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Abstract
Somatic PIK3CA mutations are often present in colorectal cancer. Mutant PIK3CA activates AKT signaling, which
up-regulates fatty acid synthase (FASN). Microsatellite instability (MSI) and CpG island methylator phenotype
(CIMP) are important molecular classifiers in colorectal cancer. However, the relationship between PIK3CA muta-
tion, MSI and CIMP remains uncertain. Using Pyrosequencing technology, we detected PIK3CA mutations in 91
(15%) of 590 population-based colorectal cancers. To determine CIMP status, we quantified DNA methylation in
eight CIMP-specific promoters [CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1]
by real-time polymerase chain reaction (MethyLight). PIK3CA mutation was significantly associated with mucinous
tumors [P= .0002; odds ratio (OR) = 2.44], KRAS mutation (P< .0001; OR = 2.68), CIMP-high (P= .03; OR = 2.08),
phospho–ribosomal protein S6 expression (P = .002; OR = 2.19), and FASN expression (P = .02; OR = 1.85) and
inversely with p53 expression (P = .01; OR = 0.54) and β-catenin (CTNNB1) alteration (P = .004; OR = 0.43). In
addition, PIK3CA G-to-A mutations were associated with MGMT loss (P = .001; OR = 3.24) but not with MGMT
promoter methylation. In conclusion, PIK3CA mutation is significantly associated with other key molecular events
in colorectal cancer, and MGMT loss likely contributes to the development of PIK3CA G>A mutation. In addition,
Pyrosequencing is useful in detecting PIK3CA mutation in archival paraffin tumor tissue. PIK3CA mutational data fur-
ther emphasize heterogeneity of colorectal cancer at the molecular level.
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Introduction

The phosphoinositide-3-kinase, catalytic, alpha polypeptide (PIK3CA)
gene encodes the catalytic subunit p110 alpha of phosphatidylinositol
3-kinase (PI3K) belonging to class 1A of PI3Ks [1,2]. Phosphatidyl-
inositol 3-kinase interacts with phosphatidylinositol-3-phosphate at
the membrane and catalyzes the phosphorylation of AKT, which acti-
vates the downstream signaling pathway [1]. Mutant PIK3CA stimu-
lates the AKT pathway and promotes cell growth in various cancers
[3]. In addition, the AKT signaling pathway regulates fatty acid
synthase (FASN) expression [4–6] that has been implicated in the de-
velopment of cancers including colorectal cancer [7].
PIK3CA mutations have been described in 10% to 30% of colo-

rectal cancers [8–15] and have been associated with microsatellite in-
stability (MSI) [11]. Most sporadic MSI-high colorectal cancers arise
through MLH1 promoter methylation due to the CpG island methyl-
ator phenotype (CIMP) [16–19]. MSI and CIMP reflect global ge-
nomic and epigenomic aberrations, respectively, in tumor cells and
largely determine clinical, pathologic, and molecular characteristics of
colorectal cancer [20]. Thus, a molecular classification based on MSI
and CIMP status is increasingly important [20,21]. However, the rela-
tionship between PIK3CA mutation and CIMP remains uncertain.
In this study, using Pyrosequencing technology and a large num-

ber of population-based colorectal cancers, we examined PIK3CA
mutation in relation to MSI, CIMP, and other relevant molecular
events. We also examined whether PIK3CA G>A mutation could
be attributed to MGMT loss and subsequent DNA repair defect.
Pyrosequencing has been shown to be useful to detect mutant alleles
of low abundance as observed in solid tumor specimens [22].

