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Partial cubes are distance graphs�
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Abstract

Chatrand et al. [Graph similarity and distance in graphs, Aequationes Math. 55 (1998) 129–145] have recently conjectured that
all bipartite graphs are distance graphs. Here we show that all graphs of a large subclass of bipartite graphs, i.e. partial cubes, are
distance graphs.
© 2007 Elsevier B.V. All rights reserved.

MSC: 05C75; 05C12

Keywords: Distance graph; Partial cube; Hypercube; Isometric subgraph; Embedding

1. Introduction

If two graphs G1 and G2 are isomorphic, then there exists a one-to-one mapping � : V (G1) → V (G2) with the
property that vertices u and v are adjacent in G1 if and only if �u and �v are adjacent in G2. Of course, � is an
isomorphism. In fact, if G1 and G2 are connected, then � preserves the distance between every pair of vertices of G1
(not only pairs of adjacent vertices), that is, if u and v are any two vertices of G1, then dG1(u, v) = dG2(�u, �v).

Let G1 and G2 be connected graphs of order n. There are n! one-to-one mappings from V (G1) to V (G2). If G1 and
G2 are isomorphic, then the number of isomorphisms among these n! mappings is the order of the automorphism group
Aut G1 of G1. For a one-to-one mapping � and each pair u, v of vertices of G1 it is of interest to compare dG1(u, v)

with dG2(�u, �v). For this reason, we define the �-distance between G1 and G2 as

d�(G1, G2) =
∑

|dG1(u, v) − dG2(�u, �v)|, (1)

where the sum is taken over all
(

n
2

)
unordered pairs u, v of vertices of G1. Of course, if d�(G1, G2) = 0 then � is

an isomorphism and G1�G2, while if G1�G2, then d�(G1, G2) > 0 for every one-to-one mapping �. This suggests
defining the distance d(G1, G2) between G1 and G2 by

d(G1, G2) = min{d�(G1, G2)}, (2)
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where the minimum is taken over all one-to-one mappings � from V (G1) to V (G2). Thus, d(G1, G2) = 0 if and only
if G1�G2. Hence d(G1, G2) can be interpreted as a measure of the similarity of G1 and G2, where then the smaller
the value of d(G1, G2), the more similar the structure of G1 is to that of G2.

This distance defined on the space of all connected graphs of a fixed order produces a metric space.
Let S be a set of connected graphs having the same order. Then the distance graph D(S) of S has vertex set S and

two vertices G1 and G2 of D(S) are adjacent if and only if d(G1, G2) = 1. Further, we say that a graph G is a distance
graph if there exists a set S of graphs having fixed order such that D(S)�G.

In [1] it has been conjectured:

Conjecture 1. A graph G is a distance graph if and only if G is bipartite.

The conjecture is based on the fact that every distance graph is bipartite, and that several classes of bipartite graphs
are shown to be distance graphs, for example every even cycle is a distance graph, every tree is a distance graph, the
graph K2,n is a distance graph for every positive integer n, and the graph K3,3 is a distance graph [1].

The hypercube, Qn, is defined recursively by Q1 = K2 and Qn = Qn−1�K2, i.e. Qn is a Cartesian product of n
copies of K2. The vertex set of the hypercube is V (Qn)={(x1, x2, . . . , xn) | xi =0 or 1}, and two vertices are connected
if they differ in exactly one coordinate. If x = (x1, x2, . . . , xn), and y = (y1, y2, . . . , yn), then dQn(x, y)=∑ |xi − yi |,
where the sum is taken from 1 to n.

In this note we first show that hypercubes are distance graphs and consequently partial cubes are distance graphs.
(Partial cubes are induced subgraphs of hypercubes [3].) We also show some other distance graphs.

2. Partial cubes are distance graphs

We will show that hypercubes are distance graphs. To this aim we first recall some results from [1].

