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Abstract
Purpose: Long-term training specificity is thought to alter performance in tests evaluating strength and power production capability. The aim of
the present study was to provide additional information to the limited existing knowledge concerning the possible differences of the force/time
profile of squat jumping among different groups of young female athletes.
Methods: One hundred and seventy-three adult women (20.1 � 2.8 years, 1.71 � 0.09 m, 65.6 � 10.3 kg, mean � SD for age, height, and mass,
respectively) engaged in track and field (TF), volleyball (VO), handball (HA), basketball (BA), and physical education students (PE) executed
maximal squat jumps (SQJ) on a force plate. Pearson’s correlation was used to identify the relationship between SQJ performance, the
anthropometric characteristics and the biomechanical parameters. Differences concerning the biomechanical parameters among groups were
investigated with analysis of variance, while the force- (FPD) or time- (TPD) dependency of SQJ execution was examined using principal
components analysis (PCA).
Results: SQJ was unrelated to body height but significantly correlated with body mass (r ¼ �0.26, p ¼ 0.001). TF jumped higher and produced
larger peak body power output compared to all the other groups ( p < 0.05). All athletes were superior to PE since they performed the SQJ with a
longer ( p < 0.05) vertical body center of mass trajectory during the propulsion phase. PCA results revealed that TF significantly differentiated
than the other groups by relying on FPD.
Conclusion: Various different profiles of FPD and TPD were detected due to different sporting background in young female athletes. Since TF
superiority in SQJ was relied on the larger power production and a greater FPD, female indoor team sport athletes are suggested to execute
jumping exercises adopting the jumping strategies utilized by TF.
Copyright � 2014, Shanghai University of Sport. Production and hosting by Elsevier B.V.
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1. Introduction

The ability to jump high is widely considered a funda-
mental physical ability demand in the majority of sporting
activities. Vertical jumping performance and the ability to
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generate the acquired impulse for the take-off is depended
on a variety of factors such as the ratio of fast and slow
twitch muscle fibers,1,2 the activation of the lower extremity
muscles3,4 and the coordinated energy transfer of the pro-
duced joint power in a proximal to distal sequence.5e9 In
the case of the vertical squat jump, performance (i.e., the
jumping height), is greatly depended upon the muscular
strength of the leg extensor muscles.10 However, the whole
body peak mechanical power output has been found to be
the most important factor regarding vertical jumping
performance.2,11e14

The long-term training specificity is considered to have an
effect on the strength and power production capabilities of
ing by Elsevier B.V. Open access under CC BY-NC-ND license.
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individuals involved in sporting activities of different
discipline.15e17 Specifically, the training background is
a factor that modifies the parameters defining vertical
jumping performance among athletes of different sporting
activities.12,15,18e21 A more sophisticated investigation with
the use of principal component analysis (PCA), a method
that extracts a fewer number of factors from interrelated
parameters that assess vertical jump performance,22 revealed
that athletes of different sporting background tend to achieve
higher vertical jumps by utilizing the force and temporal
parameters in a sport-background based combination.22e26

The results of those studies agree that power-trained ath-
letes (i.e., volleyball players (VO) and track and field ath-
letes (TF)) perform better in vertical jumping tests.
Additionally, the findings of the above mentioned PCA
studies converge to the fact that TF rely mainly on a force-
dominant pattern when aiming for maximum jumping height,
whereas handball (HA) and basketball (BA) players show an
ineffective utilization of force parameters.

Despite the research conducted concerning the principal
component structure of vertical jumping in male athletes,
no studies addressing this issue in female athletes have
been found. It is well documented that vertical jumping
performance is significantly different between males and
females due to the existing gender differences concerning
the strength and power production abilities.27e29 Further-
more, it has been reported that although the temporal pa-
rameters are not different, significant gender differences
exist concerning the magnitude of the force dominancy of
maximal vertical squat jump (SQJ) performance in un-
trained young adult males and females.30 Since previous
studies have reported differences concerning the principal
component structure of vertical jumping only for male
athletes of various sport-specific backgrounds,22e26 it is of
interest to examine the effect of sport specificity on the
maximal SQJ performance indices in female athletes. The
purpose of the present study was to investigate the possi-
bility that young adult female athletes from different sports
utilize a force- and time-dependency pattern representative
of their sporting background when executing a vertical
SQJ. It was of interest to examine if female TF and VO rely
more on a tendency of force dominance opposed to HA and
BA players, as previously shown for male athletes of the
same sports.
Table 1

Participant characteristics (mean � SD).

