Witt and Virasoro algebras as Lie bialgebras

Earl J. Taft
Mathematical Sciences Research Institute, Berkeley, CA 94720, USA and Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA
Communicated by J.D. Stasheff
Received 13 February 1992
Revised 29 June 1992

Abstract

Taft, E.J., Witt and Virasoro algebras as Lie bialgebras, Journal of Pure and Applied Algebra 87 (1993) 301-312.

We give a countably infinite number of Lie coalgebra structures on the Witt algebra $W=$ Der $k[x]$ over a field k, and on the Virasoro algebras $W_{1}=\operatorname{Der} k\left[x, x^{-1}\right]$ and $V=W_{1} \oplus k r$ with central charge c. These come from certain solutions of the classical Yang-Baxter equation, and yield Lie bialgebra structures in each case. For k of characteristic 0 . we show that these Lie coalgebra structures on W are mutually non-isomorphic, using an analysis of the locally finite part of W. We also discuss the Lie bialgebra duals of each of these constructions, which can be identified with linearly recursive sequences (one-sided or two-sided).

1. Introduction

We discuss various Lie bialgebra structures on the Witt and Virasoro algebras, and also on their continuous duals of linearly recursive sequences. The basic idea of a (triangular coboundary) Lie bialgebra has been suggested by Drinfeld [1].

2. Triangular coboundary Lie bialgebras

We work over a field F of characteristic $\neq 2$. A Lie algebra L over F has a skew-symmetric multiplication [,] satisfying the Jacobi identity. Reversing the arrows, a Lie coalgebra M over F has a comultiplication δ from M into $M \wedge M$, the skew-symmetric tensors in $M \otimes M$, which satisfies the co-Jacobi identity

[^0]$\left(1+\sigma+\sigma^{2}\right)(1 \otimes \delta) \delta=0$, where σ is the permutation (123) in S_{3} acting in the usual way on $M \otimes M \otimes M$. In contrast to the associative coalgebra theory (see [13]), Lie coalgebras need not be locally finite. See [4] for a general discussion of Lie coalgebras and local finiteness in particular. Set $\operatorname{Loc}(M)$ equal to the sum of all finite dimensional Lie subcoalgebras of M. Examples will appear later where $\operatorname{Loc}(M) \neq M$, as will others where $\operatorname{Loc}(M)=M$ (see also [7]).

A Lie algebra L which is simultaneously a Lie coalgebra is called a Lie bialgebra if $\delta \in Z^{1}(L, L \wedge L)$, where L acts on $L \wedge L$ by the adjoint action $\lfloor a \wedge b, x\rfloor=\lfloor a, x \mid \wedge b+a \wedge\lfloor b, x\}$. Thus the compatibility (invariance) condition is that $\delta[x, y]=[\delta x, y]-[\delta y, x]$. (Note: we sometimes omit the comma in [,] if no confusion is possible.) If $\delta=\delta_{r} \in B^{\prime}(L, L \wedge L)$ for some $r \in L \wedge L, L$ is called a coboundary Lie bialgebra (see [1]). The condition is that $\delta_{r}(x)=[r, x]$ for all $x \in L$.

For a Lie algebra L, we recall the classical Yang-Baxter equation (CYBE) for an element r in $L \otimes L$:
(CYBE) $\quad\left[r^{12}, r^{13}\right]+\left[r^{12}, r^{23}\right]+\left[r^{13}, r^{23}\right]=0$.
(CYBE) is an equation in $U(L) \otimes U(L) \otimes U(L)$, where $U(L)$ is the universal enveloping algebra of L. The notation is that if $r=\sum a_{i} \otimes b_{i}$, then $r^{12}=$ $\sum a_{i} \otimes b_{i} \otimes 1, r^{13}=\sum a_{i} \otimes 1 \otimes b_{i}$ and $r^{23}=\sum 1 \otimes a_{i} \otimes b_{i}$. The following proposition was stated in [1]. A proof is outlined in [3]. The calculation for the case $r=a \wedge b=a \otimes b-b \otimes a$ and $[a b]=b$ is given in [9]. We give a complete proof here.

Proposition 1. Let L be a Lie algebra. Let $r \in L \wedge L$ satisfy (CYBE). Then $\delta=\delta_{r}$ defined by $\delta(x)=[r, x]$ gives L the structure of a Lie coalgebra, and hence the structure of a coboundary Lie bialgebra.

Proof. Let $c(r)=\left[r^{12}, r^{13}\right]+\left[r^{12}, r^{23}\right]+\left[r^{13}, r^{23}\right]$, so that (CYBE) is the condition $c(r)=0$.

We write $r=\sum a_{i} \wedge b_{i}=\sum a_{i} \otimes b_{i}-\sum b_{i} \otimes a_{i}$. We organize (CYBE) as follows. We write

$$
\begin{aligned}
& r^{12}=\sum a_{i} \otimes b_{i} \otimes 1-\sum b_{j} \otimes a_{j} \otimes 1 \\
& r^{23}=\sum 1 \otimes a_{k} \otimes b_{k}-\sum 1 \otimes b_{l} \otimes a_{l}
\end{aligned}
$$

We write $r^{13}=\sum a_{k} \otimes 1 \otimes b_{k}-\sum b_{1} \otimes 1 \otimes a_{l}$ in the product $\left[r^{12}, r^{13}\right]$, but write $r^{13}-\sum a_{i} \otimes 1 \otimes b_{i}-\sum b_{i} \otimes 1 \otimes a_{j}$ in the product $\left[r^{13}, r^{23}\right]$. The result is the following 12 terms, where we drop the summation signs over i, j, k and l :
(CYBE) $0=\left[a_{i} a_{k}\right] \otimes b_{i} \otimes b_{k}-\left[a_{i} b_{l}\right] \otimes b_{i} \otimes a_{l}$

$$
\begin{aligned}
& -\left[b_{j} a_{k}\right] \otimes a_{j} \otimes b_{k}+\left[b_{j} b_{l}\right] \otimes a_{j} \otimes a_{l} \\
& +a_{i} \otimes\left[b_{i} a_{h}\right] \otimes b_{k}-a_{i} \otimes\left[b_{i} b_{l}\right] \otimes a_{l} \\
& -b_{j} \otimes\left[a_{j} a_{k}\right] \otimes b_{k}+b_{j} \otimes\left[a_{j} b_{l}\right] \otimes a_{l} \\
& +a_{i} \otimes a_{k} \otimes\left[b_{i} b_{k}\right]-a_{i} \otimes b_{l} \otimes\left[b_{i} a_{l}\right] \\
& -b_{j} \otimes a_{k} \otimes\left[a_{j} b_{k}\right]+b_{j} \otimes b_{i} \otimes\left[a_{j} a_{l}\right] .
\end{aligned}
$$

