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Abstract 

Taft, E.J., Witt and Virasoro algebras as Lie bialgebras, Journal of Pure and Applied Algebra 

87 (1993) 301-312. 

We give a countably infinite number of Lie coalgebra structures on the Witt algebra W= 

Der k[x] over a field k, and on the Virasoro algebras W, = Der k[x, Y’] and 1/= W, @kc with 

central charge c. These come from certain solutions of the classical Yang-Baxter equation, and 

yield Lie bialgebra structures in each case. For k of characteristic 0. we show that these Lie 

coalgebra structures on W are mutually non-isomorphic, using an analysis of the locally finite 

part of W. We also discuss the Lie bialgebra duals of each of these constructions, which can be 

identified with linearly recursive sequences (one-sided or two-sided). 

1. Introduction 

We discuss various Lie bialgebra structures on the Witt and Virasoro algebras, 

and also on their continuous duals of linearly recursive sequences. The basic idea 

of a (triangular coboundary) Lie bialgebra has been suggested by Drinfeld [l]. 

2. Triangular coboundary Lie bialgebras 

We work over a field F of characteristic f2. A Lie algebra L over F has a 

skew-symmetric multiplication [ , ] satisfying the Jacobi identity. Reversing the 

arrows, a Lie coalgebra M over F has a comultiplication 6 from M into M A M, 

the skew-symmetric tensors in M @ M, which satisfies the co-Jacobi identity 
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(1 + u + a’)( l&I S)S = 0, where (T is the permutation (123) in S, acting in the 

usual way on M @I M @ M. In contrast to the associative coalgebra theory (see 

[13]), Lie coalgebras need not be locally finite. See [4] for a general discussion of 

Lie coalgebras and local finiteness in particular. Set Lot(M) equal to the sum of 

all finite dimensional Lie subcoalgebras of M. Examples will appear later where 

Lot(M) # M, as will others where Lot(M) = M (see also [7]). 

A Lie algebra L which is simultaneously a Lie coalgebra is called a Lie 

bialgebra if 6 E Z’(L, L A L), where L acts on L A L by the adjoint action 

[a A 6, x] = [a, x] A b + a A [b, x]. Thus the compatibility (invariance) condition 

is that 6(x, y] = (6x, y] - [6y, x]. (Note: we sometimes omit the comma in [ , ] if 

no confusion is possible.) If 6 = 6, E B’(L, L A L) for some Y E L A L, L is 

called a coboundary Lie bialgebra (see [l]). The condition is that S,.(X) = (r, x] for 

all x E L. 

For a Lie algebra L, we recall the classical Yang-Baxter equation (CYBE) for 

an element Y in L 8 L: 

(CYBE) [Y”, Y”] + [Y”, ?] + [?, yzi] = 0. 

(CYBE) is an equation in U(L) C3 U(L) C3 U(L), where U(L) is the universal 

enveloping algebra of L. The notation is that if Y = c a, @ b,, then rl’ = 

c a, 63 b, @ 1, r13 = C a, @ 1 C3 b, and rz3 = c 18 a, @ b,. The following proposi- 

tion was stated in [I]. A proof is outlined in [3]. The calculation for the case 

r = a A b = a @ b - b 63 a and [ab) = b is given in [9]. We give a complete proof 

here. 

Proposition 1. Let L be a Lie algebra. Let r E L A L satisfy (CYBE). Then 6 = 6, 

defined by S(x) = (r, x] g ives L the structure of a Lie coalgebra, and hence the 

structure of a coboundary Lie bialgebra. 

Proof. Let c(r) = [r I’, r”] + [r’?, rz3] + [r’j, r2’], so that (CYBE) is the condition 

c(r) = 0. 

We write r = c a, A b, = c a, C3 b, - c bj C3 a,. We organize (CYBE) as fol- 

lows. We write 

We write r13 = c ah @ l@ b, - c b,@ 1 @au, in the product [r”, r”], but write 

r “=~a,@l@b,-Cb,@l@ a, in the product [r13, r2”]. The result is the 

following 12 terms, where we drop the summation signs over i, j, k and I: 
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(CYBE) O=[U,U,]@~,@~~ -[a,b,J@b,@u, 

- [b/z,] 8 aj @ b, + [ b,b,] @ a, @ a, 

+ u, @ [bp,] @ b, - a, @ [b,b,] @ a, 

- b, 63 [a,uJ 8 b, + b, 63 [a,b,] ‘23 a, 

+ a, @aa, @[b,b,,] - a, @b,@[b,a,] 

- b,@a,@(u,b,] + b,@b,@[u,n,]. 