Group n Age (year) Body height (m)

TF 51 20.3 � 2.8 1.71 � 0.07

VO 48 19.6 � 3.7 1.79 � 0.06y

HA 19 19.7 � 2.9 1.68 � 0.09#

BA 18 21.6 � 2.6 1.76 � 0.08{

PE 37 20.0 � 0.8 1.64 � 0.06y#x

Abbreviations: TF ¼ track and field athletes; VO ¼ volleyball players; HA ¼ ha

BMI ¼ body mass index.
yp < 0.05, compared to TF, #p < 0.05, compared to VO, {p < 0.05, compared to
2. Materials and methods
2.1. Participants
A hundred and seventy-three women (20.1 � 2.8 years,
1.71 � 0.09 m, 65.6 � 10.3 kg, mean � SD for age, height,
and mass, respectively) volunteered for the study. In detail,
136 of the participants were athletes (Table 1) and were
evaluated at the beginning of their competitive season, 51 were
national level TF (sprinters, jumpers, and throwers), 48 were
VO, 19 were HA, and 18 were BA, all competing in top lea-
gues of their respective sport. Inclusion to the study required
athletes to constantly participate in systematic training pro-
grams for a period of at least 8 years. The sample also
included 37 females who were physical education students
(PE) and did not participate, besides their academic courses, in
a systematic training program for at least 2 years prior to the
study. No previous severe lower extremity injury was reported
from the participants who gave their informed consent for
participation in the study, which was accomplished according
to the Institutional Research Ethics Code for the use of human
subjects.
2.2. Procedure
Prior to the actual testing, the participants’ anthropometric
data (body height, body mass, and body fat composition) were
collected.31 Before testing, participants performed a 10-min
cycling session at a constant pedaling velocity of 5.5 m/s
with no additional load for warm-up, followed by a 10-min
flexibility program. Afterward, the participants executed
three bare footed maximal SQJ on a force-plate without the
swing of the arms. At the starting position for the execution of
the SQJ, the arms were placed on the hips, the feet were in full
contact with the force-plate and the knee joint was in an
approximate 90� angle. The 90� angle of the knee joint was
controlled by video-recording the SQJ attempt with a JVC
GR-D720E video camera (Victor Company of Japan Ltd.,
Yokohama, Japan) which was connected to a PC through an
IEEE 1394 interface (Texas Instruments Inc., Dallas, TX,
USA). The camera was fixed on a stationary tripod placed at a
height of 1.2 m and at a distance of 7 m from the participants.
The optical axis of the camera was perpendicular to the
sagittal plane of the participants. The recorded video was
Body mass (kg) Lean body mass (kg) BMI (kg/m2)

65.5 � 14.0 54.9 � 11.7 22.5 � 4.7

68.1 � 5.5 53.3 � 4.3 21.2 � 1.4

67.4 � 7.5 50.0 � 5.6# 24.3 � 5.0#

71.4 � 5.6 54.1 � 4.2 23.1 � 1.6

59.2 � 9.6#x 46.0 � 5.7y#x 21.9 � 2.6

ndball players; BA ¼ basketball players; PE ¼ physical education students;