Materials and Methods

Study Group
We used the databases of two large prospective cohort studies:

the Nurses’ Health Study (N = 121,700 women followed since
1976) [23] and the Health Professionals Follow-up Study (N =
51,500 men followed since 1986) [24]. Informed consent was ob-
tained from participants on inclusion in the cohorts. A subset of
the cohort participants developed colorectal cancers during prospec-
tive follow-up. Previous studies on the Nurses’ Health Study and
Health Professionals Follow-up Study have described baseline char-
acteristics of cohort participants and incident colorectal cancer cases
and confirmed that our colorectal cancers were a good representative of
a population-based sample [23,24]. We collected paraffin-embedded
tissue blocks from hospitals where cohort participants with colorectal
cancers had undergone resections of primary tumors. On the basis of
availability of tissue, a total of 590 colorectal cancers (272 from the
men’s cohort and 318 from the women’s cohort) were included in this
study. Among our cohort studies, there was no significant difference in
demographic features between cases with tissue available and those
without available tissue [25]. Hematoxylin and eosin–stained tissue
sections were examined by a pathologist (S. O.) unaware of clinical
and other laboratory data [26]. Although many of the cases have been
previously characterized for status of CIMP, MSI, KRAS, BRAF, and
p53 [26], we have not examined PIK3CA mutation or ribosomal pro-
tein S6 (RPS6) in our specimens. Tissue collection and analyses were
approved by the Brigham and Women’s Hospital and Harvard School
of Public Health Institutional Review Boards.

Genomic DNA Extraction, Whole Genome Amplification, and
KRAS and BRAF Sequencing
Genomic DNA was extracted from dissected tumor tissue sections

using QIAmp DNA Mini Kit (Qiagen, Valencia, CA) [22]. Normal
DNA was obtained from colonic tissue at resection margins. Whole
genome amplification (WGA) of genomic DNA was performed by
polymerase chain reaction (PCR) using random 15-mer primers
[22,27]. Polymerase chain reaction and Pyrosequencing were per-
formed as previously described (KRAS [22] and BRAF [28]).

Pyrosequencing for PIK3CA (Table 1)
We developed Pyrosequencing assay to detect PIK3CA mutations,

because Pyrosequencing has been shown to be applicable to paraffin-
embedded tumors and more sensitive than Sanger dideoxy sequenc-
ing in KRAS mutation analysis [22]. The exon 9 PCR primers were:
PIK3CA 9-F, 5′-biotin-AACAGCTCAAAGCAATTTCTACACG-3′;
and PIK3CA 9-R, 5′-ACCTGTGACTCCATAGAAAATCTTT-3′
(Figure 1). Each PCR mix contained the forward and reverse primers
(each 10 μM), 12.5 mM each of dNTP Mix with dUTP, 0.0175 U of
AmpErase (Uracil-N glycosylase; Applied Biosystems, Forster City, CA),
3 mM of MgCl2, 1× PCR buffer, 1.5 U of AmpliTaq Gold (Applied
Biosystems), and 3 μl of template WGA product in a total volume of
35 μl. The exon 20 PCR primers were: PIK3CA 20-F, 5′-biotin-
CAAGAGGCTTTGGAGTATTTCA-3′; and PIK3CA 20-R, 5′-
CAATCCATTTTTGTTGTCCA-3′. Each PCR mix contained the
forward and reverse primers (each 10 μM), 12.5 mM each of dNTP
Mix with dUTP, 0.02 U of AmpErase, 3 mM of MgCl2, 1× PCR
buffer, 1 U of AmpliTaq Gold, and 2 μl of template WGA product
in a total volume of 25 μl. Polymerase chain reaction conditions were
as follows: initial denaturing at 95°C for 5 minutes; 50 cycles of 94°C
for 20 seconds, 50°C for 20 seconds, and 74°C for 40 seconds; and
final extension at 72°C for 1 minute. The PCR products were electro-
phoresed in an agarose gel to confirm successful amplifications of the
81- (exon 9) and 74-bp (exon 20) products. The PCR products (each
10 μl) were sequenced by Pyrosequencing PSQ96 HS System (Biotage,
Uppsala, Sweden) according to manufacturer’s instructions.
To increase sensitivity, we designed three different Pyrosequenc-

ing primers for PIK3CA exon 9, using the ADSW software (Biotage)
(Figure 1). The use of three sequencing primers served as a quality
control measure, because exon 9 mutations (except for nucleotides
1634–1636) could be detected by at least two primers. Represen-
tative Pyrograms of wild type and mutant exon 9 sequence by
these primers are shown in Figure 2. The primer PIK3CA 9-RS1

Table 1. PIK3CA Mutations in Colorectal Cancer.