Theorem 2 (Chartrand et al. [1]). Let G1 and G2 be two connected graphs of the same order having sizes p1 and p2,
respectively, such that the size of a greatest common subgraph is s. Then

d(G1, G2)�p1 + p2 − 2s. (3)

Corollary 3 (Chartrand et al. [1]). If G1 and G2 are connected graphs of the same order having sizes p1 and p2,
respectively, such that d(G1, G2) = 1, then |p1 − p2| = 1 and one of G1 and G2 is a subgraph of the other.

Theorem 4 (Chartrand et al. [1]). Let G1 and G2 be connected graphs of the same order having sizes p1 and p2,
respectively, with p1 �p2. Then d(G1, G2) = 1 if and only if G1 ⊆ G2, p2 = p1 + 1, and there exists a one-to-one
mapping � : V (G1) → V (G2) such that for some 2-element subset {x, y}, it follows that xy /∈ E(G1), �x�y ∈ E(G2),
dG1(x, y) = 2, and if {u, v} �= {x, y}, then dG1(u, v) = dG2(�u, �v).

Corollary 5 (Chartrand et al. [1]). Let G1 and G2 be connected graphs of the same order having sizes p1 and p2,
respectively, such that diam G1 = 2 and p2 �p1. Then d(G1, G2) = 1 if and only if G1 ⊆ G2 and p2 = p1 + 1.

Let Gm1m2...mn (mi ∈ {0, 1}) be a graph, depicted in Fig. 1, for n = 6.

v0 v1 v2 v3 v4 v5 v6

a1 a2 a3 a4 a5 a6

b21 b22 b23 b24 b25 b26b11 b12 b13 b14 b15 b16

c1 c2 c3 c4 c5 c6

Fig. 1. The graph G110101.



822 M. Gorše Pihler, J. Žerovnik / Discrete Mathematics 308 (2008) 820–826

Theorem 6. Let m1, m2, . . . , mn ∈ {0, 1} and m′
1, m

′
2, . . . , m

′
n ∈ {0, 1}. Graphs Gm1m2···mn and Gm′

1m
′
2···m′

n
are

isomorphic if and only if mi = m′
i for i = 1, 2, . . . , n.

Proof. Suppose that graphs Gm1m2...mn and Gm′
1m

′
2...m

′
n

are isomorphic. Any isomorphism � from V (Gm1m2...mn) onto
V (Gm′

1m
′
2...m

′
n
) maps v0 into v′

0, because v0 is the only vertex which has degree 1. Since � preserves adjacency and
nonadjacency, it follows that � maps v1 into v′

1 (only v1 is adjacent to v0), v2 into v′
2 (from all vertices which are

adjacent to v1 only v2 has degree 3), v3 into v′
3 (from all vertices which are adjacent to v2 only v1 and v3 have degree

3, so � maps {v1, v3} onto {v′
1, v

′
3}; we have seen that � maps v1 into v′

1, therefore � maps v3 into v′
3), . . . , vn into v′

n

(from all vertices which are adjacent to vn−1 only vn has degree 2).
Let i ∈ {1, 2, . . . , n}. Among all vertices which are adjacent to vi only ai has degree 4, so � maps ai into a′

i . The
vertices b1i , b2i and ci are adjacent to ai , so � maps {b1i , b2i , ci} onto {b′

1i , b
′
2i , c

′
i}.

1. If mi = 0, then b1i and b2i have degree 2. Since c′
i has degree 3, it follows that � maps {b1i , b2i} onto {b′

1i , b
′
2i}.

Therefore b′
1i and b′

2i have degree 2, so m′
i = 0.

2. If mi = 1, then b1i , b2i and ci have degree 3. It follows that � maps {b1i , b2i , ci} onto {b′
1i , b

′
2i , c

′
i}. Therefore b′

1i

and b′
2i have degree 3, so m′

i = 1.

Hence mi = m′
i for i = 1, 2, . . . , n.