Since $\delta \in B^{\prime}(L, L \wedge L)$, we have only to verify the co-Jacobi identify for δ. For $x \in L$,

$$
\begin{aligned}
\delta(x) & =\left[\sum a_{i} \wedge b_{i}, x\right]=\sum\left[a_{i} x\right] \wedge b_{i}+\sum a_{i} \wedge\left[b_{i} x\right] \\
& =\sum a_{i} \otimes\left[b_{i} x\right]+\sum\left[a_{i} x\right] \otimes b_{i}-\sum b_{k} \otimes\left[a_{k} x\right]-\sum\left[b_{i} x\right] \otimes a_{i}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& (\delta \otimes 1) \delta(x) \\
& \begin{array}{l}
=\sum_{i, k}\left(a_{k} \otimes\left[b_{k} a_{i}\right]+\left[a_{k} a_{i}\right] \otimes b_{k}-b_{k} \otimes\left[a_{k} a_{i}\right]-\left[b_{k} a_{i}\right] \otimes a_{k}\right) \otimes\left[b_{i} x\right] \\
\quad+\sum_{j, l}\left(a_{l} \otimes\left[b_{l}\left[a_{j} x\right]\right]+\left[a_{l}\left[a_{i} x\right]\right] \otimes b_{l}\right. \\
\left.\quad-b_{l} \otimes\left[a_{l}\left[a_{j} x\right]\right]-\left[b_{l}\left[a_{j} x\right]\right] \otimes a_{t}\right) \otimes b_{j} \\
\quad-\sum_{k, l}\left(a_{l} \otimes\left[b_{l} b_{k}\right]+\left[a_{l} b_{k}\right] \otimes b_{l}\right. \\
\left.\quad-b_{l} \otimes\left[a_{l} b_{k}\right]-\left[b_{i} b_{k}\right] \otimes a_{l}\right) \otimes a_{l} \otimes\left[a_{k} x\right] \\
\quad-\sum_{l, k}\left(a_{k} \otimes\left[b_{k}\left[b_{l} x\right]\right]+\left[a_{k}\left[b_{l} x\right]\right] \otimes b_{k}\right. \\
\left.\quad \quad-b_{k} \otimes\left[a_{k}\left[b_{l} x\right]\right]-\left[b_{k}\left[b_{l} x\right]\right] \otimes a_{k}\right) \otimes a_{l} .
\end{array} .
\end{aligned}
$$

Notice that there are 16 terms here (dropping the summation signs). Hence $\left(1+\sigma+\sigma^{2}\right)(\delta \otimes 1) \delta(x)$ has 48 terms. We break this into 3 groups of 16 terms each.

First consider the 16 terms whose third factor is a product of 2 or 3 elements, one of which is x. We wish to write this group as $1 \otimes 1 \otimes R_{x}$ acting on an element of $L \otimes L \otimes L$, where R_{x} is the adjoint action $R_{x}[y]=[y, x]$ of L on L.

8 of the 16 terms above already are in this form (the first and third sums). The 8 remaining terms (after recycling) are

$$
\begin{aligned}
& b_{j} \otimes a_{l} \otimes\left[b_{l}\left[a_{j} x\right]\right]-b_{k} \otimes a_{k} \otimes\left[a_{k}\left[b_{l} x\right]\right] \\
& +b_{l} \otimes b_{j} \otimes\left[a_{l}\left[a_{j} x\right]\right]-b_{j} \otimes b_{l} \otimes\left[a_{l}\left[a_{j} x\right]\right] \\
& -a_{l} \otimes b_{j} \otimes\left[b_{l}\left[a_{j} x\right]\right]+a_{l} \otimes b_{k} \otimes\left[a_{k}\left[b_{i} x\right]\right] \\
& -a_{l} \otimes a_{k} \otimes\left[b_{k}\left[b_{l} x\right]\right]+a_{k} \otimes a_{i} \otimes\left[b_{k}\left[b_{l} x\right]\right] .
\end{aligned}
$$

Using the Jacobi identity on each line, these 8 terms reduce to the 4 terms

$$
\begin{aligned}
& b_{j} \otimes a_{j} \otimes\left[\left[b_{i} a_{j}\right] x\right] \\
& +b_{i} \otimes b_{j} \otimes\left[\left[a_{i} a_{j}\right] x\right] \\
& +a_{l} \otimes b_{k} \otimes\left[\left[a_{k} b_{l}\right] x\right] \\
& +a_{k} \otimes a_{l} \otimes\left[\left[b_{k} b_{l}\right] x\right]
\end{aligned}
$$

Thus the 16 terms we are now considering reduce to 12 terms, whose sum is the image under $1 \otimes 1 \otimes R_{x}$ of

$$
\begin{aligned}
& a_{k} \otimes\left[b_{k} a_{i}\right] \otimes b_{i}+\left[a_{k} a_{i}\right] \otimes b_{k} \otimes b_{i} \\
& -b_{k} \otimes\left[a_{k} a_{i}\right] \otimes b_{i}-\left[b_{k} a_{i}\right] \otimes a_{k} \otimes b_{i} \\
& -a_{l} \otimes\left[b_{l} b_{k}\right] \otimes a_{k}-\left[a_{i} b_{k}\right] \otimes b_{l} \otimes a_{k} \\
& +b_{l} \otimes\left[a_{i} b_{k}\right] \otimes a_{k}+\left[b_{i} b_{k}\right] \otimes a_{i} \otimes a_{k} \\
& +b_{j} \otimes a_{l} \otimes\left[b_{i} a_{j}\right]+b_{l} \otimes b_{j} \otimes\left[a_{i} a_{j}\right] \\
& +a_{l} \otimes b_{k} \otimes\left[a_{k} b_{l}\right]+a_{k} \otimes a_{j} \otimes\left[b_{k} b_{l}\right]
\end{aligned}
$$

Inspection shows that these twelve terms sum to $c(r)$, the right-hand side of our (CYBE). Since $c(r)=0$, our group of 16 terms sums to 0 . Similarly, the remaining 32 terms can be split in 2 groups of 16 terms each, one of which is $\left(R_{x} \otimes 1 \otimes 1\right) c(r)$ and the other one of which is $\left(1 \otimes R_{x} \otimes 1\right) c(r)$.