HA, xp < 0.05, compared to BA.
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displayed simultaneously on the capture screen of the Kinovea
0.8.15 software (Joan Charmant & Contributors, Bordeaux,
France). This enabled to project a right angle mark on the
displayed video, which helped the researchers to guide the
participants in order to acquire the initial squatting position.
When the desired 90� knee angle was obtained, the partici-
pants were instructed to “jump as high and as fast as possible
without a countermovement or the use of an arm-swing”. This
instruction was provided because the arm swing and the
countermovement have independent effects on lower extrem-
ity work and their combined effect produce greater jump
height by enabling mechanisms other than the concentric
strength of the leg extensor muscles which is assessed by the
SQJ test.10,32,33 A couple of trials were allowed for familiar-
ization. For an SQJ to be considered valid, the participants had
to land on the force-plate and had to avoid any downward
movement of the body. The latter was evaluated immediately
using the time history curve of the recorded vertical ground
reaction force (vGRF). If the vGRF curve progressed lower
than the line representing the body mass at the initial stages of
the propulsion phase, the attempt was not considered valid and
it was repeated. The progression of the vGRF curve below the
line representing the body mass indicates a downward move-
ment of the body which is caused by a countermovement. As
mentioned above, the validity of the SQJ test requires the
absence of a countermovement, because it allows muscles to
be activated in a higher level and thus a greater amount of
force is produced compared to the concentric contraction of
the leg extensor muscles.33 In all cases, a minimum of 1-min
interval was permitted between the executions of the SQJ in
order to avoid fatigue. Only the best attempt, as indicated by
the height of the jump achieved, was selected for further
analysis.
2.3. Instrumentation and data acquisition
The values of the anthropometric characteristics of the
participants were collected using a Laffayette skinfold caliper
(Laffayette Instrument Co, Laffayette, IN, USA) and an SECA
220 scale with telescopic measuring rod (Seca Deutschland,
Hamburg, Germany). Warm-up was conducted on a Monark
817E cycle ergometer (Exercise AB, Vansbro, Sweden). An
AMTI OR6-5-1 force-plate (AMTI, Newton, MA, USA) was
used to record the vGRF, which was sampled at a nominal
frequency of 500 Hz. The signal from the force-plate was
simultaneously stored in a Pentium II personal computer after
being digitally converted using a PC-LabCard PCL-812PG
(Advantech Co., Taiwan, China) 12 bit analogue-to-digital
converter.
2.4. Data analysis
Custom designed software was used to extract the biome-
chanical parameters that define SQJ performance (achieved
jump height, hjump) from the recorded vGRF-time curve. hjump

was extracted using the body center of mass (BCM) vertical
take-off velocity which was derived through the integration of
the net vGRF. The analysis included only the best attempt, as
indicated with the adoption of the criterion described above.

According to relative studies,22e24,26,30 selected force and
spatio-temporal parameters are included in PCA based on the
fact that these parameters were found to represent the ten-
dency of force- or time-dependency of SQJ performance. PCA
is a mathematical procedure that investigates the variances of a
set of variables and it is used as a descriptive tool.34 PCA
converts a large number of highly intercorrelated variables
into a smaller number of linearly combined uncorrelated (i.e.,
“orthogonal”) computed factors named principal components.
If a substantial correlation exists among the initial variables,
the first principal components will account for most (approx-
imately 70%e90%) of the variation of the original variables.34

Thus, the derived principal components preserve most of the
information given by the initial variables. This procedure ex-
tracts a factor pattern matrix, in which the number of principal
components is defined by the number of eigenvalues larger
than 1. This is adopted because a principal component with a
variance less than the above mentioned value contains less
information than of the original variance (Kaiser’s rule).34 In
order to rationalize the identification of the extracted factors,
the factor pattern matrix is rotated using specific criterions
(i.e., the loadings of the variables on the extracted factor) and a
number of iterations of the procedure in a way that the original
variables are eventually strongly related to one of the extracted
principal components. The use of PCA assists the acquisition
of information about the force- or time-dependency of an in-
dividual’s jumping profile by reducing the large number of
biomechanical parameters needed to express vertical jumping
performance into the coordinates of the factor scores (the plot
of the individual scores on the rotated principal compo-
nents).22 Under this perspective, the following force and
spatio-temporal parameters were calculated (Fig. 1): peak vGRF
relative to body mass (FZbm), peak power relative to body
mass (Pbm), maximum rate of force development (RFDmax),
impulse time (tC), time to achieve peak force (tFZmax), and
vertical BCM trajectory during the propulsion phase (SBCM).
RFDmax was directly extracted as the first time derivative of
the recorded vGRF. Pbm was obtained by multiplying the
vGRF by the vertical BCM velocity during the propulsive
phase and divided by the participant’s body mass. SBCM, from
the initial starting position described in Section 2.2 to the
instant of take-off, was extracted through integration of the
vertical BCM velocity.
2.5. Statistical analysis
Data were presented as mean � SD and differences con-
cerning the anthropometric data and the biomechanical pa-
rameters were identified with a one-way analysis of variance
(ANOVA). A Scheffe post-hoc analysis with Bonferroni
adjustment was conducted to detect differences among
groups. Two-tailed Pearson correlation was used to detect the
relationships among the anthropometric data and hjump. A
PCA utilizing a Varimax rotation with Kaiser normalization
on the data from the 173 participants was executed to



Fig. 1. A typical vertical ground reaction force curve (upper left plot, force) and the parameters calculated from it (rate of force development (RFD), work, power,

velocity, position of the body center of mass). Values next to the curve legends represent the minimum and maximum values of each parameter during the push-off.