Exon Domain Nucleotide Change* Codon Change* Number of Cases

9 Helical c.1624G>A p.E542K 18†

9 Helical c.1633G>A p.E545K 30†

9 Helical c.1634A>G p.E545G 1
9 Helical c.1636C>A p.Q546K 7
20 Kinase c.3129G>T p.M1043I 8
20 Kinase c.3133G>A p.D1045N 1
20 Kinase c.3136G>A p.A1046T 2
20 Kinase c.3139C>T p.H1047Y 3
20 Kinase c.3140A>G p.H1047R 18
20 Kinase c.3140A>T p.H1047L 5

*Nomenclature of mutation follows the recommendations by the Human Genome Variation So-
ciety (http://www.hgvs.org/mutnomen/).
†Two cases had both c.1624G>A and c.1633G>A mutations.
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Figure 2. PIK3CA exon 9 Pyrograms (antisense strand). (A) Wild type exon 9 by the 9-RS1 primer. (B) The c.1634A>G mutation (arrow)
causes a shift in reading frame and results in a new peak at A (arrowhead), which serves as quality assurance. (C) The c.1636C>Amutation
(arrow) causes a shift in reading frame and results in a new peak at C (arrowhead), which serves as quality assurance. (D) Wild type exon 9
by the 9-RS2 primer. (E) The c.1633G>A mutation (arrow) causes a shift in reading frame and results in new peaks (arrowheads), which
serves as quality assurance. (F) Wild type exon 9 by the 9-RS3 primer. (G) The c.1624G>A mutation (arrow) causes a shift in reading frame
and results in a new peak at A (arrowhead), which serves as quality assurance. Mut indicates mutant; WT, wild type.

Figure 1. PIK3CA Pyrosequencing assay design. (A) The exon 9 PCR products were sequenced by the three different Pyrosequencing
primers (9-RS1, 9-RS2, and 9-RS3). Nucleotide positions of the hot spot mutations are underlined and in bold capitals. (B) The exon 20
PCR products were sequenced by the Pyrosequencing primer (20-RS). Nucleotide positions of the hot spot mutations are underlined
and in bold capitals.
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(5′-CCATAGAAAATCTTTCTCCT-3′; nucleotide dispensation
order, ATCGACTACACTGACTGACTGACTGACTGACTGACT-
G) could detect the c.1634A>G and c.1636C>A mutations (Figure 2,
B and C). The primer PIK3CA 9-RS2 (5′-TAGAAAATCTT-
TCTCCTGCT-3′; nucleotide dispensation order, ATAGCACT-
GACTGACTGACTACTGACTGACTGACTG) could detect the
most common mutations [c.1633G>A (Figure 2E ) and c.1624G>A].
The primer PIK3CA 9-RS3 (5′-TTCTCCTTGCTTCAGTGATTT-
3′; nucleotide dispensation order, ATACACATGTCAGTCAGAC-
TAGCTAGCTAGCTAG) was particularly sensitive to detect c.1624G>A
mutation (Figure 2G ). For PIK3CA exon 20, we designed the primer
PIK3CA 20-RS (5′-GTTGTCCAGCCACCA-3′; nucleotide dispen-
sation order, CTGACGATACTGTGCATCATATGCATGCATG-
CATGCATGC) to detect various exon 20 mutations (c.3140A>G,
c.3129G>T, etc.; Figure 3).
Nucleotide dispensation orders were designed so that, if any of the

common mutations was present, it caused a shift in reading frame
and resulted in additional new peak(s) (indicated by arrowheads in
Figures 2 and 3) following the mutated nucleotide. This feature,
which was absent in Sanger (dideoxy) sequencing, could serve as
quality assurance and confirmation of the presence of the mutations.