Since 6 E B’(_L, L A L), we have only to verify the co-Jacobi identify for 6. 

For x E L, 

WI = [c a, A b,, x = c [a,~] A b, + 2 a, A [b;x] ] 
= c a, @ [b,x] + c [up] CiC b, - 2 b, C3 [ak.x] - 2 [b,x] @a, 

Hence 

= z (al, @ [bka,l + [a,a,l@ b, - 6, @ [a,~,1 - [bAa,l @a,> @ 16,x1 

+ c (a, @ [~,b,41+ b,b,41@ b, 

- b, @ [a/[Qjxll- [b,[a,xll @a/) @ b, 

- 2 (a,@[b,b,l+ La,b,l@bb, 

-b,~[a,b,l-[b,b,l~~,)~~a,~[a,xl 

- ; (a, @ [b,[b,xll + [%[blxll@ b, 

-b, @[uh[b,x]]- [b,[b,x]]@ua,)@u,. 

Notice that there are 16 terms here (dropping the summation signs). Hence 

(1 + v + a’)(6 @1)6(x) has 48 terms. We break this into 3 groups of 16 terms 

each. 

First consider the 16 terms whose third factor is a product of 2 or 3 elements, 

one of which is x. We wish to write this group as 1@ 1 @ R, acting on an element 

of L C3 L C3 L, where R, is the adjoint action R,, [y] = [y, x] of L on L. 

8 of the 16 terms above already are in this form (the first and third sums). The 8 

remaining terms (after recycling) are 
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bj @ a/ @ [b,[a,~ll- b, @ a, @ [a,[b+ll 

+ b, @ b, @ [~/[ajxll- b, @ b/ Q9 I~,[a,xll 

- a, @ 6, @[b,[a,x]] + a, C3 b, @[aJb,x]] 

-u,@u,@[b,[b,x]]+u,@u,@[b,[b,x]]. 

Using the Jacobi identity on each line, these 8 terms reduce to the 4 terms 

6, @ a,@ [tbtujlxl 

+ b, @ bi @ [[a,uj]x] 

+ u, @ b, @ [[a,b,lxl 

+ ah @ a/ @ Nbkb,lXl 

Thus the 16 terms we are now considering reduce to 12 terms, whose sum is the 

image under 1 @ 1@ R., of 

uk C3 [b,u,] @ b; + [a,~,] @ 6, @ 6, 

- b, @ [~~a,] CT3 6, - [b,u,] 8 a, 63 b, 

- a, ‘23 [ b,b,] 63 a, - [u,b,] @ b, 63 ah 

+ b, @ [u,b,] @ a, + [ b,b,] 63 a, 63 a, 

+ b, @ a, 63 [b,u,] + b, C3 b, 63 [~,a,] 

+u,G3bb,C9[u,b,]+u,@q@[b,b,]. 

Inspection shows that these twelve terms sum to c(r), the right-hand side of our 

(CYBE). Since c(r) = 0, our group of 16 terms sums to 0. Similarly, the remaining 

32 terms can be split in 2 groups of 16 terms each, one of which is (R, @ l@ l)c(r) 

and the other one of which is (l@ R,v C3 l)c(r). 

Thus Proposition 1 is proved. 0 

We point out that our proof shows that for r E L A L, if 6(x) = [r, x] for x E L, 

then (1 + (r + a’)(6 @I 1)6(x) = [c(r), x], where x acts on L 63 L @ L by the 

adjoint action [u @ b C3 c, x] = [ax] @ b @ c + a C3 [bx] C3 c + a @ b 63 [cx]. A co- 

boundary Lie bialgebra L is said to be triangular if 6 = 6,. for r in L A L satisfying 

(CYBE), i.e., c(r) = 0. 
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3. Witt and Virasoro algebras 

Let W, = Der F[x], the Lie algebra of derivations of the polynomial algebra 

F[x]. W, has a basis {e;} for i 2 -1, where e, = xl+’ dldx. The product is given by 

[e,, e,l = (j - Qe,,,. We call W, the (one-sided) Witt algebra in one variable. We 

look for non-zero solutions of (CYBE) of the form e, A e,, i # j. 