The lower right section provides the details concerning the selected time instances of achieving maximum and minimum values during the jump.
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examine the individual tendency toward force- or time-
dependency for the achievement of maximum SQJ perfor-
mance. The number of principal components in the extracted
factor matrix was determined by the number of eigenvalues
larger than one. Crombach’s a was used to test the reliability
of the extracted rotated principal components. Differentia-
tions among athletes of different sports concerning the ten-
dency for force- or time-dependency were searched by
plotting the individual factor regression scores on the rotated
principal components and by performing an one-way
ANOVA and Scheffe post-hoc analysis with Bonferroni
adjustment on the extracted individual factor regression
scores. The level of significance was set at p ¼ 0.05 for all
statistical procedures. SPSS 10.0.1 software (SPSS Inc.,
Chicago, IL, USA) was used for the execution of the statis-
tical tests.

3. Results
3.1. Anthropometric data
The comparison of anthropometric data revealed that VO
were taller ( p < 0.05) compared to HA, TF, and PE (Table
1). HA were also significantly shorter ( p < 0.05) than BA.
Additionally, PE were significantly lighter than VO and BA
and also had lower lean body mass compared to TF, VO,
and BA ( p < 0.05). HA had the largest body mass index
(BMI), which was significantly larger compared to VO
( p < 0.05).
3.2. Group results for the examined SQJ biomechanical
parameters
Results indicated that participants executed the SQJ in a
consistent manner (intraclass correlation coefficient: 0.95,
coefficient of variation: 2.9% � 2.2%), but the values of the
biomechanical parameters were significantly different
( p < 0.05) among the examined groups (Table 2). In detail,
the post-hoc analysis revealed that TF achieved the highest
hjump ( p < 0.05) after producing the largest Pbm ( p < 0.05)
compared to the rest of the participants. Furthermore, TF was
observed to have applied significantly higher FZbm ( p < 0.05)
than VO, HA, and PE. Significantly faster tC and tFZmax

( p < 0.05) was noted for TF compared to VO and HA, who
both in turn were significantly slower ( p < 0.05) in the above
mentioned parameters than BA and PE. Lower value for



Table 2

Group results for the biomechanical parameters of the squat jump (mean � SD).

Parameter TF VO HA BA PE

hjump (m) 0.24 � 0.05 0.21 � 0.03y 0.18 � 0.03y 0.18 � 0.05y 0.16 � 0.03y#{x

tC (ms) 566 � 146 684 � 139y 702 � 162y 560 � 122#{ 552 � 98#{

tFZmax (ms) 431 � 148 525 � 126y 560 � 177y 387 � 128#{ 401 � 115#{

SBCM (m) 0.42 � 0.07 0.47 � 0.09 0.42 � 0.07 0.43 � 0.06 0.32 � 0.07y#{x

FZbm (N/kg) 2.34 � 0.19 2.02 � 0.17y 2.13 � 0.18y 2.24 � 0.18# 2.14 � 0.37y

Pbm (W/kg) 26.42 � 4.17 20.53 � 2.62y 20.58 � 3.49y 21.82 � 1.88y 18.10 � 4.10yx

RFDmax (kN/s) 8.9 � 3.6 6.2 � 1.9y 7.6 � 2.8 8.7 � 2.6 8.3 � 7.2

Abbreviations: hjump ¼ height of jump; tC ¼ impulse time; tFZmax ¼ time to achieve peak force; SBCM ¼ vertical body center of mass trajectory during the

propulsion phase; FZbm ¼ peak force relative to body mass; Pbm ¼ peak power relative to body mass; RFDmax ¼ maximum rate of force development; TF ¼ track

and field athletes; VO ¼ volleyball players; HA ¼ handball players; BA ¼ basketball players; PE ¼ physical education students.
yp < 0.05, compared to TF, #p < 0.05, compared to VO, {p < 0.05, compared to HA, xp < 0.05, compared to BA.
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RFDmax was recorded for VO compared to TF ( p < 0.05).
Finally, PE had the shortest SBCM compared to the examined
groups of athletes ( p < 0.05).
3.3. Results of correlation and principal components analysis
Table 3

Correlation matrix presenting the relationship among the examined biome-

chanical parameters and the squat jump height (n ¼ 173).