For the converse we assume that mi = m′
i for i = 1, 2, . . . , n. Then it is easy to see that graphs Gm1m2...mn and

Gm′
1m

′
2...m

′
n

are isomorphic. �

Theorem 7. Let m1, m2, . . . , mn ∈ {0, 1} and m′
1, m

′
2, . . . , m

′
n ∈ {0, 1}. Then d(Gm1m2...mn , Gm′

1m
′
2...m

′
n
) = 1 if and

only if the corresponding tuples differ in precisely one position.

Proof. Let p1 = |E(Gm1m2...mn)| and p2 = |E(Gm′
1m

′
2...m

′
n
)|.

Suppose that d(Gm1m2...mn , Gm′
1m

′
2...m

′
n
) = 1. By Corollary 3, |p1 − p2| = 1 and one of the graphs Gm1m2...mn and

Gm′
1m

′
2...m

′
n

is a subgraph of the other. We may, without loss of generality, assume that p2 = p1 + 1. In this case the
graph Gm1m2...mn is a subgraph of Gm′

1m
′
2...m

′
n
. In other words, we can get Gm′

1m
′
2...m

′
n

from Gm1m2...mn by adding one
edge. By definition of these graphs, the corresponding tuples differ in precisely one place.

For the converse we suppose that corresponding tuples of graphs Gm1m2...mn and Gm′
1m

′
2...m

′
n

differ in precisely
one place. Without loss of generality, we may assume that there exists such j ∈ {1, 2, . . . , n} that mi = m′

i for
i = 1, 2, …, j − 1, j + 1,…, n and mj = 0, m′

j = 1. Then graph Gm1m2...mn is a subgraph of Gm′
1m

′
2...m

′
n
, p2 =

p1 + 1 and the identity mapping �, which maps vertices from V (Gm1m2...mn) onto corresponding vertices in
V (Gm′

1m
′
2...m

′
n
) has the following properties: (1) b1j b2j /∈ E(Gm1m2...mn) and �b1j�b2j ∈ E(Gm′

1m
′
2...m

′
n
), (2) dGm1m2 ...mn

(b1j , b2j ) = 2, (3) if {u, v} �= {b1j , b2j } then dGm1m2 ...mn
(u, v) = dGm′

1m′
2 ...m′

n
(�u, �v). By Theorem 4, d(Gm1m2...mn ,

Gm′
1m

′
2...m

′
n
) = 1. �

Theorem 8. Every hypercube is a distance graph.

Proof. By Theorem 7 and the definition of hypercubes, Qn is the distance graph of the collection {Gm1m2...mn | mi ∈
{0, 1}}. �

Theorem 9. Every induced subgraph of a hypercube is a distance graph.

Proof. Let G be an induced subgraph of a hypercube Qn (n ∈ N) and let u and v be arbitrary vertices of the graph G.
If vertices u and v are adjacent in G then u and v are also adjacent in the hypercube Qn, because G is a subgraph of

Qn. Therefore the distance between the corresponding graphs from the proof of Theorem 8 is 1.
If the vertices u and v are not adjacent in G then u and v are also not adjacent in the hypercube Qn, because G is

an induced subgraph of Qn. Therefore the distance between the corresponding graphs from the proof of Theorem 8 is
more than 1.

Thus the subset of corresponding graphs from the proof of Theorem 8 has distance graph isomorphic to G. �
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An isometric embedding of G in H is a map f : V (G) → V (H) which preserves distances:

dH (f (u), f (v)) = dG(u, v) (4)

for any u, v ∈ V (G). We say that a graph G can be isometrically embedded into a graph H, if there exists an isometric
embedding of G in H.

Theorem 10. Every graph which can be isometrically embedded into a hypercube is a distance graph.