Proposition 2. Let i, j I -1, i - j # 0 in F. Then e, A e, satisfies (CYBE) if and 

only if i = 0 for j = 0. 

Proof. Using the notation of Section 2, let Y = e, A e,. Then it is easy to see that 

C(r) = (i - i)(e, +, @ e, @ e, - e,,, @ e, @ e, 

+ e, @ e, +, @ e, - e, @ e, +, 63 e, 

+e,@@e,+, -VW%+,). 

This is 0 if i = 0 or j = 0. If i #O and j # 0, then the six displayed terms in 

W, @ W, @ W, are linearly independent. This proves Proposition 2. 0 

For each i 2 0, let W(,‘) be the triangular coboundary Lie bialgebra structure on 

IV, with Lie comultiplication 8, given by ai = [e,, A e,, w] for w E W:‘). Thus, 

&(e,,) = [e,, A e,, e,,l = [e,,? 4 A e, + e,, A [et3 e,,l = n(e,, A e,) + (n - i)(e,, A e,,+,) 
for all 12 2 -1. 

We remark that the triangular coboundary Lie bialgebra structure on Vi”, as 

well as that on W”’ and V”’ later in this section, were also presented in (91, in the 

case where F has characteristic zero, where the same formula for 6;(e,,) is 

obtained. Here we also discuss the positive characteristic case. 

We discuss some of these structures. For i= -1, &,(e,,) = n(e,, A e_,) + 

(n + We,, A e,,-,). Th us, for each n 2 - 1, e_, , e,,, . , e,, span a finite-dimen- 

sional Lie subcoalgebra, so Lot IV:-” = I@-“. For i = 0, S,, = 0. For i = 1, 

&(e,,) = n(e,, A e,) + (n - l)(eO A e,,,,). Then $(e-,) = -(e-, A e,), &(e,,)= 
-(e,, A e,) and s,(e,) = 0. If the characteristic of F is 0, then each e,, for n I> 2 

generates an infinite-dimensional Lie subcoalgebra, and Lot &‘i” is three-dimen- 

sional. If F has positive characteristic p, then for each k > 0, 6,(e,,>+,) = ekP+, A 

e1, so that em,, q,, e,, . . . , ek,,+, span a finite-dimensional Lie subcoalgebra. 

Since every e,, is captured in this way, Lot Wi” = W(,” at positive characteristic. 

Now fix i 2 2. Note that s,(e,) = 0 and that 6;(e,,) = -i(e,, A e,) so that e,, and e, 

span a two-dimensional Lie subcoalgebra. If F has a positive characteristic p, then 

as in the case i = 1, ai(ekp+,) = i(ekpci A e,). Suppose (p, i) = 1. Then for II Z-1, 

n,n+i,... n + (p - 1)i are mutually distinct modulo p, so one of them, say 

IZ + Ii, is 0 modulo p. Then n + (I + 1)i = kp + i for some k, and the formula for 
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Gr(ek,,+,) shows that e,, lies in a finite-dimensional Lie subcoalgebra. However, if 

(p, i) = p, then one can see that Lot W ‘I” is spanned by the e,, with p 1 n. 

Now let F have characteristic zero, i 22. Then &(e,,) = n(e,, A e,) + 

(n - i)(e,, A err+, ) implies that each e,, with y1# 0,i generates an infinite-dimen- 

sional Lie subcoalgebra, and it is not hard to see that Lot Wi” = Fe,, fI3 Fe,. The 

structure of Lot WY’ is also mentioned in [9] for characteristic zero. 

We use the above remarks on Lot W:” to show that the Lie coalgebra 

structures (WY’, 8;) are mutually non-isomorphic for i 2 -1 when F is of charac- 

teristic zero. Thus take i # j, i 2 - 1, j 2 - 1. Clearly 6, and 13, give non-isomorphic 

Lie coalgebras if either i or j is - 1, 0 or 1. So let i 2 2 and j 2 2. Let 7’ be a Lie 

coalgebra isomorphism of W:‘) to Wi”. We can assume j > i. Since Lot W\” = 
Fe,, @ Fe, and Lot W\” = Fe,, CB Fe,, one sees that the condition 8, T = (T C3 T)6, 

requires the action of T on Lot W(,” to be given by a matrix [E ,‘,,I for a,/3 in F. 
a # 0. We use this to derive a contradiction. 