Parameter hjump tC tFZmax SBCM FZbm Pbm RFDmax

hjump e 0.03 0.13 0.21** 0.30*** 0.70*** �0.07

tC e 0.92** 0.21** �0.29*** �0.14a �0.23**

tFZmax e 0.24** �0.25** �0.04 �0.26**

SBCM e �0.26** 0.17* �0.33***

FZbm e 0.73*** 0.66***

Pbm e 0.32***

RFDmax e

Abbreviations: hjump ¼ height of jump; tC ¼ impulse time; tFZmax ¼ time to

achieve peak force; SBCM ¼ vertical body center of mass trajectory during the

propulsion phase; FZbm ¼ peak force relative to body mass; Pbm ¼ peak power

relative to body mass; RFDmax ¼ maximum rate of force development.

*p < 0.05; **p < 0.01; ***p < 0.001; a p ¼ 0.057.
hjump was found to be negatively correlated with body mass
(r ¼ �0.26, p ¼ 0.001) but not with lean body mass
(r ¼ �0.11, p > 0.05) or body height (r ¼ 0.04, p > 0.05). The
force parameters examined (FZbm, Pbm, and RFDmax) were
significantly ( p < 0.001) correlated to each other, with cor-
relation coefficients (r) ranging from 0.32 to 0.73 (Table 3).
Lower, yet significant, correlation coefficients were observed
among the spatio-temporal parameters (tC, tFZmax, and SBCM)
as well ( p < 0.01). With the exception of Pbm, negative cor-
relations were detected between the spatio-temporal and the
force parameters. hjump was highly correlated with Pbm

(r ¼ 0.70, p < 0.001).
The correlation analysis revealed that it was valid to

conduct the PCA because significant intercorrelations were
detected among the tested variables. PCA revealed the exis-
tence of two principal components that explained 69.1% of the
variance of the examined biomechanical parameters. The
variable scores of the two extracted principal components are
presented in Fig. 2. The first rotated principal component,
which accounted for 40.2% of the variance, was interpreted to
be associated with the time characteristics of SQJ (eigenvalue:
2.41) since it was linked with the spatio-temporal parameters
(SBCM, tC, tFZmax). In detail, SBCM, tC, tFZmax were highly and
positively loaded on this factor (loadings: 0.60e0.93; com-
monalities: 0.36e0.88; a ¼ 0.65). These loadings suggest that
long tC is combined with larger SBCM and slower tFZmax.
Negative relationships on this principal component (in-
dividuals spotted in sections A and C, Fig. 3) indicate, with
respect to force application, fast athletes, while positive re-
lationships represent slow athletes (sections B and D). The
second rotated principal component accounted for 28.9% of
the variance and was related with the force characteristics
(FZbm, Pbm, and RFDmax) of SQJ (eigenvalue: 1.73). In spe-
cific, FZbm, Pbm, and RFDmax had high positive loadings of
0.92, 0.89, and 0.59 respectively on this factor (commonal-
ities: 0.36e0.87; a ¼ 0.72). These loadings suggest that high
FZbm was achieved through high RFDmax and thus resulted in
large Pbm. Positive relationships on this principal component
(individuals spotted in sections A and B, Fig. 3) suggest strong
athletes, while negative relationships are interpreted to repre-
sent weak athletes (sections C and D).

