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Polynomials P,(x) orthogonal with respect to the weight
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are semi-classical of class s (0 <5 < ¢ — 1), and are called Generalized Meixner [1].
The recurrence relation satisfied by the monic polynomial P,(x) is

PnJrl(x) = (X - ﬁn)Pn(x) - ynPnfl(x)p I’l>0 (2)

with P_I(X) = O, P()(X) =1.
When o; =1 for all j, weight (1) reduces to u*, and

1+u H 2
Po="—mn, = ——n. (3)
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For oy = o, 0p =03 =--- =0, = 1, the weight (1) is the classical Meixner [2] weight for which S,
and v, are known explicitly and satisfy:
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These limits are independent of «, and the proposed problem is to prove that these results are
true in general for any positive value of o; in (1).
In the general case, coefficients 5, and 7y, can be computed recurrently from the two nonlinear
algebraic coupled equations (Laguerre—Freud equations) [3]
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Even in the case ¢ = 2, these equations are already difficult to manage but numerical computations
confirm the behaviour given in Eq. (4) [3.4].

It is therefore hopeless to investigate in the general case from Eq. (5) and a more general approach
should be used.

Exact results given in (4) seem to show that the nonpolynomial modification I'(« + x)/x! of the
weight ¢* does not change the asymptotic behaviour of f8,/n and y,/n?. So it is natural to guess that
the asymptotic behaviour stays the same each time we multiply by I'(o + x)/x!... .

Let us squeeze any o;, called a, between two consecutive integers

N,<a<N,+ 1, N, integer. (6)

From the monotonicity of the I'(z) function (1.462 < z), lower and upper bounds on the factor
I'(o 4 x)/x! can therefore be given:

F(Na+x)<F(0‘+x)<F(Nx+l+x)
x! Soox x!

(2<N,). (7)

For 0 <x < oo, the function I'(x + x)/x! is bounded by the rising factorial polynomials (x), =
x(x+1)---(x+n—1)
I'(a+x)

x4+ 1Dy, < '
X!

<@+ Dy (8)

So the first step is to prove that polynomial modifications of the exponential weight u* does not
change the limit given in Eq. (4). The second step should extend this result to the function I"(a+x)/x!
using the first step proof and Eq. (8). The third step should cover 0 < o < 2.

We are looking for such proofs.
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