Asymptotics for recurrence coefficients in the generalized Meixner case

André Ronveaux
Physique Mathématique, FUNDP, 61 Rue de Bruxelles, 5000 Namur, Belgium

Polynomials $P_{n}(x)$ orthogonal with respect to the weight

$$
\begin{equation*}
\rho_{M}^{(\vec{\alpha}, \mu)}(x)=\frac{\mu^{x} \prod_{j=1}^{q} \Gamma\left(x+\alpha_{j}\right)}{(x!)^{q}}, \quad x=i=0,1,2, \ldots ; \quad \vec{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{q}\right), \quad \alpha_{j}>0 ; \quad 0<\mu<1 \tag{1}
\end{equation*}
$$

are semi-classical of class $s(0 \leqslant s \leqslant q-1)$, and are called Generalized Meixner [1].
The recurrence relation satisfied by the monic polynomial $P_{n}(x)$ is

$$
\begin{equation*}
P_{n+1}(x)=\left(x-\beta_{n}\right) P_{n}(x)-\gamma_{n} P_{n-1}(x), \quad n \geqslant 0 \tag{2}
\end{equation*}
$$

with $P_{-1}(x)=0, P_{0}(x)=1$.
When $\alpha_{j}=1$ for all j, weight (1) reduces to μ^{x}, and

$$
\begin{equation*}
\beta_{n}=\frac{1+\mu}{1-\mu} n, \quad \gamma_{n}=\frac{\mu}{(1-\mu)^{2}} n^{2} . \tag{3}
\end{equation*}
$$

For $\alpha_{1}=\alpha, \alpha_{2}=\alpha_{3}=\cdots=\alpha_{q}=1$, the weight (1) is the classical Meixner [2] weight for which β_{n} and γ_{n} are known explicitly and satisfy:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\beta_{n}}{n}=\frac{1+\mu}{1-\mu}, \quad \lim _{n \rightarrow \infty} \frac{\gamma_{n}}{n^{2}}=\frac{\mu}{(1-\mu)^{2}} \tag{4}
\end{equation*}
$$

These limits are independent of α, and the proposed problem is to prove that these results are true in general for any positive value of α_{j} in (1).

In the general case, coefficients β_{n} and γ_{n} can be computed recurrently from the two nonlinear algebraic coupled equations (Laguerre-Freud equations) [3]

$$
\left\{\begin{array}{l}
\beta_{n+1}=F_{1}\left(\beta_{0}, \ldots, \beta_{n} ; \gamma_{0}, \gamma_{1}, \ldots, \gamma_{n}\right), \tag{5}\\
\gamma_{n+1}=F_{2}\left(\beta_{0}, \ldots, \beta_{n} ; \gamma_{0}, \gamma_{1}, \ldots, \gamma_{n}\right) .
\end{array}\right.
$$

[^0]Even in the case $q=2$, these equations are already difficult to manage but numerical computations confirm the behaviour given in Eq. (4) [3,4].
It is therefore hopeless to investigate in the general case from Eq. (5) and a more general approach should be used.

Exact results given in (4) seem to show that the nonpolynomial modification $\Gamma(\alpha+x) / x$! of the weight μ^{x} does not change the asymptotic behaviour of β_{n} / n and γ_{n} / n^{2}. So it is natural to guess that the asymptotic behaviour stays the same each time we multiply by $\Gamma(\alpha+x) / x!\ldots$.

Let us squeeze any α_{j}, called α, between two consecutive integers

$$
\begin{equation*}
N_{\alpha} \leqslant \alpha \leqslant N_{\alpha}+1, \quad N_{\alpha} \text { integer. } \tag{6}
\end{equation*}
$$

From the monotonicity of the $\Gamma(z)$ function $(1.462<z)$, lower and upper bounds on the factor $\Gamma(\alpha+x) / x$! can therefore be given:

$$
\begin{equation*}
\frac{\Gamma\left(N_{\alpha}+x\right)}{x!} \leqslant \frac{\Gamma(\alpha+x)}{x!} \leqslant \frac{\Gamma\left(N_{\alpha}+1+x\right)}{x!} \quad\left(2 \leqslant N_{\alpha}\right) \tag{7}
\end{equation*}
$$

For $0<x<\infty$, the function $\Gamma(\alpha+x) / x$! is bounded by the rising factorial polynomials $(x)_{n} \equiv$ $x(x+1) \cdots(x+n-1)$

$$
\begin{equation*}
(x+1)_{N_{\alpha}-1} \leqslant \frac{\Gamma(\alpha+x)}{x!} \leqslant(x+1)_{N_{\alpha}+1} . \tag{8}
\end{equation*}
$$

So the first step is to prove that polynomial modifications of the exponential weight μ^{x} does not change the limit given in Eq. (4). The second step should extend this result to the function $\Gamma(\alpha+x) / x$! using the first step proof and Eq. (8). The third step should cover $0<\alpha<2$.

We are looking for such proofs.

References

[1] A. Ronveaux, Discrete semi-classical orthogonal polynomials: Generalized Meixner, J. Approx. Theory 46 (4) (1986) 403-407.
[2] A.F. Nikiforov, V.B. Uvarov, Fonctions Spéciales de la Physique Mathématique, MIR, Moscow, 1983.
[3] M. Foupouagnigni, M.N. Hounkonnou, A. Ronveaux, Laguerre-Freud Equations for the recurrence coefficients of D_{ω}-Semi-classical Orthogonal Polynomials of class one, J. Comput. Appl. Math. 99 (1998) 143-154.
[4] W. Van Assche, private communication.

[^0]: E-mail address: andre.ronveaux@fundp.ac.be (A. Ronveaux).