Proof. Let G be a graph which can be isometrically embedded in a hypercube Qn (n ∈ N). Then G is isomorphic to
an isometric subgraph of Qn. Every isometric subgraph is also an induced subgraph, therefore G is isomorphic to an
induced subgraph of Qn. By Theorem 9, G is a distance graph. �

We say e is in relation � to f, if

d(x, u) + d(y, v) �= d(x, v) + d(y, u), (5)

where e = xy and f = uv are two edges of connected graph G.
Using results [2,3] on sufficient conditions for the existence of isometric embeddings into hypercubes Theorem 10

has the following three corollaries:

Corollary 11. Every bipartite graph for which relation � is transitive (�∗ = �) is a distance graph.

Corollary 12. Let G be a bipartite graph such that for any edge vw of G, the set of vertices that are closer to v than
w is closed under taking shortest paths. Then G is a distance graph.

Let G and H be the bipartite graphs, depicted in Fig. 2.
Fig. 3 shows that for any edge vw of G, the set of vertices that are closer to v than w is closed under taking shortest

paths. Therefore G is a distance graph.
Fig. 4 shows that there exists such edge vw of H, that the set of vertices that are closer to v than w is not closed under

taking shortest paths. Namely, one of the two shortest paths between x and y meets both sets. Therefore the Corollary
12 does not show whether H is a distance graph or not.

Corollary 13. Let G be a bipartite graph and for any edge xy of G, if a, b, c ∈ V (G) such that d(a, x) < d(a, y),
d(b, x) < d(b, y) and d(a, b) = d(a, c) + d(b, c) then d(c, x) < d(c, y). It follows that G is a distance graph.

3. Some more results

At first sight one might guess that a subgraph of a hypercube is a distance graph if and only if it is an isometric
subgraph of a hypercube. The next example shows that it is not true.

Let G be a graph, depicted in Fig. 5.
For i ∈ {1, 2, . . . , 8}, consider the graphs Fi = K6 − E(Hi), where each Hi is shown in Fig. 6. Since the diameter

of each graph in S = {F1, F2, . . . , F8} is 2, Corollary 5 implies that D(S)�G.

G : H :

Fig. 2. The graphs G and H.
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Fig. 3. The graph G.

w v

x

y

Fig. 4. The graph H.

F2F1

F4

F8

F3

F5

F7

F6

Fig. 5. The graph G.

We have checked all non-isometric subgraphs of the 3-cube and we found that they are all distance graphs. It seems
reasonable to work on the following:

Problem 14. Prove (or disprove) that every subgraph of a hypercube is a distance graph.

We have also considered some complete bipartite graphs. For example, it is shown in [1] that:

1. the graph K1,n is a distance graph for every positive integer n (because every tree is a distance graph),
2. the graph K2,n is a distance graph for every positive integer n,
3. K3,3 is a distance graph.

The following examples show that K3,4 and K3,5 are distance graphs.
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For i = 1, 2, . . . , 7, let Ui = K6 − E(Li), where graphs Li are given in Fig. 7. Since the diameter of each graph in
S ={U1, U2, . . . , U7} is 2, Corollary 5 implies that D(S)�K3,4, where the bipartite sets of D(S) are {U1, U2, U3} and
{U4, U5, U6, U7}.

For i = 1, 2, . . . , 8, let Ri = K9 − E(Zi), where graphs Zi are given in Fig. 8. Since the diameter of each graph in
S ={R1, R2, . . . , R8} is 2, Corollary 5 implies that D(S)�K3,5, where the bipartite sets of D(S) are {R1, R2, R3} and
{R4, R5, R6, R7, R8}.

H1 :

H4 :

H7 :

H5 : H6 :

H8 :

H3 :H2 :

Fig. 6. Graphs Hi (i = 1, 2, . . . , 8).

L1 : L2 : L3 :

L5 :L4 :

L6 : L7 :

Fig. 7. Graphs Li (i = 1, 2, . . . , 7).

Z1 : Z2 :

Z4 :

Z6 :

Z8 :

Z3 :

Z5 :

Z7 :

Fig. 8. Graphs Zi (i = 1, 2, . . . , 8).
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These examples motivate our next working problem:

Problem 15. Prove that the graph K3,n is a distance graph for every positive integer n.
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