Thus, let T(e,,) = ae,, + be, and T(e,) = ye,, + 6e,, with A = a6 - By f 0. Since 

6(e,,) = -i(e,, A e,), we get that (T 63 T)t?,(e,,) = -iA(e,, A e,) and sJT(e,,)) = 
-ja(e,, A e,), so id = ja. Also (T@J T)6,(e,) = 0 and s,(T(e,)) = -jy(e,, A e,), so 
y=O. This A=&3#0 so id=jcu gives S=jli. So T(e,)=ae,,+pe,, a#0 and 

T(e,) = (j/i)e,. 

Let T(e,) = CA_-, qkek for s 2 -1. We will show that T(e- ,) E Fe,, G3 Fe, = 
Lot W:“, so that T is not injective. a contradiction. Since 6,(e-,) = -(e_, A 

e,) + (-1 - i)e,, A e,_,, (T@ T)6,(em,) = 6,T(e_,) yields 

-F =,.,(e, A (j/G,> + C-1 - i)[(9, + De,) A C c,.,e,] 
I 

= C ~-,.Ade, * e,> + (y - j)(e,, * e,+,>> 

Comparing coefficients of e, A e, for s # 0, j, we get 

--(Y_ ,,) (j/i) + (-1)(-l - i)@_ ,,,, = SK,., for s f0, j (1) 

If /3 = 0, this says (s + j/i)a_,,, =0 if s#O,j. Since j>i, $2 -1, we have that 

sf j/i>0 so that (Y_, ( > 0 if s # 0, j, and T(e- ,) E Fe,, CB Fe,, a contradiction. 

Hence assume that p > 0, and we rewrite (1) as 

(s + jii)a_,., = (i + l)Pa,- ,.,, for s#O,j. (1’) 

Next we compare coefficients of 

(-1 - i)(Y(Y,_I,, = (s - 

Comparison with (1’) yields 

e,, A e, for s # 0, j to get 

2j)a-,..,-, fors#j.s-jz-1. (2) 
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a_ I,r = 

-(s - 2i)P 
(s + j/i)& 

(Y_,,,,-, forsfj, srj-I (3) 

In particular, LY- I ,rj = 0 which then implies that (Y_,,~, = 0 for k 2 2. Suppose 

ay,,,+,l for rj0 (mod j) with 12 -1. Then (3) yields (Y_~,,+,, #O for all t?O, 

which is impossible. Thus again T(e- ,) E Fe,, 49 Fe,, a contradiction. 

We have not determined other solutions of (CYBE) in W, A W, other than 

those of the form e, A e,, for F of characteristic zero. At positive characteristic p, 

there will also be solutions e, A e, for p /(j - i), as shown by the proof of 

Proposition 2. 

Now we discuss the (full) Witt algebra W (or Virasoro algebra) in one variable, 

with basis {ei} for i E Z, and multiplication [e,, e,] = (j - i)e,+,. This is the Lie 

algebra of derivations of the algebra F[x, xm’1 of Laurent polynomials, with 

e, = x ‘+’ dldx. The proof of Proposition 2 is valid for i, j in Z, and for each i E Z, 

6,(w) = [e. A e,, W] defines a triangular coboundary Lie bialgebra structure W”’ 

on W. The same formula s,(e,,) = n(e,, A ei) + (n - i)(e,, A e,,+,) holds. For i = 

-1, we note that for rz? -1, e,,, . . , e,, is a finite-dimensional Lie subcoalgebra 

of Wcp”, but that for n 5 -2, err generates an infinite-dimensional Lie sub- 

coalgebra at characteristic zero, and Lot WC-‘) = @,,+, Fe,,. At characteristic p, 

6_,(e_,,1p,) = -(em,,,_, A em,) shows that Lot W (-I) = WC-‘). Of course S,, is still 

0. Fori=l,wenotethatforeachnsl,e,Z ,..., e, span a finite-dimensional Lie 

subcoalgebra. So at characteristic zero, Lot WC’) = @,r5, Fe,,. At positive charac- 

teristic, the same argument used for WY’) shows that Lot W”’ = WC’). Now let 

i 2 2. For each n = ki % 1, note that exi, e,,,,,,, . . . , e, span a Lie subcoalgebra. 

