (1966). 
4 A result numbered 3.1 or 3°2, etc., refers to that numbered result in Ginsburg 

and Rose (1966). 
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THEOREM 1. For each recursively enumerable set Y, there is a pdt S and a 
pda 2~I associated with S such that ~(T(M) )  = y.5 

Proof. By Theorem 3.1, there exist a context-free language X and a 
pdt S = ( K s ,  ~, 1~ ,  A, ~ s , Z s ,  q~) such t h a t S ( X )  = Y. Now 
X = T(M) for s o m e p d a M  = (KM, E, F M , ~ M , Z M , q M , F ) , w i t h  
Ks n K~ = 0. Let q0 and Zo be new symbols, K = {qo} U Ks U K ~ ,  
and r = {Zo} U r~ U r ~ .  Let yo be a particular word in Y. (Obviously 
we may assume Y ~ 0.) Let 21~ be the pda (K, ~, r ,  6, Zo, qo, F)  and 
the pdt (K, ~, r ,  A, ~, Zo, q0), where ~ and ~ are defined as follows: 

(1) ~(q0, e, Z0) = {(qs, Zs), (q~, Z,)} and 

~(qo, e, go) = {(qs, Zs ,  e), (qM, ZM, y0)}. 

(2) If (p, X, Z) is in Ks X (Z U {e}) X r s ,  then 

6(p , x ,Z )  = {(q, a)/(q, a, y) in ~ s ( p , x , Z ) , y  in A*} and 

#(p, x, Z) = #s(p, x, Z). 

(3) If (p, x, Z) is in KM X (Z O {e}) X FM, then 

~(p, x, Z) = ~ ( p ,  x, Z) and 

~(p, x, Z) = {(q, a, e)/(q, ~) in 6u(p, x, Z)}. 

It  is easy to verify that S and ~r have the required properties. 
Remark. The proof of Theorem 3.2 breaks down on p. 170, lines 27-28, 

since S(L) need not be a subset of f[T(M')]. 
While Theorem 3.2 is false as given, it becomes true if the transducers 

h~ve accepting states, i.e., are devices where the output is considered only 
along paths leading to final states. In the remainder of this note we ex- 
amine such transducers and note how the results in Ginsburg and Rose 
(1966) fare for such devices. 

DEFINITION. A pushdown transducer with accepting states (abbreviated 
a-pdt) is an 8-tuple S = (K, ~, 1 ~, A,/4 Zo, qo, F),  where K, Z, F, A, ~, 
Zo, qo, have the same significance as in a pdt and F (the set of final or 
accepting states) is a subset of K. 

The a-pdt operates as follows. 
NOTATION. Given an a-pdt S = (K, Z, 1 ~, A, ~, Z0, qo, F),  let k- and 

~- * be the relations on K X Z* X r*  X A* as defined for a pdt. For each 
x in Z*, let S(x) = {y{(qo, x, Z0, e) ~ *  (q, e, a, y) for some (q, ~) in 
F × r*}. For X ~ ~*, let S(X)  = O~inX S(x).  

Compare  wi th  Theorem 2.2 of Ginsburg  and  Rose (1966). 
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For a-pdt, the following counterparts of Theorems 3.1 to 3.6 and 
Lemma 3.1 hold. 

THEOREM 3.1a. Given any recursively enumerable set Y, there exists a 
context-free language X and an a-pdt S such that S ( X )  = Y. 

Theorem 3.1a is a corollary of Theorem 3.1. (Let F = K.) 
DEFINITION. A pda M = (K, ~, r,  ~, Zo, qo, F) and an a-pdt S = 

(K, Z, I ~, A, #, Zo, q0, F)  are said to be associated if, for each (q, x, Z) in 
K X  ( z U  {~}) x r ,  

~ (q ,x ,Z )={ (p ,a ) / (p ,~ ,y )  in ~(q,x,Z) for some y in A*/. 

Note tha t  an a-pdt has a unique associated pda, but each pda has an 
infinite number of associated a-pdt. 

The amended form of Theorem 3.2 is now given. 
THEOREM 3.2a. I f  a pda M and an a-pdt S are associated, then S ( T ( M )  ) 

is a context-free language. 
THEOREM 3.3a. S( L ) is context free for each a-pdt S and each regular 

set L. 
The proof is essentially the same as for Theorem 3.3. Given 

? 
S = ( K , Z , r , A , ~ , Z o , q o , F )  l e t S '  = (K X K ~ , ~ , F , A , ~ , Z o ,  
(qo, po), F X F~), with ~! defined as for Theorem 3.3. Let M ~ and M be 
the pda associated with S' and S, respectively. 

THEOREM 3.4a. Let S = (K, ~, F, A, ~, Zo , qo , F) be an e-output free 
a-pdt. Then S(  L ) is context sensitive for each context-sensitive language L. 

The proof is essentially the same as for Theorem 3.4. For productions 
of type (7), q is required to be in F. 

LEM~L~ 3.1a. Given a context-free language Y c_ Z* and any word w, 
there exists an a-pdt S such that S(w)  = Y. 

The proof is essentially the same as for Lemma 3.1. For w ~ e, a suit- 
able a-pdt is S = (K, 21, V U {Z01, 2, ~, Z0, qQ, [qk+l}), where K, 21, 
V, Zo, and # are as in Lemma3.1 .  F o r w  = e, l e t S  -- ({qo, ql, q~}, 
21, V U  {Z01, E, ~, Z0, qo, {q2/), where ~(qQ, ~, Zo) = (ql, Zcr, e)}, 
~(ql, e, x) = { (ql, ~, x)} for x in 2, ~(ql, e, ~) = { (ql , fiR, e)/~ --+ ~ in P/  
for ~in V -- Z, and ~(q~, e, Z0) = {(q2, e, e)}. 

Thus we get 
THEOREM 3.5a. The following questions are recursively solvable for arbi- 

trary context-free languages X and Y: 
(a) Is there an a-pdt S such that S ( X )  = Y? 
(b) Is there is a-pdt S such that S ( X )  c_ Y and S ( X )  is infinite if X 

is infinite? 
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Note that it is no longer necessary, as in Theorem 3.5, to assume that, 
X not contMn e. So the analog to Theorem 3.6, r~ther than declaring the 
unsolvability of mapping problems for context-free languages, is 

THEOREM 3.6~. Each of the following questions is recursively unsolvable 
for arbitrary context-sensitive languages X and Y: 

(a) Is there an a-pdt S such that S ( X )  = Y? 
(b) Is there an a-pdt S such that S ( X )  ~ Y and S ( X )  is infinite if 

X is infinite? 
The proof depends on Theorem 3.3a and Lemma 3.1a. The argument 

is essentially that in the last paragraph of Ginsburg and Rose (1966). 
Remark. By Theorem 3.6, for pdt these questions are unsolvable for 

context-free X ~nd Y. 
Turning to the lbt, we find that, unlike the results about pdt, the 

results about lbt are essentiMly unaffected by the specification of accept- 
ing states. In particular, Theorems 2.2 to 2.5 of Ginsburg and Rose 
(1966) remain vMid if "lbt" is replaced by "a-lbt," the given proofs 
carrying over with trivial modifications to the a-lbt case. 
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