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A Definition of a Nonprobabilistic Entropy in the 
Setting of Fuzzy Sets Theory 
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Laboratorio di Cibernetica del C.N.R., Naples, Italy 

A functional defined on the class of generalized characteristic functions 
(fuzzy sets), called "entropy", is introduced using no probabilistic concepts in 
order to obtain a global measure of the indefiniteness connected with the situa- 
tions described by fuzzy sets. This "entropy" may be regarded as a measure 
of a quantity of information which is not necessarily related to random experi- 
ments. 

Some mathematical properties of this functional are analyzed and some 
considerations on its applicability to pattern analysis are made. 

1. INTRODUCTION 

The  f u z z y  sets theory was introduced by Zadeh (1965) in order to provide 
a scheme for handling a variety of problems in which a fundamental  role 
is played by an indefiniteness arising more from a sort of intrinsic ambiguity 
than from a statistical variation. 

Zadeh 's  scheme and its generalization by Goguen (1967) are intended to 
represent the counterpart  of ordinary set theory in the field of not well-defined 
problems. One could then th ink of taking fuzzy sets as a basis for a generaliza- 
t ion of such mathematical  theories as probabili ty,  topology and so on, whose 
classical versions are founded on ordinary set theory. This  program has been 
fruitfully undertaken by Zadeh (1968) and Chang (1968). 

An  algebraic analysis of the previous theory has been made by De Luca  
and Termini  (1970) in order to better unders tand its relationships with 
classical set theory and, especially, obtain suggestions for the construct ion of 
mathematical  calculi. Some implications of this approach in the analysis of 
complex systems have been considered by De Luca  and Termin i  (1971). 

In  this note we propose the introduction of a "measure of the degree of 
fuzziness" or "ent ropy"  of a generalized set. The  meaning of this quantity is 
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quite different from the one of classical entropy because no probabilistiO 
concept is needed in order to define it. This  function gives a global measure 
of the "indefiniteness" of the situation of interest. 

This  function may also be regarded as an average intrinsic information 
which is received when one has to make a decision (as in pattern analysis) in 
order to classify ensembles of objects (patterns) described by means of fuzzy 
sets. 

2. ENTROPY OF A FUZZY SET 

Let  us consider a set I and a lattice L; any map from I to L is called L-fuzzy  
set (Goguen, 1967). The  name "fuzzy sets" given to these maps arises from the 
possibility of interpreting them, as done by Zadeh (1965), as a generalization 
of the characteristic functions of classical set theory. However, in the follow- 
ing, to avoid ambiguities the word fuzzy  sets will refer preferably to maps 
instead of to abstract generalized sets endowed with membership functions. 

Let  us denote by L,¢(1) the class of all maps from I to L. I t  is possible to 
induce a lattice structure to S¢(I) by the binary operations v and ^ associating 
to any pair of elements f and g of ~¢(I) the elements f v g and f ^ g of Se(I), 
defined point by point as 

( f  v g)(x) ~ 1.u.b.{f(x), g(x)} 

( f  h g)(x) ~ g.l.b.{f(x), g(x)}; 
(1) 

1.u.b. and g.l.b, denote respectively the least upper bound and the greatest 
lower bound o f f (x )  and g(x) in the lattice L. 

In  this paper we will consider L as coinciding with the unit interval on the 
real l ineL = [0, 1]; in this case (1) becomes 

( f  v g)(x) = max{f (x), g(x)}, 

( f  ^ g)(x) = rain{f (x), g(x)}. 
(2) 

We try to introduce, for every element, or "fuzzy set", f ~  S~(I) a measure 
of the degree of its "fuzziness". We require of this quantity, which we shall 

1 Here and in the following, by using the word "probability" we shall only refer to 
the frequentistic interpretation, without taking into account other interpretations such 
as the logical or subjectivistic (see, for instance, Carnap, 1967). 
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denote by d(f), that it must depend only on the values assumed by f on I 
and satisfy at least the following properties: 

P1 d(f) must he 0 if and only i f f  takes on I the values 0 or 1. 

P~ d(f) must assume the maximum value if and only i f f  assumes always 
the value ½. 

