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Summary

A core organizing principle for studies of the brain is
that distinct neural pathways mediate distinct behav-

ioral tasks [1, 2]. When two related tasks are mediated
by a common pathway, studies of one are likely to gen-

eralize to the other. Here, we test whether performance
on two laboratory tasks that model object detection

and identification are mediated by common mecha-
nisms of visual adaptation. Although both tasks rely

on the luminance pattern in images, their demands
on visual processing are quite different. Object detec-

tion requires discriminating image luminance differ-
ences associated with the light reflected from adjacent

objects. To encode these differences reliably, neurons

adapt their limited dynamic range to prevailing view-
ing conditions [3–6]. Object identification, on the other

hand, demands a fixed response to light reflected from
an object independent of illumination [7]. We com-

pared performance in discrimination and identifica-
tion tasks for simulated surfaces. In striking contrast

to studies with less structured contexts, we found
clear evidence that distinct processes mediate judg-

ments in the two tasks. These results challenge
models that account for perceived lightness entirely

through the action of image-encoding mechanisms.

Results and Discussion

Although he was wrong about the brain’s basic function,
Descartes’s idea that the central nervous system is
structured with distinct pathways serving distinct be-
havioral tasks now forms a core organizing principle
for studies of the brain. Although direct measurements
of brain activity can delineate anatomical pathways in-
volved in different tasks, they cannot establish whether
different pathways perform redundant functions or, con-
versely, whether a single pathway performs multiple
functions. We used psychophysical data and a quan-
titative model to test whether performance on two
laboratory tasks that model object detection and identi-
fication are mediated by common mechanisms of visual
adaptation.

*Correspondence: jamie@psy.gla.ac.uk
We considered detection and identification in light of
three well-established ideas: (1) Some visual processes
are shared by most visual tasks (e.g., image encoding by
the photoreceptors) [8], (2) visual information is some-
times segregated into parallel channels thought to sub-
serve different functions [1, 2], and (3) the visual system
adapts to prevailing viewing conditions [6]. Here, we use
the term adaptation generally, to refer to any context-
dependent change in the visual response to a focal
stimulus. This definition of adaptation thus incorporates
a wide range of possible effects, from gain changes in
the photoreceptors to the action of complex cortical
processes.

Adaptation can be revealed both by measures of
image intensity discrimination [9, 10] and appearance
judgments [11, 12]. These are laboratory methods used
for measuring the processes underlying object detec-
tion and identification. Although both judgments rely
on the luminance pattern in images, their demands on vi-
sual processing are quite different [13]. Object detection
demands reliable discrimination of image luminance
differences associated with surface reflectance dif-
ferences. Object identification, on the other hand, de-
mands a fixed response to light reflected from an object
independent of context. Given these distinct demands
on visual processing, adaptation measured by discrimi-
nation and identification judgments may reflect different
processes.

Consider the shadowed checkerboard, adapted from
Adelson’s checker-shadow illusion [14] (see also [15]), in
the top panel of Figure 1. The two spots on the checker-
board, as well as the checker they sit on, are physically
identical. Yet most people judge the spot on the right as
lighter than the spot on the left. Two quite different clas-
ses of explanation have been offered for this and other
related effects.

One class of explanation attributes the effect to im-
age-encoding regulation that serves to optimize the
use of limited neural capacity [3, 4, 16]. The first step
in vision is to encode the light pattern reaching the
eyes. To maximize information transmission, neurons
at the front end of the visual system adapt to image in-
tensity and contrast. Here, the relevant stimulus feature
is that the region surrounding the spot on the right is
darker than the corresponding region for the spot on
the left. Because sensitivity to a target image generally
increases with increases in darkness [5, 9], the response
of encoding mechanisms would be higher for the spot
on the right. This in turn is postulated to produce that
spot’s lighter appearance.

A key feature of this explanation is that effects of
mechanisms that regulate image encoding propagate
through the visual system and thereby influence both
discrimination and appearance judgments. We there-
fore refer to this as the common-mechanism hypothesis.
Under this hypothesis, changes in appearance are
predicted by changes in sensitivity, and constancy of
appearance and optimization for image encoding are
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Figure 1. Images of the Shadowed and

Painted Checkerboards

The two images shown here are physically

identical except that the penumbra of the

shadow has been replaced by a sharp edge

coinciding with the checkers. In the latter

case, it tends to look like the checkers along

the negative diagonal have been painted

with a darker paint. Despite the physical sim-

ilarity of the two images, most people see

a greater difference in the appearance of the

spots in the shadow than in the paint image.