At characteristic zero, each e,, with n > i, or ~15 i and i 1 n, generates an 

infinite-dimensional Lie subcoalgebra. So Lot W”’ = eti, Fe,,. (This was also 

valid for i = -1 and i = 1.) At characteristic p, the same discussion as for WY’ 

shows that Lot W”’ = WC’) if (p, i) = 1, and Lot W(j) = @,,,,, Fe,, if (p, i) = p. 

Now let i 5 -2. Then symmetric arguments show that at characteristic zero, 

Lot W”’ = Bh5, Fe,,. At positive characteristic p, Lot W(j) = WC’) if (p, i) = 1 

and Lot W”’ = @ ,,,, I Fe,, if (p, i) = p. 

Finally, let V= W CB Fc be the Virasoro algebra with central charge, where c is 

a central element, and W has a basis {e,} for i in Z, and multiplication 

[e,, ejl=(i-i>e,+j+ BCi’-i>s,+ ,.,, c. Here we let F have characteristic zero. 

The proof of Proposition 2 is valid for i, j in Z, and one also checks that e, A e_, is 

not a solution of (CYBE) for i # 0. (At characteristic p 2 5, e, A e_, is a solution 

of (CYBE) if p) i.) For any fixed w in W, c A w trivially satisfies (CYBE). So for 

Y= c A w, 6(x) = [ c A w, x] = c A [wx] defines a triangular coboundary Lie 

bialgebra structure on V. In particular, for w = ei, let S:(x) = c A [e,xJ, so 

Ue,,) = (n - i)(c A e,+,,) and 6:(c) = 0. Note that for i # 0, there is a Lie 

coalgebra map of W (‘) into (V, 6 :) taking e, to 0, e,, to c and e,, to e,, for n # 0, i. 
For i # 0, Loc(V, 6:) is similar to Loc( W, S,), i.e., Loc(V, 6 :) = 
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(@,_, Fe,,)@ Fc. F or i = 0, Fe,, G3 Fc is a Lie subcoalgebra of (V, 6,‘,) for each 

II E Z, so Loc(V, S,‘,) = V. For each i E Z, e,, A e, satisfies (CYBE), so let V”’ = 

(V, S;), where 6,(u) = [e,, A e,, u] for u E V. Then 6;(c) = 0, so Lot V”’ = 
(Lot IV”‘) G3 Fc. If i = 0, then 6,, = 0 (on W,, W and V). However, the formula 

s;,(e,,) = n(c A e,,), suggests a replacement p. for 6,, in W, and W. Set p(,(e,,) = 

n(e,, A e,l). This gives a Lie coalgebra structure, but not a Lie bialgebra structure. 

The invariance condition fails for p(,([e,e;]) for i,j # 0, i # j. 

4. The continuous dual Lie hialgebra of a Lie hialgebra 

Let (M, S) be a Lie coalgebra. Then M:” = Hom,(M, F) is a Lie algebra under 

the convolution product (f* g)(m) = (f C3 g)(sm), i.e., if 6m = jJ 1,1 m, C3 ml in 

M A MC M@ M, then (f*g)(m) = c,,, f(m,)g(mJ for f,g in M”. (Sweedler 

notation.) 

Let L be a Lie algebra with multiplication m : L @ L-+ L. Then 

m:” : L:“-t (L @ L)*. A subspace V of L” is called good if m”‘(V) G V @ V, where 

we identify V 8 V C L”: @ L” & (L @ L)“‘. This means that there exists a linear 

map 6 : V- V @ V such that if Sf = c f f, @f, for f,f, ,f, in V, then f([xy]) = 

CI f,(x)!?(y) for all x,y in L. 
Let L” = c V, over all good subspaces V of L”‘. Then L” is a Lie coalgebra, 

where for each V, 6(V) C VA V. See [4] for the original development of this idea. 

Now let L be a Lie bialgebra. Then L” is a Lie algebra, and L” c L’” is a Lie 

coalgebra. 

Proposition 3. Let L be a bialgebra. Then L” is a Lie subalgebra of L”;, and L” is 
a Lie bialgebra. 