P3 d(f) must be greater or equal to d(f*) where f *  is any "sharpened" 
version off ,  that is any fuzzy set such that f*(x) >If(x) i f f(x)  ~> ½ 
andf*(x) ~ f ( x )  iff(x) ~ ½. 

From now on let I be a finite set; this assumption and some others that 
we will make in the following, simplify the mathematical formalism but may 
be suitably weakened in future generalizations. We note, however, that the 
finiteness of I corresponds to a large class of actual situations. 

We begin by introducing on Se(1) the functional H(f), formally similar 
to the Shannon entropy although quite different conceptually, whose range is 
the set of nonnegative real numbers and defined as 

N 

H(f)  ~ - -K  Z f(x,) lnf(x4) (3) 
4=1 

where N is the number of elements of I and K is a positive constant. 
We have the following: 

PROPOSITION 1. H(f)  is a nonnegative valuation (Birkhoff, 1967) on the 
lattice 5~(I), i.e., 

H( f  v g) q- H ( f  ^ e) = H(f)  + H(g) for all f, g of 5¢(1) (4) 

In fact, from definition (3) and by (2) it follows that 

N 

t i f f  v g) = - x  E 
i=1  

max{f (x,), g(xi)) in max(f (x4), g(x,)}, 

N 

H ( f  ^ g) = - -K  Z min{f(x4), g(x,)} In min(f(x¢), g(x4)}. 
4=1 

(5) 

Breaking up the sums in (5) into two parts, one extended over all x such 
thatf(x) >/g(x) and the other over all x such thatf(x) < g(x), and summing 
up the right and left sides of (5), (4) is obtained. 

Let us now give the following definitions: 
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DEFINITION 1. The  power of a fuzzy set f is the quantity 

N 

F ~ ~, f(x~). (6) 

I f f  is a classical characteristic function, F reduces to the ordinary power of 
a (finite) set. 

DEFINITION 2. I f  f and g are two fuzzy sets their direct product is the 
fuzzy set over I (2) = I × I given by 

( f  × g)(x, y) =-- f(x)  . g(y) 

where (.) denotes the ordinary product. 
I f f  and g take on only the values 0 and 1, the previous definition reduces 

to the usual one of direct product of sets in terms of characteristic functions. 
The  functional (3) exhibits a sort of additive property; in fact, one has 

N 

H ( f  × g) = - - K  ~, f(x~)" g(yj) ln[f(x~),  g(yj)] 
i , j= l  

= G . H ( f )  + F . H ( g ) ,  

F and G being the powers o f f  and g, respectively. 
I f F  = G = 1, then (7) becomes 

H ( f  × g) = H ( f )  + H(g). 

(7) 

(8) 

For example, this happens with the function of the type ~o(x) ~ f(x)/F. In  
this case, (3) is formally identical to the entropy of the finite scheme 

Xl " '" Xn 

f(xl) . . .  f ( x . ) ] '  

where f(x¢) can be interpreted as the probability that x, does occur in some 
random experiment. 

One might be tempted to assume (3) as a measure of the fuzziness of a 
generalized set. We have then to see if H(f)  satisfies our requirements P1,  
P2 and P3.  

From definition (3) it follows that: H(f )  = 0 if and only i f f  belongs to the 
subset of ~ ( I )  consisting of the classical characteristic functions (assuming, 
of course, 0 • In 0 = 0). Requirement P1 is then satisfied. However, because 
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the maximum of (3) is reached when f(x) = 1/e for all x of / ,  in which case 
H(f)  = K " N/e, P~ is not fulfilled. 

It then seems more convenient to us to introduce the following functional, 
which we will call the "entropy" of the fuzzy set f :  

d(f) ~ H( f )  + H ( f )  

where f ,  defined point by point as 

f(x) ~ 1 --  f(x) 

satisfies the following noteworthy properties: 

f = f  

f v g  ~-- fAf f  

(involution law), 

(De Morgan laws). 

(9) 

(lO) 

We can now prove the 

f a g  = f v f f  

We explicitly note that f ,  usually called the complement off, is not the algebraic 
complement of f with respect to the lattice operations (2) (De Luca and 
Termini, 1970). 