The fact that the appearance effect in the

paint image is lesser than in the shadow im-

age suggests that the apparent lightness of

the spots is influenced, perhaps implicitly,

by consideration of the causal structure of

the images: In effect, the visual system

infers that there is less light reaching the

shadowed region of the checkerboard and

compensates for this illumination difference

to create a stable representation of surface

reflectance.
accomplished by the same mechanisms. For a variety of
stimulus configurations, context effects on discrimina-
tion sensitivity and appearance can be explained by
common mechanisms of adaptation [17–21] (but see
also [22]).

A second class of explanation [23] emphasizes the
idea that appearance effects such as those shown in
Figure 1 facilitate object identification across changes
of illumination; this phenomenon is known as lightness
or color constancy [7]. This view suggests that visual
system, in effect, distinguishes the shadowed region in
Figure 1 as such and compensates for the inferred dim-
mer illumination. Some theorists who take this general
view model the visual processes that stabilize object ap-
pearance through computations that combine image
data with information about possible world states to re-
cover explicit descriptions of object physical properties
[24–26]. Others downplay the role of explicit representa-
tions of the physics and instead focus on delineating
heuristics whose action combines to produce stable
percepts [22, 15, 27]. In either case, effects such as
those shown in Figure 1 are not attributed to the action
of mechanisms designed for optimizing sensitivity. Still,
many complex appearance phenomena have been ac-
counted for by models reminiscent of those that account
for discrimination data [28–30], and there are little data
that rule out the possibility that efficient image encoding
and constancy are achieved by the same processes.
Indeed, as noted above, most tests of the common-
mechanism hypothesis fail to reject it [17–21]. Here,
however, we show directly that the appearance effects
of Figure 1 are not consistent with the common-mecha-
nism hypothesis. An important implication of this result
is that encoding regulation and appearance stabilization
are controlled by distinct processes.

To test the common-mechanism hypothesis, we mea-
sured intensity discrimination thresholds at the two spot
locations indicated in Figure 1 of the shadow image
(top panel) and compared these with corresponding
measurements in the paint image (bottom panel). Object
detection requires discriminating the light reflected by
the object from the light reflected by its surroundings.
Because objects are found against backgrounds of
varying complexity and color, measuring discrimination
thresholds against different backgrounds in the labora-
tory provides information on how objects are detected
in real scenes. As shown in Figure 2, there was no dif-
ference in sensitivity between the corresponding spot
locations of the two images. Because of this equality,
the common-mechanism hypothesis predicts that the
appearance effects in the paint image should be the
same as the shadow image. Inspection of Figure 1 read-
ily reveals that this prediction does not hold. Experimen-
tally, we had participants set lightness matches between
the spots within each image and confirmed this observa-
tion (Figure 2): There is little if any appearance effect for
the paint image and an easily measurable effect for the
shadow image. The dissociation between the way the
paint and shadow images affect sensitivity and appear-
ance falsifies the common-mechanism hypothesis.

The results in Figure 2 provide a model-free falsifi-
cation of the common-mechanism hypothesis: The
sensitivity data are the same for the shadow and paint
conditions, although the appearance data differ. What
we do not learn directly from Figure 2 is whether the
common-mechanism hypothesis breaks down for the
shadow condition, the paint condition, or both. We can
leverage the data to address this question by applying
a quantitative model. The model provides an explicit
link between discrimination and appearance data [20,
21] and allows us to examine the common-mechanism
hypothesis within each condition.

Figure 3 illustrates the model. For any fixed context,
visual responses to a local image region, represented
in the central panel, accelerate at low intensities and sat-
urate at high intensities [31, 32]. We, following others
[32–34], used a modified version of the Naka-Rushton
function to model this intensity-response function:

R = M
ðgI + sÞp

ðgI + sÞq + 1
(1)
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Figure 2. Discrimination and Matching

Results for Eight Participants in the Paint

and Shadow Conditions

The top left and right panels show just-

noticeable differences (JNDs) for tests lo-

cated outside and inside the shadowed and

painted regions, respectively (as indicated

in the images in the lower right). The x axis

is labeled as ‘‘Pedestal Intensity’’ and refers

to the fixed spot intensity, Ip. Participants’

task was to discriminate Ip shown in one

interval from Ip+DI shown in the other inter-

val. For each participant the increments, DI,

were normalized by detection thresholds

(i.e., discrimination threshold for Ip = 0) mea-

sured at the test location outside the shadow.

We pooled and fitted the data with cumulative

Gaussians to estimate JNDs defined as the

75% correct point. The JNDs plotted in the

top two panels were rescaled by the average

absolute threshold. Diamonds and circles

represent data from the shadow and paint

conditions, respectively. Error bars are 95%

confidence intervals. Data from the two par-

ticipants who only observed in the paint

condition are not included here. Asymmetric

matches from the appearance task are plot-

ted in the bottom-left panel. The mean inten-

sity of participants’ settings is plotted against

the fixed test intensities. Standard errors

were smaller than the symbols used here.