Thus Proposition 1 is proved.

We point out that our proof shows that for $r \in L \wedge L$, if $\delta(x)=[r, x]$ for $x \in L$, then $\left(1+\sigma+\sigma^{2}\right)(\delta \otimes 1) \delta(x)=\lfloor c(r), x]$, where x acts on $L \otimes L \otimes L$ by the adjoint action $[a \otimes b \otimes c, x]=[a x] \otimes b \otimes c+a \otimes[b x] \otimes c+a \otimes b \otimes[c x]$. A coboundary Lie bialgebra L is said to be triangular if $\delta=\delta_{r}$ for r in $L \wedge L$ satisfying (CYBE), i.e., $c(r)=0$.

3. Witt and Virasoro algebras

Let $W_{1}=\operatorname{Der} F[x]$, the Lie algebra of derivations of the polynomial algebra $F[x] . W_{1}$ has a basis $\left\{e_{i}\right\}$ for $i \geq-1$, where $e_{i}=x^{i+1} \mathrm{~d} / \mathrm{d} x$. The product is given by $\left[e_{i}, e_{j}\right]=(j-i) e_{i+j}$. We call W_{1} the (one-sided) Witt algebra in one variable. We look for non-zero solutions of (CYBE) of the form $e_{i} \wedge e_{j}, i \neq j$.

Proposition 2. Let $i, j \geq-1, i-j \neq 0$ in F. Then $e_{i} \wedge e_{j}$ satisfies (CYBE) if and only if $i=0$ for $j=0$.

Proof. Using the notation of Section 2, let $r=e_{i} \wedge e_{j}$. Then it is easy to see that

$$
\begin{aligned}
c(r)=(i-j) & \left(e_{i+j} \otimes e_{j} \otimes e_{i}-e_{i+j} \otimes e_{i} \otimes e_{j}\right. \\
& +e_{i} \otimes e_{i+j} \otimes e_{j}-e_{i} \otimes e_{i+j} \otimes e_{i} \\
& \left.+e_{j} \otimes e_{i} \otimes e_{i+j}-e_{i} \otimes e_{j} \otimes e_{i+j}\right) .
\end{aligned}
$$

This is 0 if $i=0$ or $j=0$. If $i \neq 0$ and $j \neq 0$, then the six displayed terms in $W_{1} \otimes W_{1} \otimes W_{1}$ are linearly independent. This proves Proposition 2.

For each $i \geq 0$, let $W_{1}^{(i)}$ be the triangular coboundary Lie bialgebra structure on W_{1} with Lie comultiplication δ_{i} given by $\delta_{i}(w)=\left[e_{0} \wedge e_{i}, w\right]$ for $w \in W_{1}^{(i)}$. Thus, $\delta_{i}\left(e_{n}\right)=\left[e_{0} \wedge e_{i}, e_{n}\right]=\left[e_{0}, e_{n}\right] \wedge e_{i}+e_{0} \wedge\left[e_{i}, e_{n}\right]=n\left(e_{n} \wedge e_{i}\right)+(n-i)\left(e_{0} \wedge e_{n+i}\right)$ for all $n \geq-1$.

We remark that the triangular coboundary Lie bialgebra structure on $W_{1}^{(i)}$, as well as that on $W^{(i)}$ and $V^{(i)}$ later in this section, were also presented in [9], in the case where F has characteristic zero, where the same formula for $\delta_{i}\left(e_{n}\right)$ is obtained. Here we also discuss the positive characteristic case.

We discuss some of these structures. For $i=-1, \delta_{-1}\left(e_{n}\right)=n\left(e_{n} \wedge e_{-1}\right)+$ $(n+1)\left(e_{0} \wedge e_{n-1}\right)$. Thus, for each $n \geq-1, e_{-1}, e_{0}, \ldots, e_{n}$ span a finite-dimensional Lie subcoalgebra, so Loc $W_{1}^{(-1)}=W_{1}^{(-1)}$. For $i=0, \delta_{0}=0$. For $i=1$, $\delta_{1}\left(e_{n}\right)=n\left(e_{n} \wedge e_{1}\right)+(n-1)\left(e_{0} \wedge e_{n+1}\right)$. Then $\delta_{1}\left(e_{-1}\right)=-\left(e_{-1} \wedge e_{1}\right), \quad \delta_{1}\left(e_{0}\right)=$ $-\left(e_{0} \wedge e_{1}\right)$ and $\delta_{1}\left(e_{1}\right)=0$. If the characteristic of F is 0 , then each e_{n} for $n \geq 2$ generates an infinite-dimensional Lie subcoalgebra, and $\operatorname{Ioc} W_{1}^{(1)}$ is three-dimensional. If F has positive characteristic p, then for each $k>0, \delta_{1}\left(e_{k p+1}\right)=e_{k p+1} \wedge$ e_{1}, so that $e_{-1}, e_{0}, e_{1}, \ldots, e_{k p+1}$ span a finite-dimensional Lie subcoalgebra. Since every e_{n} is captured in this way, Loc $W_{1}^{(1)}=W_{1}^{(1)}$ at positive characteristic.

Now fix $i \geq 2$. Note that $\delta_{i}\left(e_{i}\right)=0$ and that $\delta_{i}\left(e_{0}\right)=-i\left(e_{0} \wedge e_{i}\right)$ so that e_{0} and e_{i} span a two-dimensional Lie subcoalgebra. If F has a positive characteristic p, then as in the case $i=1, \delta_{i}\left(e_{k p+i}\right)=i\left(e_{k p+i} \wedge e_{i}\right)$. Suppose $(p, i)=1$. Then for $n \geq-1$, $n, n+i, \ldots n+(p-1) i$ are mutually distinct modulo p, so one of them, say $n+l i$, is 0 modulo p. Then $n+(l+1) i=k p+i$ for some k, and the formula for
$\delta_{i}\left(e_{k p+1}\right)$ shows that e_{n} lies in a finite-dimensional Lie subcoalgebra. However, if (p, i) $=p$, then one can see that $\operatorname{Loc} W_{1}^{(i)}$ is spanned by the e_{n} with $p \mid n$.