The individual regression scores on the two principal
components of the examined athletes for SQJ are plotted in
Fig. 3. The horizontal axis corresponded to the component
identified as time-dependent, while the vertical axis was sug-
gested to represent force-dependency. In general, the regres-
sion scores seem to be concentrated on the horizontal axis. As
mentioned above, athletes with high positive loadings on the
second principal component and high negative loadings on
the first principal component are more likely to produce
larger peak force and power outputs in a shorter duration of
impulse. Thus, “fast and strong” (i.e., powerful, since
power ¼ force � velocity) athletes are marked in the upper left
section of the plot, a section mostly marked by TF. On the
other hand, the vast majority of PE was in the bottom left
section. This could be interpreted that PE, despite having a fast
tC, failed to produce large FZbm and Pbm to accelerate and to
raise their BCM during the propulsion phase resulting in their
poor SQJ performance. These two distinct patterns of the
utilization of the biomechanical parameters for maximizing
SQJ performance exhibited by TF and PE were verified by the
analysis of variance of the regression scores on the vertical and
horizontal axes, respectively. Furthermore, BA were linked
more to a “fast” profile compared to HA and VO ( p < 0.05),



Fig. 2. The extracted principal components and factor loadings. Based on the

plotting of the factor loadings of the initial variables, the extracted components

were defined to represent the “time” (on the horizontal axis; SBCM: the vertical

body center of mass trajectory during the propulsion phase; tC: impulse time;

tFZmax: the time to achieve peak vGRF) and the “force” (on the vertical axis;

FZbm: peak vGRF relative to body mass; Pbm: peak power relative to body

mass; RFDmax: the maximum rate of vGRF development) factors. In further

detail, section (A) represents “strong and fast” athletes, section (B) represents

“strong and slow” athletes, section (C) represents “weak and fast” athletes, and

section (D) represents “weak and slow” athletes.
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despite the fact that these groups showed the same force-
dependent profile.

The different force/time-dependent profiles indicated by the
individual regression scores on the two principal components
could be used to better interpret the initial vGRF, Pbm, and
vertical BCM velocity curves. Fig. 4 presents two cases on the
opposite ends of the plots: a sprinter (TF) from the “fast and
Fig. 3. Individual regression factor scores on the two rotated principal com-

ponents. Section (A) represents “strong and fast” athletes; section (B) repre-

sents “strong and slow” athletes; section (C) represents “weak and fast”

athletes; and section (D) represents “weak and slow” athletes (see text for

further details). Abbreviations: PE ¼ physical education students;

BA ¼ basketball players; HA ¼ handball players; VO ¼ volleyball players;

TF ¼ track and field athletes.

Fig. 4. Representative vertical ground reaction force (A), whole body power

output (B) and vertical body center of mass velocity (C) curves of an sprinter

(solid line) from the “strong and fast” section and a handball player (dotted

line) from the “weak and slow” section of the plot of the individual regression

scores on the extracted principal components. All curves are normalized with

respect to impulse time (tC). vGRF ¼ vertical ground reaction force.
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strong” section and a goalkeeper (HA) from the “weak and
slow” section. TF has a steeper ascent and a higher peak in all
three curves compared to HA, thus justifying their positioning
on the plot.

4. Discussion

Results indicated that the sport specific background had an
effect on the biomechanical parameters that define the vertical
SQJ performance in young adult female athletes from different
sports, since differences concerning the force- and time-
dependency were observed among the examined groups. In
detail, TF achieved the highest hjump and the largest Pbm

among the participants, and alterations were observed among
the indoor team sport athletes concerning tC and tFZmax.
Despite being the first (to the best of our knowledge) research
dealing with the principal component structure of SQJ for
female athletes, the present results verified previous findings
concerning the importance of power on vertical jumping
ability2,11e14,27,35 and the differentiations of jumping ability
parameters among different groups of athletes.15,18,19,22e26

Alterations in ability is believed to be characterized by
particular, well distinguished anthropometric and biomotor
profiles for each sport from the early stages of partic-
ipation.36e38 The present findings suggested that body height
and lean body mass were found to be unrelated to the values of
the biomechanical parameters and hjump. Additionally, the
intra-group comparisons of the anthropometric parameters
were in agreement with previous findings.31,35,39e44 In
particular, the participants with the higher lean body mass
(mainly TF and VO) had the better SQJ performance. This
could be interpreted under the perspective that body mass has
been found to be a predictor of vertical jumping height.44,45

However, the total body mass was found to be negatively
related to hjump. This was a result of the fact that the heavier
team sport athletes (BA and HA) had the lowest SQJ perfor-
mance. It could be suggested from the present results that the
produced whole body power output for the heavier athletes
was not efficient enough for accelerating the BCM during the
propulsion.