Matches were performed with the fixed test

in both locations: Open and closed symbols

represent, respectively, settings when the

adjustable test was outside and inside the

shadowed or painted region. In the paint con-

dition, deviations from the physical identity of

the test and matches are very small. In the

shadow condition, matches occurred when

the spot intensity in the shadow was lower

than the spot intensity outside the shadow.
where I is intensity and M, g, s, p, and q are free param-
eters controlling the shape of the response function.

The two curves in the central panel represent the
same encoding mechanism in two states of adaptation
(i.e., in two different contexts). We modeled adaptation
as a change in the value of one or more of the five param-
eters in Equation 1 with each change of context. In our
formulation, there are no restrictions on the nature of
this contextual dependence, and this makes Equation
1 general enough to account for the action of a wide va-
riety of processes (e.g., local gain control, lateral inhibi-
tion, effects of contour-junction interactions, etc.) that
might affect sensitivity or appearance.

To link discrimination and appearance data, we as-
sume: (1) Discrimination sensitivity is proportional to
the slope of the response function (i.e., JNDf 1

R0) [35],
and (2) appearance matches occur when the response
of the mechanism is the same in the two contexts [36].
JNDs and appearance matches associated with the
parametric change that produced the two response
functions in the central panel are shown in the lower
and upper panels, respectively. Can such parametric
changes simultaneously account for effects of context
on discrimination and appearance judgments?

In the context of Equation 1, there are 31 possible
parametric models of adaptation: five models in which
one adaptation parameter is allowed to vary with
context, whereas the other four fixed parameters are
held constant across contexts, ten models with two ad-
aptation parameters and three fixed parameters, etc.
Within any of these 31 models, we can address the
question of whether the common-mechanism hypothe-
sis holds by comparing three nested model variants
[21]. In the common mechanism (CM) variant, all param-
eters are the same for discrimination and appearance
judgments. In the independent adaptation (IA) variant,
the fixed parameters are common to discrimination
and appearance judgments, but the adaptation parame-
ters can be different for each judgment. In the indepen-
dent channels (IC) variant, both the fixed and adaptation
parameters can vary with judgment. For a given para-
metric model of adaptation, the IC variant has more
free parameters than the IA variant, and the IA variant
has more free parameters than the CM variant (e.g., for
a parametric adaptation model that allows g to vary
with each of two contexts, the CM variant has a total
of six free parameters, the IA variant has eight, and the
IC variant has 12). Thus, for a given model of adaptation,
the CM variant is nested within the IA variant that in turn
is nested within the IC variant.

We fit the CM, IA, and IC variants of each of the para-
metric models to the data from the shadow and paint
conditions separately. For each condition (shadow or
paint), the data consisted of the discrimination data for
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Figure 3. Common-Mechanism Model

The red and black curves in the central panel represent the intensity-

response function of a typical mechanism in two states of adapta-

tion. The black and red curves in the lower panel represent the

just-noticeable differences (JNDs) associated with these two states

of adaptation. Each point on each curve in the lower panel re-

presents a predicted 75% correct discrimination threshold for the

response curves in the middle panel. Note that JNDs are lowest

where the response curves are steepest and become infinite when

the response curves saturate. These JND curves were derived under

the assumption that responses of the encoding mechanism are
the tests at the two locations and the appearance
matches between the two locations. We then used
Akaike’s an information criterion (AIC) [37, 38] and the
Bayesian information criterion (BIC) [38, 39] to deter-
mine, again for the shadow and paint conditions sep-
arately, which variant of which model of adaptation
provided the best account of the systematic effects
observed in the data. By accounting for the number of
free parameters as well as the goodness of fit to the
data (i.e., by ‘‘punishing’’ for additional parameters),
these information criteria discriminate when additional
parameters bring the model closer to the systematic
process that generated the data from cases in which
additional parameters fit noise in the data. Analysis in
terms of these model selection criteria allowed us to
draw two key conclusions described below. The Supple-
mental Data (available online) provides details of the
analysis, and figures showing the results of the fitting
used in the analysis can be viewed at http://color.psych.
upenn.edu/supplements/shadowpaint/mainwebshdpnt.
html.

First, for the family of models we considered, the com-
mon-mechanism hypothesis is rejected for both the
paint and shadow conditions. This failure is in striking
contrast to our earlier results for simple image contexts
that do not look like illuminated objects, i.e., blurry spots
seen against uniform backgrounds or spatial noise [20,
21]. We speculate that the difference occurs because
in relatively unstructured contexts, stimuli do not look
like illuminated surfaces, and thus mechanisms control-
ling surface-appearance judgments are not invoked. In
the present experiments, discrimination performance
is unaffected by the processes that differentiate the
paint and shadow interpretations. An important implica-
tion of this conclusion is that models of adaptation de-
veloped to account for discrimination data cannot by

corrupted by additive, normally distributed noise of fixed variance.