Now let F have characteristic zero, $i \geq 2$. Then $\delta_{i}\left(e_{n}\right)=n\left(e_{n} \wedge e_{i}\right)+$ $(n-i)\left(e_{0} \wedge e_{n+i}\right)$ implies that each e_{n} with $n \neq 0, i$ generates an infinite-dimensional Lie subcoalgebra, and it is not hard to see that Loc $W_{1}^{(i)}=F e_{0} \oplus F e_{i}$. The structure of $\operatorname{Loc} W_{1}^{(i)}$ is also mentioned in [9] for characteristic zero.

We use the above remarks on Loc $W_{1}^{(i)}$ to show that the Lie coalgebra structures $\left(W_{1}^{(i)}, \delta_{i}\right)$ are mutually non-isomorphic for $i \geq-1$ when F is of characteristic zero. Thus take $i \neq j, i \geq-1, j \geq-1$. Clearly δ_{i} and δ_{i} give non-isomorphic Lie coalgebras if either i or j is $-1,0$ or 1 . So let $i \geq 2$ and $j \geq 2$. Let T be a Lie coalgebra isomorphism of $W_{1}^{(i)}$ to $W_{1}^{(i)}$. We can assume $j>i$. Since Loc $W_{1}^{(i)}=$ $F e_{11} \oplus F e_{i}$ and $\operatorname{Loc} W_{1}^{(j)}=F e_{0} \oplus F e_{i}$, one sees that the condition $\delta_{j} T=(T \otimes T) \delta_{i}$ requires the action of T on $\operatorname{Loc} W_{1}^{(i)}$ to be given by a matrix $\left[\begin{array}{cc}\alpha & 0 \\ j / i\end{array}\right]$ for α, β in F, $\alpha \neq 0$. We use this to derive a contradiction.

Thus, let $T\left(e_{0}\right)=\alpha e_{0}+\beta e_{j}$ and $T\left(e_{i}\right)=\gamma e_{01}+\delta e_{j}$, with $\Delta=\alpha \delta \quad \beta \gamma \neq 0$. Sincc $\delta_{i}\left(e_{0}\right)=-i\left(e_{0} \wedge e_{i}\right)$, we get that $(T \otimes T) \delta_{i}\left(e_{0}\right)=-i \Delta\left(e_{0} \wedge e_{j}\right)$ and $\delta_{i}\left(T\left(e_{0}\right)\right)=$ $-j \alpha\left(e_{0} \wedge e_{j}\right)$, so $i \Delta=j \alpha$. Also $(T \otimes T) \delta_{i}\left(e_{i}\right)=0$ and $\delta_{l}\left(T\left(e_{i}\right)\right)=-j \gamma\left(e_{0} \wedge e_{j}\right)$, so $\gamma=0$. This $\Delta=\alpha \delta \neq 0$ so $i \Delta=j \alpha$ gives $\delta=j / i$. So $T\left(e_{i}\right)=\alpha e_{0}+\beta e_{j}, \alpha \neq 0$ and $T\left(e_{i}\right)=(j / i) e_{j}$.

Let $T\left(e_{s}\right)=\sum_{k \geq-1} \alpha_{s k} e_{k}$ for $s \geq-1$. We will show that $T\left(e_{-1}\right) \in F e_{0} \oplus F e_{j}=$ Loc $W_{1}^{(j)}$, so that T is not injective, a contradiction. Since $\delta_{i}\left(e_{-1}\right)=-\left(e_{-1} \wedge\right.$ $\left.e_{i}\right)+(-1-i) e_{0} \wedge e_{i-1},(T \otimes T) \delta_{i}\left(e_{-1}\right)=\delta_{i} T\left(e_{-1}\right)$ yields

$$
\begin{aligned}
& -\sum_{k} \alpha_{-1 . k}\left(e_{k} \wedge(j / i) e_{j}\right)+(-1-i)\left[\left(\alpha e_{0}+\beta e_{j}\right) \wedge \sum_{l} \alpha_{i-1,1} e_{l}\right] \\
& \quad=\sum_{r} \alpha_{-1, .}\left(r\left(e_{r} \wedge e_{j}\right)+(r-j)\left(e_{0} \wedge e_{r+j}\right)\right) .
\end{aligned}
$$

Comparing coefficients of $e_{s} \wedge e_{j}$ for $s \neq 0, j$, we get

$$
\begin{equation*}
-\alpha_{-1, s}(j / i)+(-1)(-1-i) \beta \alpha_{i-1 . s}=s \alpha_{-1, s} \quad \text { for } s \neq 0, j . \tag{1}
\end{equation*}
$$

If $\beta=0$, this says $(s+j / i) \alpha_{-1 . s}=0$ if $s \neq 0, j$. Since $j>i, s \geq-1$, we have that $s+j / i>0$ so that $\alpha_{-1, s}>0$ if $s \neq 0, j$, and $T\left(e_{-1}\right) \in F e_{0} \oplus F e_{j}$, a contradiction. Hence assume that $\beta \neq 0$, and we rewrite (1) as

$$
\begin{equation*}
(s+j / i) \alpha_{-1 . s}=(i+1) \beta \alpha_{i-1 . s} \text { for } s \neq 0, j . \tag{1'}
\end{equation*}
$$

Next we compare coefficients of $e_{0} \wedge e_{s}$ for $s \neq 0, j$ to get

$$
\begin{equation*}
(-1-i) \alpha \alpha_{i-1, s}=(s-2 j) \alpha_{-i, s-j} \quad \text { for } s \neq j, s-j \geq-1 . \tag{2}
\end{equation*}
$$

Comparison with (1') yields

$$
\begin{equation*}
\alpha_{-1, s}=\frac{-(s-2 j) \beta}{(s+j / i) \alpha} \alpha_{-1, s-i} \quad \text { for } s \neq j, s \geq j-1 \tag{3}
\end{equation*}
$$

In particular, $\alpha_{-1,2 j}=0$ which then implies that $\alpha_{-1, k j}=0$ for $k \geq 2$. Suppose $\alpha_{-1, l \neq 0}$ for $l \not \equiv 0(\bmod j)$ with $l \geq-1$. Then (3) yields $\alpha_{-1, l+l j} \neq 0$ for all $t \geq 0$, which is impossible. Thus again $T\left(e_{-1}\right) \in F e_{i 1} \oplus F e_{j}$, a contradiction.