From (9) d(f) = d ( f ) ;  moreover, d(f) can be written using Shannon's 
function S(x) = --x  In x -- (1 -- x) ln(1 -- x) as 

N 

d(f)  = K Z S(f(xn)). (11) 
1~1 

d(f)  satisfies requirements P1 and Pz. Requirement P3 is also satisfied. In 
fact, if f *  is a sharpened version of f we have by definition 

(~) 0 <~f*(x) <~f(x) ~< ½, for 0 <~f(x) < ½, 

(¢) 1 ) f*(x) ) f (x)  ) ½, for ½ ~ f ( x )  ~ 1. 

By the well-known property of Shannon's function S(x)--monotonically 
increasing in the interval [0, 1/2] and monotonically decreasing in [1/2, 1] 
with a maximum at x = ½--we immediately get from (c~) and (13) that, for 
any value off(x), 

S(f*(x)) ~< S(f(x)), x ~ I. 

From this relation by (11) it follows 

d(f*) • d(f). 
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PROPOSITION 2. d( f )  is a nonnegative valuation on the lattice £P(I). 

In  fact, f rom (9) and by (4) and (10) we have 

d( f )  + d(g) = H ( f  v g) + H ( f  A g) + H ( f  ^ ~) + H ( f  v ~) 

= H ( f  v g) --}- H ( f  v g) -t- H ( f  A g) + H ( f  A g) 

= d ( f  v g) + d ( f  A g). 

I f  we assume in (11) that K = 1/N, we obtain the functional 

v(f)  = -~ S(f(x~)) (12) 
h=l 

which we will call the "normalized entropy".  This  name is appropriate 
because, taking the logarithm in base 2, one has 

0 <~ v(f) ~< 1 for all f e LP(I). 

By Proposition 2 it follows immediately that also ~(f) is a nonnegative 
valuation on the lattice ~ ( I ) .  

3. INTERPRETATION OF d ( f )  

In  this section we will further discuss the meaning of the entropy d( f )  
previously introduced, interpreting it also as "quanti ty of information." 

T h e  analysis of a particular example will help to understand better the 
next general definitions. Finally, the case in which the "incerti tude" arises 
both from the "fuzziness" of the description and from statistical variations 
will be considered. 

In  the previous section, the functional d( f )  has been assumed as giving 
a measure of the fuzziness of f ;  this quantity, as we will see, may also be 
considered as measuring an amount of information even if its meaning is 
different from the standard one of Shannon's information theory. 

Let  us now discuss the following example. We consider N cells x, 
(i = 1 "" N)  of sensory units (as photoelectric cells) disposed in a two- 
dimensional array I, or retina, and suppose, first, that one may project on the 
retina only patterns such that any cell can "see" only white or black colors, 
to which correspond two different states 1 or O, of the photoelectric unit. 
Therefore, we may associate with the xi cell (i = 1,..., N)  a variable f(x~) 
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which may assume only two values: 1 (white) and 0 (black). In this 
way, to any pattern corresponds a subset of I, that is the one formed by the 
cells such thatf(xi)  = 1. 

Let  us now suppose that for some reasons (generally depending on the 
projected pattern) whose nature at the moment does not interest us, the 
state f(xi) of the i-th cell can vary in the interval [0, 1] instead of the set 
{0, 1}; this means that the cell may "see" a discrete or continuous number of 
grey colors with each of which, by means of the photoelectric units, we 
associate a number  that we interpret, according to the scale, as "degree of 
white" or "degree of black". In  such a way a description of a pattern projected 
on the retina may be made by means of a fuzzy setf .  This pattern, described 
by f ,  looks "ambiguous" to any "people" or "device" which knows only 
black or white; a measure of this ambiguity is d(f). The nature of this 
ambiguity therefore arises from the "incertitude" present when we must 
decide, looking at the grey color of the i-th cell, if this has to be considered 
white or black. We may measure this incertitude by S(f(x,)), which is 0 if 
f(xi) is equal to 0 or 1 and is maximum for f(xi) = 1/2; the total amount of 

N incertitude is ~i=1 S(f(xi)) ~ d(f). 
Now if we carry out some experiments by which we can remove or reduce 

the uncertainty which existed before the experiment, we can say that we 
obtain some information. Let us, first, assume that the experiment consists 
in taking a decision about the colors (white or black) of all the N cells of the 
retina. In this way we produce a new classical pattern f * .  This kind of 
experiment makes the ambiguity of the final pattern f *  equal to 0 by com- 
pletely removing the uncertainty on the colors of the cells which existed 
before the experiment. It  seems natural to us to assume that in these experi- 
ments we receive an average amount of information proportional or equal to 
(choosing some unit) the initial uncertainty d(f). 