Microsatellite Instability and 18q Loss of Heterozygosity (LOH)
Microsatellite instability analysis was performed as previously de-

scribed [29] with D2S123, D5S346, D17S250, BAT25, and BAT26
[30] in addition to BAT40, D18S55, D18S56, D18S67 and
D18S487 (i.e., 10-marker panel). MSI-high was defined as the pres-
ence of instability in ≥30% of markers, MSI-low as instability in <30%
of markers, and microsatellite stable (MSS) as no unstable marker.
Loss of heterozygosity at each locus in 18q was defined as 40% or

greater reduction of one of two allele peaks in tumor DNA relative to

normal DNA in two duplicated runs [29]. Overall 18q LOH(+) was
strictly defined as the presence of LOH in at least two 18q markers,
and 18q LOH(−) as the presence of at least two informative 18q makers
without evidence of LOH.

Real-time PCR (MethyLight) for Quantitative DNA
Methylation Analysis
Sodium bisulfite modification and quantitative real-time PCR

(MethyLight [31]) were validated and performed as previously de-
scribed [32,33]. We quantified methylation in MGMT and eight
CIMP-specific promoters (CACNA1G, CDKN2A (p16), CRABP1,
IGF2, MLH1, NEUROG1, RUNX3, and SOCS1) [17,18,26]; the
latter eight were selected from screening of 195 CpG islands [17,18]
and constituted a CIMP diagnostic panel [26]. The PCR condition
was initial denaturation at 95°C for 10 minutes followed by 45 cycles
of 95°C for 15 seconds and 60°C for 1 minute.
CIMP-high was defined as the presence of ≥6 of 8 methylated pro-

moters, CIMP-low as the presence of 1/8 to 5/8 methylated promot-
ers, and CIMP-0 as the absence (0/8) of methylated promoters,
according to the previously established criteria [26].

Tissue Microarrays and Immunohistochemistry for p53,
MGMT, FASN, β-Catenin, and Phospho-RPS6
Tissue microarrays were constructed as previously described [34].

For phospho-RPS6 immunohistochemistry, antigen retrieval was per-
formed; deparaffinized tissue sections were treated by a microwave
for 15 minutes in citrate buffer (BioGenex, San Ramon, CA). Tissue
sections were incubated with 3% H2O2 (10 minutes), then incubated
with 10% normal goat serum (Vector Laboratories, Burlingame, CA)
in phosphate-buffered saline (10 minutes). Primary antibody against
phospho-RPS6 (Ser240/244, catalogue #2215; Cell Signaling, Danvers,

Figure 3. PIK3CA exon 20 Pyrograms (antisense strand). (A) Wild type exon 20. (B) The c.3129G>T mutation (arrow) causes a shift in
reading frame and results in new peaks at T and G (arrowheads), which serves as quality assurance. (C) The c.3139C>T mutation (arrow)
causes a shift in reading frame and results in a new peak at T (arrowhead), which serves as quality assurance. (D) The c.3140A>T
mutation (arrow) causes a shift in reading frame and results in a new peak at G (arrowhead), which serves as quality assurance. (E)
The c.3140A>G mutation (arrow) causes a shift in reading frame and results in a new peak at G (arrowhead), which serves as quality
assurance. Mut indicates mutant; WT, wild type.
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MA) (dilution 1:100) was applied overnight at 4°C. Secondary anti-
body (Vectorstain Elite ABC Rabbit kit; Vector Laboratories) (30 min-
utes), and then ABC conjugates were applied (30 minutes). Sections
were visualized by diaminobenzidine (5 minutes) and methyl-green
counterstain. Phospho-RPS6 positivity was defined as tumor cells with
moderate/strong cytoplasmic staining.
Other immunohistochemical assays were performed as previously

described (p53 [34], MGMT [35], FASN [29], and β-catenin [36]).
β-Catenin activation score (0 to 5) [36] was calculated as previously
described by Jass et al. [37]. Appropriate positive and negative con-
trols were included in each run of immunohistochemistry. All immuno-
histochemically stained slides were interpreted by a pathologist (S. O.,
except for β-catenin and RPS6 by K. N.) unaware of clinical and
other laboratory data.