We have not determined other solutions of (CYBE) in $W_{1} \wedge W_{1}$ other than those of the form $e_{i} \wedge e_{j}$, for F of characteristic zero. At positive characteristic p, there will also be solutions $e_{i} \wedge e_{j}$ for $p \mid(j-i)$, as shown by the proof of Proposition 2.

Now we discuss the (full) Witt algebra W (or Virasoro algebra) in one variable, with basis $\left\{e_{i}\right\}$ for $i \in \mathbb{Z}$, and multiplication $\left[e_{i}, e_{j}\right]=(j-i) e_{i+j}$. This is the Lie algebra of derivations of the algebra $F\left[x, x^{-1}\right]$ of Laurent polynomials, with $e_{i}=x^{i+1} \mathrm{~d} / \mathrm{d} x$. The proof of Proposition 2 is valid for i, j in \mathbb{Z}, and for each $i \in \mathbb{Z}$, $\delta_{i}(w)=\left[e_{0} \wedge e_{i}, w\right]$ defines a triangular coboundary Lie bialgebra structure $W^{(i)}$ on W. The same formula $\delta_{i}\left(e_{n}\right)=n\left(e_{n} \wedge e_{i}\right)+(n-i)\left(e_{0} \wedge e_{n+i}\right)$ holds. For $i=$ -1 , we note that for $n \geq-1, e_{0}, \ldots, e_{n}$ is a finite-dimensional Lie subcoalgebra of $W^{(-1)}$, but that for $n \leq-2, e_{n}$ generates an infinite-dimensional Lie subcoalgebra at characteristic zero, and $\operatorname{Loc} W^{(-1)}=\bigoplus_{n \geq-1} F e_{n}$. At characteristic p, $\delta_{-1}\left(e_{-s p-1}\right)=-\left(e_{-s p-1} \wedge e_{-1}\right)$ shows that $\operatorname{Loc} W^{(-1)}=W^{(-1)}$. Of course δ_{0} is still 0 . For $i=1$, we note that for each $n \leq 1, e_{n}, \ldots, e_{1}$ span a finite-dimensional Lie subcoalgebra. So at characteristic zero, $\operatorname{Loc} W^{(1)}=\bigoplus_{n \leq 1} F e_{n}$. At positive characteristic, the same argument used for $W_{1}^{(1)}$ shows that Loc $W^{(1)}=W^{(1)}$. Now let $i \geq 2$. For each $n=k i \leq 1$, note that $e_{k i}, e_{(k+1) i}, \ldots, e_{i}$ span a Lie subcoalgebra. At characteristic zero, each e_{n} with $n>i$, or $n \leq i$ and $i \mid n$, generates an infinite-dimensional Lie subcoalgebra. So Loc $W^{(1)}=\bigoplus_{k \leq 1} F e_{k i}$. (This was also valid for $i=-1$ and $i=1$.) At characteristic p, the same discussion as for $W_{1}^{(i)}$ shows that $\operatorname{Loc} W^{(i)}=W^{(i)}$ if $(p, i)=1$, and $\operatorname{Loc} W^{(i)}=\bigoplus_{p \mid n} F e_{n}$ if $(p, i)=p$. Now let $i \leq-2$. Then symmetric arguments show that at characteristic zero, $\operatorname{Loc} W^{(i)}=\oplus_{k \leq 1} F e_{k i}$. At positive characteristic $p, \operatorname{Loc} W^{(i)}=W^{(i)}$ if $(p, i)=1$ and $\operatorname{Loc} W^{(i)}=\bigoplus_{p \mid n} F e_{n}$ if $(p, i)=p$.

Finally, let $V=W \oplus F c$ be the Virasoro algebra with central charge, where c is a central element, and W has a basis $\left\{e_{i}\right\}$ for i in \mathbb{Z}, and multiplication $\left[e_{i}, e_{j}\right]=(j-i) e_{i+j}+\frac{1}{12}\left(j^{3}-j\right) \delta_{i+j .0} c$. Here we let F have characteristic zero. The proof of Proposition 2 is valid for i, j in \mathbb{Z}, and one also checks that $e_{i} \wedge e_{-i}$ is not a solution of (CYBE) for $i \neq 0$. (At characteristic $p \geq 5, e_{i} \wedge e_{-i}$ is a solution of (CYBE) if $p \mid i$.) For any fixed w in $W, c \wedge w$ trivially satisfies (CYBE). So for $r=c \wedge w, \delta(x)=[c \wedge w, x]=c \wedge[w x]$ defines a triangular coboundary Lie bialgebra structure on V. In particular, for $w=e_{i}$, let $\delta_{i}^{\prime}(x)=c \wedge\left[e_{i} x\right]$, so $\delta_{i}^{\prime}\left(e_{n}\right)=(n-i)\left(c \wedge e_{i+n}\right)$ and $\delta_{i}^{\prime}(c)=0$. Note that for $i \neq 0$, there is a Lie coalgebra map of $W^{(1)}$ into $\left(V, \delta_{i}^{\prime}\right)$ taking e_{i} to $0, e_{0}$ to c and e_{n} to e_{n} for $n \neq 0, i$. For $i \neq 0, \quad \operatorname{Loc}\left(V, \delta_{i}^{\prime}\right)$ is similar to $\operatorname{Loc}\left(W, \delta_{i}\right), \quad$ i.e., $\quad \operatorname{Loc}\left(V, \delta_{i}^{\prime}\right)=$
$\left(\oplus_{k \leq 1} F e_{k i}\right) \oplus F c$. For $i=0, F e_{n} \oplus F c$ is a Lie subcoalgebra of $\left(V, \delta_{0}^{\prime}\right)$ for each $n \in \mathbb{Z}$, $\operatorname{so} \operatorname{Loc}\left(V, \delta_{0}^{\prime}\right)=V$. For each $i \in \mathbb{Z}, e_{0} \wedge e_{i}$ satisfies (CYBE), so let $V^{(i)}=$ $\left(V, \delta_{i}\right)$, where $\delta_{i}(v)=\left[e_{0} \wedge e_{i}, v\right]$ for $v \in V$. Then $\delta_{i}(c)=0$, so $\operatorname{Loc} V^{(i)}=$ $\left(\operatorname{Loc} W^{(i)}\right) \oplus F c$. If $i=0$, then $\delta_{0}=0$ (on W_{1}, W and V). However, the formula $\delta_{0}^{\prime}\left(e_{n}\right)=n\left(c \wedge e_{n}\right)$, suggests a replacement ρ_{0} for δ_{0} in W_{1} and W. Set $\rho_{0}\left(e_{n}\right)=$ $n\left(e_{0} \wedge e_{n}\right)$. This gives a Lie coalgebra structure, but not a Lie bialgebra structure. The invariance condition fails for $\rho_{01}\left(\left\lfloor e_{i} e_{j}\right\rfloor\right)$ for $i, j \neq 0, i \neq j$.