This is formally equivalent to Fechner’s proposal that discrimination

thresholds correspond to a set difference in the neural response to

the targets presented [34]. The blue and orange points in the central

and lower panel demonstrate the logic for one test intensity. The

intensity difference between the blue and orange points (x axis) in

the central panel yields a response difference (y axis) that permits

correct discrimination of intensity increment 75% of the time. In

the lower panel, the test intensity is again plotted on the x axis,

and the intensity difference (one JND) between the blue and orange

points is represented on the y axis. Comparison of the red and black

curves in the central and lower panels shows that low JNDs corre-

spond to tests located at steep parts of the response functions,

and high JNDs correspond to tests located at shallow parts. The

top panel shows the matches predicted across the states of adapta-

tion (i.e., two contexts) shown in the central panel. To predict appar-

ent matches, we assume that the targets in the two contexts look the

same when the response of the mechanism is the same in the two

contexts. For a target presented in the first context with intensity

indicated by the black point (central panel), a target with intensity

indicated by the red point produces the same response the other

context. These would therefore be considered a match. The target

intensities that produce matches for the states of adaptation in the

central panel are shown by the red line in the top panel. The faint

gray line in this panel represents physical identity of the targets. In

the case shown, the difference between the two intensity-response

functions is described by a change in the gain parameter of Equation

1, so that the predicted matches plot along a line with unity slope in

the log-log plot. Other shapes of the predicted matching function

may be obtained when other parameters of Equation 1 vary with

adaptation.

http://color.psych.upenn.edu/supplements/shadowpaint/mainwebshdpnt.html
http://color.psych.upenn.edu/supplements/shadowpaint/mainwebshdpnt.html
http://color.psych.upenn.edu/supplements/shadowpaint/mainwebshdpnt.html
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themselves provide a complete account of how context
affects appearance.

Second, more complex parametric models of adapta-
tion are required to account for the data from the
shadow condition than for the paint condition (see Fig-
ure S3). A process interpretation that is consistent with
this result (but not compelled by it) is that the mecha-
nisms that generate appearance act on the output of
early image encoding mechanisms and that the action
of these appearance mechanisms is most strongly re-
vealed by the shadow stimulus configuration. To be
effective at stabilizing appearance, such a mechanism
would need access to information about the adapted
state of the earlier image encoding mechanisms (see
[40]; this has been shown to be biologically plausible
[41, 42]) as well as information about lighting variation
in the scene. We cannot at this point make any definitive
statement about how or at what stage in the visual
pathways this information begins to affect lightness
processing.

On a broader scale, our data are consistent with
the speculation that evolutionary processes have fa-
vored the incorporation of distinct mechanisms spe-
cialized for detecting objects by their reflectance
differences and for identifying objects by their surface
reflectance.

Experimental Procedures

Eight paid volunteers who were unaware of the experimental hy-

potheses and the two authors participated in the experiments.

Two participants did not complete observations for the paint con-

dition, so there were only eight participants for this condition. All

participants had normal or corrected to normal acuity and normal

color vision as assessed by an Ishihara color-blindness test.

Discrimination performance was measured in a two-interval

forced-choice task. The intensity in one interval was set at Ip. We

call this the pedestal intensity. The intensity in the other interval

was the pedestal plus an increment, Ip + DI. Participants indicated

the interval they believed contained the increment. Trials alternated

between the two possible locations in each (shadow/paint) con-

dition. The value of DI was controlled by an adaptive staircase

procedure.

The effect of context on appearance was measured with an asym-

metric matching task. Participants matched the appearance of se-

quentially presented test spots located as shown in Figure 1. Spatial

and temporal parameters of the targets were essentially identical to

those used in the discrimination experiment. The only differences

were (1) the intensity of the spots in the two target intervals at one

location was the same, and (2) the participant responded only after

the targets were presented in both target locations (as opposed

once after each target location in the discrimination experiment).

The response was a button press that changed the intensity of the

spot at the second location. The selected intensity change was

then used in the subsequent spot presentation. The participant indi-

cated when a perceptual match had been obtained.

Specific instructions given to the participant in the matching ex-

periment were: ‘‘Make the brightness of the adjustable spot the

same as the fixed spot, disregarding, as much as possible, other

areas of the display. That is, make it look like the amount of light

coming from the adjustable spot is the same as that coming from

the fixed spot.’’ We used these instructions to bias participants

toward relying on a low-level percept.

Complete details of the experimental procedure and stimuli are

available in the Supplemental Data.

Supplemental Data

Additional Experimental Procedures and three figures are available

at http://www.current-biology.com/cgi/content/full/17/19/1714/

DC1/.
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