Statistical Analysis
For categorical data, χ 2 test (or Fisher’s exact test when any ex-

pected cell count is <5) was performed, and 95% confidence interval
(CI) of odds ratio (OR) was computed using SAS program (version
9.1; SAS Institute, Cary, NC). All P values were two-sided, and sta-
tistical significance was set at P ≤ .05.

Results

PIK3CA Mutation in Colorectal Cancer
We examined PIK3CA exons 9 and 20 by Pyrosequencing (Fig-

ures 1–3) and detected mutations in 91 (15%) of 590 colorectal can-
cers. Pyrosequencing technology has been shown to be applicable to
paraffin-embedded tumor tissue and more sensitive than Sanger (di-
deoxy) sequencing [22]. A distribution of various PIK3CA mutations

detected in our colorectal cancers (Table 1) was essentially in agree-
ment with the previous studies [8–13]. The most common mutation
was the c.1633G>A (p.E545K) mutation present in 30 tumors, fol-
lowed by c.1624G>A (p.E542K) and c.3140A>G (p.H1047R) (each
present in 18 tumors).
Table 2 summarizes the frequencies of PIK3CAmutation. PIK3CA

mutation was more common in well-differentiated tumors (25% =
44/179) than in moderately/poorly differentiated tumors (12% =
47/407, P < .0001). PIK3CA mutation was more frequent in mucin-
ous tumors (23% = 44/189, P = .0002) than nonmucinous tumors
(11% = 36/325). PIK3CA mutation was not significantly correlated
with age, sex, tumor location, stage, or signet ring cells.

PIK3CA Mutation Is Associated with CIMP-High and
KRAS Mutation
Table 3 shows the frequencies of PIK3CA mutation according to

the molecular alterations in colorectal cancer. We determined the
CIMP status using MethyLight assays on a panel of eight CIMP-
specific promoters (CACNA1G, CDKN2A, CRABP1, IGF2, MLH1,
NEUROG1, RUNX3, and SOCS1) [18,26]. CIMP-high tumors
(with ≥6/8 methylated promoters) demonstrated a higher frequency
of PIK3CA mutation (22% = 17/78, P = .03) than CIMP-0 tumors
(12% = 33/279). When tumors were classified according to com-
bined MSI and CIMP status, compared with the non–MSI-high
CIMP-low/0 subtype, subtypes with CIMP-high or MSI-high
showed higher frequencies of PIK3CA mutation, although differ-
ences were not statistically significant.

PIK3CA mutation was more common in KRAS-mutated tumors
(24% = 53/223, P < .0001) than KRAS wild type tumors (10% =
38/365). In contrast, no significant relationship was found between
PIK3CA and BRAF mutations.

Table 2. Frequency of PIK3CA Mutation in Colorectal Cancer.

Clinical/Pathologic Feature n PIK3CA Mutation
[n (%)]

OR (95% CI) P

All cases, N 590 91 (15)
Gender
Men 272 43 (16) 1
Women 318 48 (15) 0.95 (0.61–1.48)
Age, yr
<59 147 19 (13) 1
60–69 244 37 (15) 1.20 (0.66–2.18)
≥70 198 35 (18) 1.45 (0.79–2.65)
Location
Proximal 244 46 (19) 1
Distal 324 43 (13) 0.66 (0.42–1.04)
Tumor stage
I 134 21 (16) 1
II 165 28 (17) 1.10 (0.59–2.04)
III 160 27 (17) 1.09 (0.59–2.04)
IV 67 9 (13) 0.84 (0.36–1.94)
Differentiation
Well 179 44 (25) 1 Referent
Moderate/Poor 407 47 (12) 0.40 (0.25–0.63) <.0001
Mucinous component
Absent 325 36 (11) 1 Referent
Present (≥1%) 189 44 (23) 2.44 (1.50–3.95) .0002
Signet ring cells
Absent 449 67 (15) 1
Present (≥1%) 38 6 (16) 1.07 (0.43–2.66)