4. The continuous dual Lie bialgebra of a Lie bialgebra

Let (M, δ) be a Lie coalgebra. Then $M^{*}=\operatorname{Hom}_{t}(M, F)$ is a Lie algebra under the convolution product $(f * g)(m)=(f \otimes g)(\delta m)$, i.e., if $\delta m=\sum_{m} m_{1} \otimes m_{2}$ in $M \wedge M \subset M \otimes M$, then $(f * g)(m)=\sum_{m} f\left(m_{1}\right) g\left(m_{2}\right)$ for f, g in M^{*}. (Sweedler notation.)
Let L be a Lie algebra with multiplication $m: L \otimes L \rightarrow L$. Then $m^{*}: L^{*} \rightarrow(L \otimes L)^{*}$. A subspace V of L^{*} is called good if $m^{*}(V) \subseteq V \otimes V$, where we identify $V \otimes V \subseteq L^{*} \otimes L^{*} \subseteq(L \otimes L)^{*}$. This means that there exists a linear map $\delta: V \rightarrow V \otimes V$ such that if $\delta f=\sum_{f} f_{1} \otimes f_{2}$ for f, f_{1}, f_{2} in V, then $f([x y])=$ $\sum_{f} f_{i}(x) f_{2}(y)$ for all x, y in L.

Let $L^{\circ}=\sum V$, over all good subspaces V of L^{*}. Then L° is a Lie coalgebra, where for each $V, \delta(V) \subseteq V \wedge V$. See [4] for the original development of this idea.
Now let L be a Lie bialgebra. Then L^{*} is a Lie algebra, and $L^{\circ} \subseteq L^{*}$ is a Lie coalgebra.

Proposition 3. Let L be a bialgebra. Then L° is a Lie subalgebra of L^{*}, and L° is a Lie bialgebra.

Proof. To see that L° is closed under the convolution product on L^{*}, we claim that $L^{\circ}+\left(L^{\circ} * L^{\circ}\right)$ is a good subspace of L^{*}, so that $L^{\circ} * L^{\circ} \subseteq L^{\circ}$. Let V, W be good subspaces of L^{*}. Using δ for the Lie comultiplication in L, and γ for the Lie comultiplication in L°, let $f \in V, g \in W, \gamma(f)=\sum_{f} f_{1} \otimes f_{2}$ in $V \otimes V$ and $\gamma(g)=$ $\sum_{g} g_{1} \otimes g_{2}$ in $W \otimes W$. The idea is that

$$
\begin{aligned}
\gamma(f * g)= & \sum_{l} f_{1} \otimes\left(f_{2} * g\right)+\sum_{g} g_{1} \otimes\left(f * g_{2}\right) \\
& +\sum_{f}\left(f_{1} * g\right) \otimes f_{2}+\sum_{g}\left(f * g_{1}\right) \otimes g_{2}
\end{aligned}
$$

defines the appropriate map on $L^{\circ} * L^{\circ}$. To see this, evaluate both sides on $x \otimes y$ in $L \otimes L$. The left-hand side gives $(f * g)([x y])$. Using the invariance axiom on $\delta([x y])$, and dropping the summation signs, this is equal to

$$
\begin{aligned}
(f & \otimes g)\left(\left[x_{1} y\right] \otimes x_{2}+x_{1} \otimes\left[x_{2} y\right]+\left[x y_{1}\right] \otimes y_{2}+y_{1} \otimes\left[x y_{2}\right]\right) \\
= & f_{1}\left(x_{1}\right) f_{2}(y) g\left(x_{2}\right)+f\left(x_{1}\right) g_{1}\left(x_{2}\right) g_{2}(y) \\
& +f_{1}(x) f_{2}\left(y_{1}\right) g\left(y_{2}\right)+f\left(y_{1}\right) g_{1}(x) g_{2}\left(y_{2}\right) .
\end{aligned}
$$

Inspection, using the definition of convolution product, shows that this agrees with the right-hand side acting on $x \otimes y$. The displayed formula for $\gamma(f * g)$ is precisely the invariance condition for L°, so that L° is a Lie bialgebra. (Proposition 3 is also in [8]. Since [8] has yet to appear, we included a proof here.)