Proof. To see that L” is closed under the convolution product on L”, we claim 

that L” + (L” * L”) is a good subspace of L*, so that L” * L” C L”. Let V,W be 

good subspaces of L:“. Using 6 for the Lie comultiplication in L, and y for the Lie 

comultiplication in L”, let f E V, g E W, y(f) = c, f, @f, in V 63 V and y(g) = 

c,q g, @ g1 in W @ W. The idea is that 

Y(f”g)=CS,~(f,~g)+Cg,~(f*g,) 
/ K 

+C(f,*g)%+C(f*g,)@gg2 
J h’ 

defines the appropriate map on L” * L”. To see this, evaluate both sides on x @ y 

in L @ L. The left-hand side gives (f’* g)((xy]). Using the invariance axiom on 

~([xY]), and dropping the summation signs, this is equal to 
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Inspection, using the definition of convolution product, shows that this agrees 
with the right-hand side acting on x By. The displayed formula for y( f* g) is 
precisely the invariance condition for L”, so that L” is a Lie bialgebra. (Proposi- 
tion 3 is also in [S]. Since [8] has yet to appear, we included a proof here.) El 

5. The continuous duals of the Witt and Virasoro algebras 

In this section, F will be of characteristic zero. It is well-known that W, and W 

are simple Lie algebras. Now if L is any Lie algebra, then it is known (see [4]) 
thatLoc(L”)={fEL*(f(Z)=Of or some cofinite ideal I of L}. Hence if L is an 
infinite-dimensional simple Lie algebra, then Loc(L”) = 0. In particular, 
Loc( WY) = 0 and Loc( W’) = 0. Since V has Fc as its only non-trivial ideal, also 
Loc(V”) = 0. 

WY has recently been identified as the space of F-linearly recursive sequences 

f=(Sl)+, [lOI ( see also [6] for a partial result). This means that f satisfies a 
recursive relation of the form f, = h,f,,_, + h,f,,_, + . . . + h,f,,_, for all it z r - 1 
for some r 2 1. The linear identification of f= (L.) in WT is via x =f(e;) for 
i 2 -1. We give some examples of the Lie bialgebra structures on WY. Note that 
the elements of the dual basis {ey} are in WY, i.e., WY contains all finite 
sequences. Of course, these are linearly recursive. To explain this in terms of the 
Lie comultiplication y on WY, note that r(ez) = ci+j=,(j - i)eT Be;, i.e., 
@nz_l Fe: is a good subspace of WY, so is contained in WY. Such a comultiplica- 
tion formula is proved by acting on ek @ e, for any k,l z -1. Both sides yield 

(I - k)%,+,. Before giving further examples of y, we note that y depends only on 
the Lie algebra structure of W,. Now WY contains the geometric (or exponential) 
sequences (a’),,_, for any a # 0 in F. More generally, it contains the sequences 
(~‘j~);~_ 1 for a # 0 in F and n a fixed non-negative integer. A binomial calculation 
will show that 

y(~iifl)=~[(r)-(jll)](~‘ij)~(a’i”+l-’). 
j=O 

For example ~(a’) = (a’)@((a’i) - (a’i)@(a’), which is proved by evaluating on 
ek @ e,, obtaining (I - k)akf’ = ak(lu’) - (kuk)(a’). Thus, as a and n vary, the 
(a’i”) span a good subspace of WY. When F is algebraically closed, it is 
well-known that the (a’?‘) and the e: are a basis for the space of linearly recursive 
sequences, which shows that WY contains all linearly recursive sequences. See [lo] 
for the converse, and for an explanation of why the algebraically closed condition 
can be assumed without loss of generality. 
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It is possible to give an alternate identification of WY as linearly recursive 

sequences. This starts with the associative algebra F[x] of polynomials in X. It has 

a continuous (coassociative) coalgebra dual F[x]” (see [13]), which was identified 

in [12] as linearly recursive sequences. Nichols has recently shown (see [ll, 

Corollary 3]), that WY can be identified as a vector space with F[x]“, and that the 

Lie comultiplication y on WY can be described in terms of the coassociative 

comultiplication on F[x]“. The same technique will identify W” with F[x, X-‘I’, 

which is the space of linearly recursive sequences f = (fr)lE-r. Here the minimal 

linearly recursive relation off must be of the form xr - h,x’-’ - . . . - h,, where 

h,. # 0, i.e., from each coordinate, the sequence can be solved to the left as well as 

to the right. This is the space of sequences spanned by the (u’Y)~~~ for a # 0 in F, 

m 2 0. The reason that the ez do not belong to W” is that the formula 

ye: = xl+,_ (; - i)eg @ eT which worked for WY (where i, j 2 -1) does not 

make sense for i, j E Z. (lt is not a finite sum.) The same formula for y(a’i”) in 