We may assume that d(f)  also measures the average amount of information 
(about the colors of the pattern) which is lost going from a classical pattern to 
the fuzzy pattern f.  

I t  is also possible to consider only partial removals of uncertainty in any 
experiment by which we transform the fuzzy pattern f into a new fuzzy 
pattern f having 

d ( f )  <~ d(f). 

In  this way we may say that we receive a quantity of information measured 

by d(f)  -- d( f ) .  
We emphasize that the ambiguity we have previously defined and the 

related information are "structural", that is, linked to the fuzzy description, 
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while in the classical information theory it is due to the uncertainty in the 
previsions of the results of random experiments. 

Let  us now consider any experiment in which the elements x 1 ,..., x N of I 
may occur, one and only one in each trial, with probabilities Pl ,  P~ ,..., Pz¢ 
(Pi >/O, ~ = l P i  = 1). I f  a fuzzy s e t f  is defined in I, we have two kinds of 
uncertainty: 

(i) The  first uncertainty of " random" nature is related to the prevision 
of the result, i.e., the element of I which will occur. As is well known, the 
average uncertainty is measurable by Shannon's entropy 

/V 

H(Pl  "'" PN) = - -  ~ Pi In Pi; 
4=1 

H also gives the average information which is received knowing the element 
which occurs. 

(ii) The  second uncertainty of "fuzzy" nature concerns the interpreta- 
tion of the result as 1 or 0. I f  the result is xi we still have an amount of 
incertitude measurable by 

S(f(xi)) .  

The statistical average of S( f (x i ) )  

N 

m(f,  Pl "'" PN) =- ~ p iS( f (x i ) ) ,  (13) 
i=J_ 

which coincides with the normalized entropy (12) ifpl = P2 = "'" = Pn = l /N,  
represents the (statistical) average information received taking a decision 
(1 or 0) on the elements xi (i = 1 "" N) .  This is an interesting new concept 
because it may happen, for instance, that the elements of I with f ( x )  ~ ½ 
may occur in the random experiment only exceptionally where the elements 
with f ( x )  near the bounds 1 or 0 may occur very frequently. In  such a case 
m is small even if f is quite "soft"; this happens because the statistical 
uncertainty on the decisions is, in fact, small. 

We can consider the total entropy 

//tot = H ( p l  "'" P~r) @ re(f, Pl "'" Ply), (14) 

which may be interpreted as the total average uncertainty that we have in 
making a prevision about the element of I which will occur as a result of the 
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random experiment and in taking a decision about the value 1 or 0 which has 
to be attached to the element itself. I f  m = 0, which occurs in the absence 
of fuzziness, //to, reduces itself to the classical entropy H(p  1 ""PN). I f  we 
have H(p 1 ... PN) -= O, which means there is no random experiment and 
only a fixed element, say xi ,  will occur, Htot = S(f(xi)).  

We observe that the previous formula (14) is formally identical to one of 
the ordinary information theory 

H(AB) = H(A) + HA(B), 

giving the entropy of the product scheme AB in the case in which the events 
of B are statistically dependent on those of A. 

Another case which we may consider is when the fuzzy set f is random: 
that is, f is a map 

f : g 2  × I---~ [0, 1] 

such that, for any fixed x, f(~, x) is a random variable with respect to a given 
probability space (£2, ~-, p) where X2 is the nonempty set of sample points, 
o ~ a a-field of subsets of ~2 and p a probability measure. For any fixed ~:, 
f(~,  x) is a fuzzy  set. Let us consider the case when f2 has only a finite number 
M of elements ~:1 ,..., ~:M which may occur with probabilities P(~:I) .... ,P(~u); 
we may introduce an average fuzzy set ~ f )  as 

M 

( f ) ( x )  ~ ~ f (x ,  ~i)P(~). 
i=1 

In  such a case the entropy of the fuzzy set is itself a random variable; 
in fact, if the event ~:i happens, we have the fuzzy set f(~:i, x) whose entropy 
is di(f). In  this case it is meaningful to consider the average entropy given by 

M M N 

Z P(~i) di = 2 Z P(~') S(f(~,,  x~)) (15) 
i=l i=l j= l  

which reduces itself to (l 1) in the deterministic case. 