5. The continuous duals of the Witt and Virasoro algebras

In this section, F will be of characteristic zero. It is well-known that W_{1} and W are simple Lie algebras. Now if L is any Lie algebra, then it is known (see [4]) that $\operatorname{Loc}\left(L^{\circ}\right)=\left\{f \in L^{*} \mid f(I)=0\right.$ for some cofinite ideal I of $\left.L\right\}$. Hence if L is an infinite-dimensional simple Lie algebra, then $\operatorname{Loc}\left(L^{\circ}\right)=0$. In particular, $\operatorname{Loc}\left(W_{1}^{\circ}\right)=0$ and $\operatorname{Loc}\left(W^{\circ}\right)=0$. Since V has $F c$ as its only non-trivial ideal, also $\operatorname{Loc}\left(V^{\circ}\right)=0$.
W_{1}° has recently been identified as the space of F-linearly recursive sequences $f=\left(f_{i}\right)_{i \geq-1}$ [10] (see also [6] for a partial result). This means that f satisfies a recursive relation of the form $f_{n}=h_{1} f_{n-1}+h_{2} f_{n-2}+\cdots+h_{r} f_{n-r}$ for all $n \geq r-1$ for some $r \geq 1$. The linear identification of $f=\left(f_{i}\right)$ in W_{1}^{*} is via $f_{i}=f\left(e_{i}\right)$ for $i \geq-1$. We give some examples of the Lie bialgebra structures on W_{1}^{0}. Note that the elements of the dual basis $\left\{e_{i}^{*}\right\}$ are in W_{i}^{o}, i.e., W_{i}^{o} contains all finite sequences. Of course, these are linearly recursive. To explain this in terms of the Lie comultiplication γ on W_{1}°, note that $\gamma\left(e_{n}^{*}\right)=\sum_{i+j=n}(j-i) e_{i}^{*} \otimes e_{j}^{*}$, i.e., $\bigoplus_{n=-1} F e_{n}^{*}$ is a good subspace of W_{1}^{*}, so is contained in W_{1}°. Such a comultiplication formula is proved by acting on $e_{k} \otimes e_{l}$ for any $k, l \geq-1$. Both sides yield $(l-k) \delta_{n, k+l}$. Before giving further examples of γ, we note that γ depends only on the Lie algebra structure of W_{1}. Now W_{1}° contains the geometric (or exponential) sequences $\left(a^{i}\right)_{i \geq-1}$ for any $a \neq 0$ in F. More generally, it contains the sequences $\left(a^{i} i^{n}\right)_{i \geq-1}$ for $a \neq 0$ in F and n a fixed non-negative integer. A binomial calculation will show that

$$
\gamma\left(a^{i} i^{n}\right)=\sum_{j=0}^{n+1}\left[\binom{n}{j}-\binom{n}{j-1}\right]\left(a^{i} i^{i}\right) \otimes\left(a^{i} i^{n+1-j}\right) .
$$

For example $\gamma\left(a^{i}\right)=\left(a^{i}\right) \otimes\left(a^{i} i\right)-\left(a^{i} i\right) \otimes\left(a^{i}\right)$, which is proved by evaluating on $e_{k} \otimes e_{l}$, obtaining $(l-k) a^{k+l}=a^{k}\left(l a^{l}\right)-\left(k a^{k}\right)\left(a^{l}\right)$. Thus, as a and n vary, the $\left(a^{i} i^{n}\right)$ span a good subspace of W_{1}°. When F is algebraically closed, it is well-known that the ($a^{i} i^{n}$) and the e_{j}^{*} are a basis for the space of linearly recursive sequences, which shows that W_{1}° contains all linearly recursive sequences. See [10] for the converse, and for an explanation of why the algebraically closed condition can be assumed without loss of generality.

It is possible to give an alternate identification of W_{1}° as linearly recursive sequences. This starts with the associative algehra $F[x]$ of polynomials in x. It has a continuous (coassociative) coalgebra dual $F[x]^{\circ}$ (see [13]), which was identified in [12] as linearly recursive sequences. Nichols has recently shown (see [11, Corollary 3]), that W_{1}° can be identified as a vector space with $F[x]^{\circ}$, and that the Lie comultiplication γ on W_{i}° can be described in terms of the coassociative comultiplication on $F[x]^{\circ}$. The same technique will identify W° with $F\left[x, x^{-1}\right]^{\circ}$, which is the space of linearly recursive sequences $f=\left(f_{i}\right)_{i \in \mathbb{Z}}$. Here the minimal linearly recursive relation of f must be of the form $x^{\prime}-h_{1} x^{r-1}-\cdots-h_{r}$, where $h_{r} \neq 0$, i.e., from each coordinate, the sequence can be solved to the left as well as to the right. This is the space of sequences spanned by the $\left(a^{i} i^{\prime \prime \prime}\right)_{i \in \mathbb{Z}}$ for $a \neq 0$ in F, $m \geq 0$. The reason that the e_{n}^{*} do not belong to W^{0} is that the formula $\gamma e_{n}^{*}=\sum_{i+j=n}(j-i) e_{i}^{*} \otimes e_{j}^{*}$ which worked for W_{1}^{0} (where $i, j \geq-1$) does not make sense for $i, j \in \mathbb{Z}$. (It is not a finite sum.) The same formula for $\gamma\left(a^{i} i^{m}\right)$ in W_{1}° is valid in W°. As with W_{1}°, the Lie comultiplication on W° can be described in terms of the coassociative comultiplication on $F\left[x, x^{-1}\right]^{\circ}$ (see [11]). We have seen that $\operatorname{Loc} W_{1}^{0}=0$ and $\operatorname{Loc} W^{\circ}=0$. We remark that coassociative coalgebras are locally finite [13]. Thus in [12], we were able to give an algorithm to compute the comultiplication of a linearly recursive sequence in terms of an easily computable basis of the (finite-dimensional) subcoalgebra it generates. In [12], this was done for $F[x]^{\circ}$, but the same technique works for f in $F\left[x, x^{-1}\right]^{\circ}$ by taking its restriction to $F[x]$ in $F[x]^{\circ}$, applying the algorithm, and extending back to $F\left[x, x^{-1}\right]^{\circ}$. See [11] for an example of how to compute the Lie comultiplication of a Fibonacci sequence based on its coassociative comultiplication.

For V°, we note that $c^{*} \notin V^{\circ}$ since $\frac{1}{12} \sum_{i \in \mathbb{Z}}\left(i-i^{3}\right) e_{i} \otimes e_{-i}$ is not a finite sum (it would be $\left.\gamma\left(c^{*}\right)\right)$. Since $V \rightarrow W(c \mapsto 0)$ is a surjection of Lie algebras, it follows that $W^{\circ} \hookrightarrow V^{\circ}$ is a Lie coalgebra injection. To see that this is an isomorphism, we need to show that if $f \in V^{\circ}$, then $f(c)=0$. This is done in [11]. Hence $V^{\circ} \cong W^{\circ}$. The same formula for $\gamma\left(a^{i} i^{n}\right)$ in W_{1}° or W° works for V°, and the algorithmic approach to computing $\gamma(f)$ for $f \in V^{\circ}$ is still possible since $V^{\circ} \cong W^{\circ}$.

Now we comment on the Lie algebra structures on W_{1}°, W° and V° induced by our various Lie coalgebra (Lie bialgebra) structures on W_{1}, W and V respectively.