WY is valid in W”. As with WY, the Lie comultiplication on w” can be described in 

terms of the coassociative comultiplication on F[x, X-‘1’ (see [ll]). We have seen 

that Lot WY = 0 and Lot W” = 0. We remark that coassociative coalgebras are 

locally finite [13]. Thus in [12], we were able to give an algorithm to compute the 

comultiplication of a linearly recursive sequence in terms of an easily computable 

basis of the (finite-dimensional) subcoalgebra it generates. In [12], this was done 

for F[x]“, but the same technique works for f in F[x, X-‘1’ by taking its restriction 

to F[x] in F[x]“, applying the algorithm, and extending back to F[x, X-‘1’. See 

[ll] for an example of how to compute the Lie comultiplication of a Fibonacci 

sequence based on its coassociative comultiplication. 

For V”, we note that c”gV’ since & z,EE (i - i’)e, @ e_i is not a finite sum (it 

would be y(c”)). Since If-+ W (c ~0) is a surjection of Lie algebras, it follows 

that W”q V” is a Lie coalgebra injection. To see that this is an isomorphism, we 

need to show that if f E V”, then f(c) = 0. This is done in [ll]. Hence V” F W”. 

The same formula for -y(a’i”) in WY or W” works for V”, and the algorithmic 

approach to computing y(f) for f E V” is still possible since V” z W”. 

Now we comment on the Lie algebra structures on WY, W” and V” induced by 

our various Lie coalgebra (Lie bialgebra) structures on W, , W and V respectively. 

Starting with W, , for each i 2 - 1, we have a Lie bialgebra structure with Lie 

comultiplication 6,(w) = [e,, A e, , w], so that S,(e,,) = n(e,, A e,) + (n - i)(e,, A 

e,,,,). We assume i # 0, as S,, = 0 gives (WY))* the structure of an abelian Lie 

algebra. For the dual basis { ez}, this means that the Lie multiplication in (W:“)” 

is given by 

[eh I ez] = (n - 2i)e,*_, for II # 0, 

[e: , e,*] = nef for nfO,i , 

and all other products are zero. These formulas describe in a sense the Lie 
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c a,,ez, 2 b,,,ei = c c 1 e* P P’ 
where c, =p(a,,b,+; - bOap+, + b,a, - a,bp) + i(a,+,b,, - a,,b,,+;). If f and g are 

given linearly recursive sequences, one would like to express [f, g] in some 

‘natural’ way, rather than express f and g in terms of the (a$“) and the e:, and 

develop formulas for the products [(a’jn), (bkkrn)] and [(a/i”), et]. 
We note that (WY))* has its derived algebra with pseudo-basis {ey} for j # i, 

and the second derived algebra has pseudo-basis {ez} for k # O,i, so that the third 

derived algebra is 0, i.e., (WY’)* (and so also (W:“)“) are solvable. 

The same multiplication rule for the e; in (WY))* holds in (WC”)* = { ( fi)irz}, 
only now k E Z. Of course, e: is not in (WY’)“, and the same remarks apply 

concerning the need for an algorithm to describe a given product in (Wj”)“. 

Finally, for V”’ = W”‘@ Fc, 6,(c) = 0. In (If”‘)*, the same rule holds for 

multiplying the e:. So (V”‘)” z (W”‘)” as Lie bialgebras. Recall that V also has a 

Lie bialgebra structure with comultiplication 6:(e,) = (n - i)(c A e,,,) and 

S:(c) = 0, resulting from the solution c A ei of (CYBE). Fix i in Z. Then the 

multiplication for the ez and c* in V* is given by [c*, e,*] = (n - 2i)e,*_,, and all 

other products are zero. So the rule in (V, 8;) is 

c a,ey + (YC*, c b,e,* + PC*] = 2 c,,e% , 

where cp = (p - 2i)((wb,, - pa,)). This is a metabelian (Z-step solvable) Lie 

algebra. Again, we have no algorithm for multiplying two given linearly recursive 

sequences under this product. 
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