4. EQUIVALENCE CLASSES IN ~ ( I )  

Let us now introduce, for any pair of elements f and g of ~ ( I ) ,  the 
quantity 

~(f, g) ~. [ d ( f )  - -  d(g)l 
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which satisfies the properties 

~(f, f) = ol 
~(f,g) >~ 0; 8(f,g) = 8(g' f ) l  

3(f, g) < 3(f, h) + 3(h, g) } 
for all f ,  h, g of 5?(I). 

~ ( I )  is a pseudo-metric space with respect to 3, but not a metric one 
because 3(f, g) = 0 does not necessarily imply f = g. However, we may 
introduce on ~ ( I )  the equivalence relation 

f N g iff ~(f, g) = 0, that is, d(f) = d(g), 

and decompose ~°(I) into equivalence classes C~, which means considering 
the quotient space 5¢(I)/~. 

~ ( I ) / N  is a strict metric space with respect to the distance 

~(C,, C 3 - -  I d(C 3 --  d(C3I, 

where d(Ci) = d(f) w i t h f ~  C~, and may be ordered in a chain, with respect 
to the relation 

C~ ~< Cj if and only if d(C,) <~ d(Cj), 

with a least element C O that is, the class of all classical characteristic functions 
(d(Co) = 0), and a greatest element C 1 , that is, the class to which only the 
function which is always 1/2 belongs; in this case, assuming K = 1 and the 
logarithm in base 2, d(C1) = N. 

Finally, we note that if we consider an experiment in which it is possible 
to choose some fuzzy sets only from a finite number of the previous classes 
C1, C2 ,..., CM with probabilities p(C1) , p(C~),..., p(CM) (~]~Ip(C~) = 1), the 
entropy of the chosen fuzzy set is, as in (15), a random variable which may 
assume the values d(C1),..., d(CM) with probabilities p(C1),... , p(CM). In this 
case it is natural to introduce the average entropy 

M 

<d) = ~ p(C,) d(C~). (16) 
i= l  

This situation may happen in pattern analysis when we consider the case 
of patterns, described by means of fuzzy sets, belonging only to a finite 
number of classes of entropies d(C1),... , d(CM), and occurring with proba- 
bilities p(C1),...,p(CM); this means that the previous patterns may have 
different levels of fuzziness (or ambiguity), a global average measure of which 
is given by (16). 
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5. CONCLUDING REMARKS 

The  considerations exposed in the previous sections are not complete and 
many mathematical generalizations are possible. As we said in Section 2, we 
have considered a universal class I with afinite number of elements; it would 
be interesting to extend the previous concepts for the infinite case. Further- 
more, we have defined the entropy d(f) only in the case in which the range 
of the generalized characteristic functions is the interval [0, 1] of the real line 
which is a chain, i.e., all its elements are comparable. A possible extension 
of the concept of entropy of fuzzy sets, on which we are actually working, 
may be made in the case of L-fuzzy sets, where L is a lattice with universal 
bounds 0 and 1. We observe that the possibility of a general lattice as range of 
generalized characteristic functions is not hypothetical but naturally arises 
every time we consider propositions whose truth-values are not always 
comparable. I t  seems to us that such situations occur in pattern recognition 
when, in order to classify an object, one considers different properties of it 
which are not comparable as, for instance, weight and color. 

The  discussion made in Section 3 about the entropy el(f) of a fuzzy set f 
shows that the decision theory plays, in this context, a r61e similar to the one 
of probability in information theory. However, in our case it would be 
desirable to prove some general theorems, as Shannon's ones of information 
theory, by which one may evaluate the actual implications of the given 
concept of entropy. We think that these theorems must relate some important 
aspects of taking decisions with the entropy of the described situations. 

In  conclusion, we wish to stress that, although many mathematical and 
interpretative problems are open, the previous concept of entropy, different 
from the classical one, may be regarded as a first step in the attempt to found 
a useful calculus in the context of fuzzy sets theory. 
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