Starting with W_{1}, for each $i \geq-1$, we have a Lie bialgebra structure with Lie comultiplication $\delta_{i}(w)=\left[e_{0} \wedge e_{i}, w\right]$, so that $\delta_{i}\left(e_{n}\right)=n\left(e_{n} \wedge e_{i}\right)+(n-i)\left(e_{0} \wedge\right.$ e_{n+i}). We assume $i \neq 0$, as $\delta_{0}=0$ gives $\left(W_{1}^{(0)}\right)^{*}$ the structure of an abelian Lie algebra. For the dual basis $\left\{e_{n}^{*}\right\}$, this means that the Lie multiplication in $\left(W_{1}^{(i)}\right)^{\circ}$ is given by

$$
\begin{array}{ll}
{\left[e_{0}^{*}, e_{n}^{*}\right]=(n-2 i) e_{n-i}^{*}} & \text { for } n \neq 0, \\
{\left[e_{n}^{*}, e_{i}^{*}\right]=n e_{n}^{*}} & \text { for } n \neq 0, i,
\end{array}
$$

and all other products are zero. These formulas describe in a sense the Lie
product in $\left(W_{1}^{(i)}\right)^{*}$, i.e.,

$$
\left[\sum a_{n} e_{n}^{*}, \sum b_{m} e_{m}^{*}\right]=\sum c_{p} e_{p}^{*}
$$

where $c_{p}=p\left(a_{0} b_{p+i}-b_{0} a_{p+i}+b_{i} a_{p}-a_{i} b_{p}\right)+i\left(a_{p+i} b_{0}-a_{0} b_{p+i}\right)$. If f and g are given linearly recursive sequences, one would like to express [f, g] in some 'natural' way, rather than express f and g in terms of the ($a^{j} j^{\prime \prime}$) and the e_{k}^{*}, and develop formulas for the products $\left[\left(a^{j} j^{n}\right),\left(b^{k} k^{m}\right)\right]$ and $\left[\left(a^{j} j^{n}\right), e_{k}^{*}\right]$.

We note that $\left(W_{1}^{(i)}\right)^{*}$ has its derived algebra with pseudo-basis $\left\{e_{j}^{*}\right\}$ for $j \neq i$, and the second derived algebra has pseudo-basis $\left\{e_{k}^{*}\right\}$ for $k \neq 0, i$, so that the third derived algebra is 0 , i.e., $\left(W_{1}^{(i)}\right)^{*}$ (and so also $\left.\left(W_{1}^{(i)}\right)^{\circ}\right)$ are solvable.

The same multiplication rule for the e_{k}^{*} in $\left(W_{1}^{(i)}\right)^{*}$ holds in $\left(W^{(i)}\right)^{*}=\left\{\left(f_{i}\right)_{i \in \mathbb{Z}}\right\}$, only now $k \in \mathbb{Z}$. Of course, e_{k}^{*} is not in $\left(W_{1}^{(i)}\right)^{\circ}$, and the same remarks apply concerning the need for an algorithm to describe a given product in $\left(W_{1}^{(i)}\right)^{\circ}$.

Finally, for $V^{(i)}=W^{(i)} \oplus F c, \delta_{i}(c)=0$. In $\left(V^{(i)}\right)^{*}$, the same rule holds for multiplying the e_{k}^{*}. So $\left(V^{(i)}\right)^{\circ} \cong\left(W^{(i)}\right)^{\circ}$ as Lie bialgebras. Recall that V also has a Lie bialgebra structure with comultiplication $\delta_{i}^{\prime}\left(e_{n}\right)=(n-i)\left(c \wedge e_{i+n}\right)$ and $\delta_{i}^{\prime}(c)=0$, resulting from the solution $c \wedge e_{i}$ of (CYBE). Fix i in \mathbb{Z}. Then the multiplication for the e_{k}^{*} and c^{*} in V^{*} is given by $\left[c^{*}, e_{n}^{*}\right]=(n-2 i) e_{n-i}^{*}$, and all other products are zero. So the rule in (V, δ_{i}^{\prime}) is

$$
\left[\sum a_{i} e_{i}^{*}+\alpha c^{*}, \sum b_{k} e_{k}^{*}+\beta c^{*}\right]=\sum c_{p} e_{p}^{*},
$$

where $c_{p}=(p-2 i)\left(\alpha b_{p}-\beta a_{p}\right)$. This is a metabelian (2-step solvable) Lie algebra. Again, we have no algorithm for multiplying two given linearly recursive sequences under this product.

References

[1] V.G. Drinfeld, Quantum groups, in: Proceedings of the International Congress of Mathematicians, Berkeley, 1986.
[2] R.G. Larson and E.J. Taft, The algebraic structure of linearly recursive sequences under Hadamard product, Israel J. Math. 72 (1990) 118-132.
[3] S. Majid, Physics for algebraists: Non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction, J. Algebra 130 (1990) 17-64.
[4] W. Michaelis, Lie coalgebras, Adv. in Math. 38 (1980) 1-54.
[5] W. Michaelis, The dual Poincaré-Birkhoff-Witt theorem, Adv. in Math. 57 (1985) 93-162.
[6] W. Michaelis, On the dual Lie coalgebra of the Witt algebra, in: Y. Saint-Aubin and L. Vinet, eds., Proceedings of the XVIIth International Colloquium on Group Theoretical Methods in Physics (World Scientific, Singapore, 1989) 435-439.
[7] W. Michaelis, An example of a non-zero Lie coalgebra M for which $\operatorname{Loc} M=0$, J. Pure Appl. Algebra 68 (1990) 341-348.
[8] W. Michaelis, Cogenerating maps and subspaces, Mem. Amer. Math. Soc., to appear.
[9] W. Michaelis, A class of infinite-dimensional Lie bialgebras containing the Virasoro algebra, Adv. in Math., to appear.
[10] W. Nichols, The structure of the dual Lie coalgebra of the Witt algebra, J. Pure Appl. Algebra 68 (1990) 359-364.
[11] W. Nichols, On Lie and associative duals, J. Pure Appl. Algebra 87 (1993) 313-320 (this issue).
[12] B. Peterson and E.J. Taft, The Hopf algebra of linearly recursive sequences, Aequationes Math. 20 (1980) 1-17.
[13] M. Sweedler, Hopf Algebras (Benjamin, New York, 1969).
[14] E.J. Taft, Hurwitz invertibility of linearly recursive sequences, Congr. Numer. 73 (1990) 37-40.

[^0]: Correspondence to: Professor E.J. Taft, Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA.