Vertical jumping performance was found to be different
among athletes from different sporting backgrounds, con-
firming similar comparisons.19,37 This study reproduces the
finding that female TF exert larger power outputs in shorter
impulse times compared to other athletes.19 This seems
reasonable since the force parameters and power in particular
has been found to be correlated with jumping height and thus
they are considered to define jumping performance in
women.37,41,44,46 In the present study, young adult female TF
displayed a force-dependent SQJ execution compared to the
other groups of athletes, since TF performed the SQJ using a
“fast and strong” pattern. Sport specificity of SQJ execution
could be supported by the individual plotting. Based upon the
participants’ distribution in each section, TF are mainly at the
“strong”, BA at the “fast”, PE at the “weak”, and HA at the
“slow” section of the principal components plot. The present
study reveals that female TF enabled a distinguished power
pattern for executing the SQJ, confirming previous findings
for male TF.22,26 An additional factor to support TF superi-
ority in hjump is thought to be connected with the finding that
TF have a larger force production capacity of leg extensor
muscles compared to other athletes,17 with the knee extensors
to be suggested as the major contributors to double leg ver-
tical jump performance from a standing position.1,47 It was
also confirmed that VO adopted a jumping pattern empha-
sizing on long tC and low FZbm as found elsewhere.26 Being
in agreement with the previous studies,22,26 team sport ath-
letes were characterized by a less effective utilization of the
SQJ force parameters than TF. Similar observations37 have
attributed this finding to the fact that TF use a larger portion
of single over double legged stationary jumps in training
contrarily to the other groups. This training modality was
found to be effective for strength and concentric power
production of the lower extremities47,48 and it composes a
factor that is suggested to distinguish the jumping ability
among TF and team sport athletes.26 In general, differences
in vertical jumping ability among different group of athletes
has being attributed to the fact that prolonged training in a
specific sport causes the central nervous system to program
the muscle coordination for the execution of the jump ac-
cording to the demands of that sport.15

Despite the fact that previous PCA studies on vertical
jumping accounted for a higher percentage of variance
(ranging from 74.1% to 78.8%),22e24,26,30 the reliability
scores of the two extracted rotated principal components
revealed the validity of the present findings. Additionally, as
mentioned previously, the comparison of the biomechanical
parameters among the examined groups was consistent with
previous findings for female athletes.19,37 However, hjump

achieved in the present study seems to be lower than reported
elsewhere for respective groups of female athletes.42,49e55

Besides skill level, the experimental procedure to disallow
the use of the arm swing for the jump seems to attribute to
these alterations.53,54 Another constrain was the instruction
given to the participants to “jump as high and as fast as
possible”. This is because temporal constrains are suggested
to be a factor for the relevancy of RFD to achieve maximum
jumping heights.21 Additionally, the starting posture with the
demand of full foot contact on the force-plate imposes a
limitation regarding the ankle flexion that differentiates SQJ
performance,56,57 particularly for females with limited ankle
dorsi-flexion.58

The results of the present study converge to the finding
that the factor that differentiated SQJ performance among
groups of young female athletes with different sporting
backgrounds was the whole body peak mechanical power
output and the force/time structure of the jump. This finding
relays on the fact that many sport jumps are time-restricted
with a combined demand for a maximization of the propul-
sive impulse.59 The achievement of such a performance is
determined by maximizing the capabilities of the lower limb
neuromuscular system concerning its power output and by
optimizing its force-velocity mechanical profile.60 Under this
perspective, neuromuscular and power training is found to be
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effective for enhancing vertical jump performance and is
recommended for team sport athletes,49,51e54 taking into
consideration the player’s playing position and skill
level.52,53
5. Conclusion

Based on the findings of the present study, PCA is a suitable
method to detect the reliance upon force- or time-dependency
of vertical squat jump performance of young adult female
athletes from different sports. Additionally, this method could
be possibly used for talent identification and sport orientation
of young female athletes on the basis of recognizing sport-
specific force/time profiles of vertical squat jumping. For
example, an individual’s jumping pattern characterized by
long impulse time and low force application could be inter-
preted as volleyball rather than a track and field sport specific
skill. Furthermore, in the case of indoor team sport athletes,
the need for larger jumping heights in limited time, as defined
by the demands of their sporting activities, could be fulfilled
by adopting the power-specific jumping exercises and training
modalities used by TF.
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