CI indicates confidence interval; OR, odds ratio.
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PIK3CA Mutation and Other Molecular Changes
PIK3CA mutation was significantly associated with the expressions

of phospho-RPS6 (P = .002) and FASN (P = .02) and inversely as-
sociated with p53 expression (P = .01) and β-catenin activation (P =
.004; Table 3). Although PIK3CA mutation was more common in
MSI-high (20%) and MSI-low tumors (21%) than in MSS tumors
(14%), differences were not statistically significant.

PIK3CA G>A Mutation Is Associated with MGMT Loss
The G-to-A substitution was the most common nucleotide change

in PIK3CA exons 9 and 20 (Table 1). Considering the known asso-
ciation between MGMT methylation/silencing and G>A mutations
in KRAS and TP53 [38,39], we examined whether there was a rela-
tion between MGMTmethylation/silencing and PIK3CA G>A mu-
tation (Figure 4). PIK3CA G>A mutation was significantly more
common in tumors with MGMT loss [14% = 22/158, P = .001;
OR = 3.24, 95% CI 1.55–6.74] than MGMT-expressing tumors
(4.8% = 12/252). In contrast, PIK3CA non–G>A mutation was not
significantly associated with MGMT loss. PIK3CA G>A mutation
was not significantly associated with MGMT promoter methylation.

Table 3. Frequency of PIK3CA Mutation in Colorectal Cancer According to Various Molecular Features.

Molecular Feature n PIK3CA Mutation
[n (%)]

OR (95% CI) P

MSI status
MSS 458 65 (14%) 1
MSI-low 52 11 (21%) 1.62 (0.79–3.32)
MSI-high 74 15 (20%) 1.54 (0.82–2.87)
CIMP status
CIMP-0 279 33 (12%) 1 Referent
CIMP-low 233 41 (18%) 1.59 (0.97–2.61)
CIMP-high 78 17 (22%) 2.08 (1.09–3.97) .03
MSI/CIMP status
Non–MSI-high CIMP-low/0 485 69 (14%) 1
MSI-high CIMP-low/0 21 5 (24%) 1.88 (0.67–5.31)
Non–MSI-high CIMP-high 25 7 (28%) 2.34 (0.94–5.82)
MSI-high CIMP-high 53 10 (19%) 1.40 (0.67–2.92)

KRAS mutation
(−) 365 38 (10%) 1 Referent
(+) 223 53 (24%) 2.68 (1.70–4.23) <.0001

BRAF mutation
(−) 505 79 (16%) 1
(+) 71 10 (14%) 0.88 (0.43–1.80)
p53 expression
(−) 327 60 (18%) 1 Referent
(+) 257 28 (11%) 0.54 (0.34–0.88) .01
18q LOH
(−) 148 25 (17%) 1
(+) 168 18 (11%) 0.59 (0.31–1.13)

β-Catenin score*
0–2 (inactive) 321 61 (19%) 1 Referent
3–5 (active) 184 17 (9.2%) 0.43 (0.25–0.77) .004
FASN expression
(−) 222 24 (11%) 1 Referent
(+) 355 65 (18%) 1.85 (1.12–3.05) .02
Phospho-RPS6
(−) 323 41 (13%) 1 Referent
(+) 149 36 (24%) 2.19 (1.33–3.61) .002

CI indicates confidence interval; CIMP, CpG island methylator phenotype; FASN, fatty acid synthase; LOH, loss of heterozygosity; MSI, microsatellite instability; MSS, micro-
satellite stable; OR, odds ratio; RPS6, ribosomal protein S6.
*β-Catenin score is the sum of nuclear, cytolasmic, and membrane score as described by Jass et al. [37].

