Relaxation Analysis of Electrode Crystal Materials for Secondary Lithium Ion Batteries

Takeshi Yao *

Graduate School of Energy Science, Kyoto University
Sakyo-ku, Yoshida-Honmachi, Kyoto 606-8501, Japan

Abstract

Relaxation analysis, I have invented first in the world, makes transition of electrode material from kinetic state to equilibrium state clear. I would like to introduce the relaxation analysis for some electrode materials here, and make discussions about the behavior of Li ion and the crystal structure of the electrode material.

Keywords: Li ion; Electrode Material; Kinetic state; Equilibrium state

1. Introduction

When lithium is inserted into γ-Fe$_2$O$_3$ electrochemically, prolonged potential change is observed after termination of the insertion (Fig.1). It is considered that this phenomenon reflects some continuing crystal structure change even after lithium insertion. fWe inserted lithium into γ-Fe$_2$O$_3$, then made the circuit open and analyzed the material. We named the analysis “Relaxation Analysis”, because material is analyzed at relaxation process. We are now applying relaxation analysis to so many materials such as γ-Fe$_2$O$_3$[1-3], LiFePO$_4$[4], LiMn$_2$O$_4$[5,6], Li$_{4/3}$Ti$_{5/3}$O$_4$[7], LiCoO$_2$[8], and so on.

* Corresponding author. Tel.: +81-75-753-4865; fax: +81-75-753-4734.
E-mail address: yao@energy.kyoto-u.ac.jp

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
Selection and peer-review under responsibility of COE of Sustainable Energy System, Rajamangala University of Technology Thanyaburi (RMUTT)
2. Experimental

We charged or discharged the cell electrochemically with electrode material. When the required conditions were attained, we opened the circuit and removed the working electrode from the cell immediately in a glove box to avoid the local cell action between the electrode material and the current collector or the supplemental conductor. Then, we obtained the sample for XRD measurement. XRD patterns were measured with various relaxation time. The XRD patterns were analyzed by the Rietveld method using RIEVEC program coded by T. Yao[9-10].

3. Results and Discussion

We measured crystal structure change of γ-Fe$_2$O$_3$ with spinel structure after termination of lithium insertion by using the X-ray Rietveld analysis and had a result that the iron occupancy of 8a site decreased and that of 16c site increased with lithium insertion process and after the lithium insertion, the iron occupancy of 8a site increased and that of 16c site decreased gradually at the relaxation process (Fig.2). And we concluded that this indicates that lithium prefer 8a site to occupy kinetically, on the other hand, prefer 16c site thermodynamically.

Fig. 1. Result of OCV (Open Circuit Voltage) measurement after lithium insertion (Sample: Li1.5Fe2O3)

Fig. 2. Relaxation of crystal structure of γ-Fe$_2$O$_3$ with elapsed time after lithium insertion: Site occupancy changes of iron at 8a, 16c and 16d sites. Asterisk mark (*) indicates the sample before lithium insertion.
We analyzed the relaxation process of LiFePO$_4$ cathode after termination of lithium insertion by using X-ray diffraction measurement and the Rietveld analysis. It was found that the amount of LiFePO$_4$ decreased and that of FePO$_4$ increased after termination of the lithium insertion (Fig. 3). It is considered that LiFePO$_4$ including lithium defects preferable for lithium diffusion formed during lithium insertion process and that the defective LiFePO$_4$ separated to LiFePO$_4$ without defects and FePO$_4$ at the relaxation process after the termination of lithium insertion.

![Fig. 3. The relative mol fraction changes of LiFePO$_4$ phase as a function of lithium insertion rate with various elapsed time after termination of lithium insertion process in the sample $x=0.5$ in terms of LixFePO$_4$.](image)

We measured phase change of LiMn$_2$O$_4$ after termination of lithium insertion. From the Rietveld analysis, it was found that the two phases, Li-rich phase and Li-lean phase, coexist and that the amount of Li-lean phase decreased and Li-rich phase increased with the various relaxation time (Fig. 4). We considered that Li-lean phase has more defects than Li-rich phase and that Li-lean phase is kinetically favorable for Li to diffuse, and that, because Li-rich phase is thermodynamically more stable than Li-lean phase, Li-lean phase decreased and Li-rich phase increased at the relaxation process.

![Fig. 4. The mol fraction change of Li-rich and Li-lean phase with the relaxation time in Li$_{0.15}$Mn$_2$O$_4$.](image)
4. Conclusion

I have presented dynamic changes in structures and/or phases of electrode materials according to the condition of Li transfer. Relaxation analysis will develop as the powerful method for analyzing electrode materials.

Acknowledgements

This work was partly supported by an “Energy Science in the Age of Global Warming” of Global Center of Excellence (G-COE) program (J-051) of the Ministry of Education, Culture, Sports, Science and Technology of Japan, and partly supported by Grant-in-Aid for Challenging Exploratory Research (24656581) “Relaxation Analysis of Electrode Materials” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

References

[7] Uraki S, Park S, Yao T. Relaxation Structure Analysis of Li$_{4/3}$Ti$_{5/3}$O$_4$ Anode for Li-ion Secondary Battery. Abstracts of the 37th Symposium on Solid State Ionics in Japan 2011: #1A03
[8] Nagashima S, Park S, Iwai T, Yao T. Relaxation Phase Analysis of Li-Co-O Cathode for Secondary Lithium-ion Battery. Abstracts of the 222nd ECS meeting 2012: #1A164