Figure 4. Frequencies of PIK3CA G>A and non–G>A mutations ac-
cording to MGMT status. PIK3CA G>A mutation was significantly
associated with MGMT loss (P = .001). No significant association
was found between PIK3CA non–G>Amutation andMGMT loss. CI
indicates confidence interval; OR, odds ratio; WT, wild type.
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Discussion
We conducted this study to examine the relationship between

PIK3CA mutation and various genetic and epigenetic alterations in
colorectal cancer. The PI3K-AKT pathway is important in the devel-
opment of various cancers [1,2], and activating mutations in the
PIK3CA gene have been identified in colorectal cancer [8–15]. We
have demonstrated that PIK3CA mutation is significantly associated
with the CIMP, KRAS mutation, and FASN expression in colorectal
cancer. In addition, we have demonstrated a significant relation be-
tween PIK3CA G>A mutation and loss of MGMT expression. Be-
cause MGMT methylation or loss has been associated with G>A
mutations of the KRAS and TP53 genes [38,39], our findings could
also attribute at least some PIK3CA G>A mutations in colorectal can-
cer to MGMT loss and subsequent DNA repair defect.
Our resource of a large population-based sample of colorectal cancer

(relatively unbiased samples compared with retrospective or single-
hospital–based samples), derived from two prospective cohorts, has
enabled us to precisely estimate the frequency of a specific molecular
event (such as PIK3CA mutation, CIMP-high, KRAS mutation, etc.).
In fact, distribution and frequencies of various PIK3CA mutations in
our sample are compatible with data in the previous studies [8–13].
Analysis of molecular alterations has been important in cancer

research [40–49]. We used Pyrosequencing technology that has
been shown to be more sensitive than regular Sanger sequencing in
KRAS mutation analysis [22]. Pyrosequencing is nonelectrophoretic
sequencing by nucleotide extension and is particularly useful for the
analysis of single nucleotide polymorphisms or hotspot mutations in
neoplasias [22]. Pyrosequencing assay for PIK3CA mutation detec-
tion is certainly useful, because most activating PIK3CA mutations
cluster in hotspots of exons 9 and 20, affecting the functionally im-
portant helical and kinase domains [8,41].
The relationship between PIK3CA mutation and MSI in colorectal

cancer has been examined in previous studies [9,11,13]; however,
CIMP status has not been examined in these studies. We have shown
that PIK3CA mutation is significantly associated with CIMP-high but
not with MSI. Because there is a strong association between MSI-high
and CIMP-high [16–18], the association of MSI with PIK3CA muta-
tions in the previous report [11] might be due to the enrichment of
CIMP-high tumors among MSI-high tumors. Analyzing both MSI
and CIMP status has increasing importance in colorectal cancer re-
search, because MSI and CIMP reflect global genomic and epigenomic
aberrations in tumor cells, and largely determine clinical, pathologic,
and molecular features of colorectal cancer [20,21].
Previous studies on colorectal cancer have shown the association

between PIK3CA and KRASmutations [13] or that between PIK3CA
mutation and the presence of either KRAS or BRAF mutation [9].
However, other studies failed to demonstrate a significant relation
between PIK3CA and KRAS mutations in colorectal cancer [10–12].
Using a large number of colorectal cancers, we confirmed the significant
association between PIK3CA and KRAS mutations. The positive corre-
lation between PIK3CA and KRAS mutations may suggest a synergistic
effect of PIK3CA and KRAS mutations in activating the PI3K-AKT
pathway during colorectal cancer development. We have also shown
that PIK3CA mutation is associated with the expression of phospho-
RPS6, downstream of the AKT and FRAP1 (mTOR) pathways.
Our data indicate that PIK3CA mutation is associated with FASN

expression, supporting the role of the PI3K-AKT pathway in the regu-
lation of FASN expression [43,45]. FASN over-expression has been re-
ported to be associated with AKTactivation in various cancers [5,6,43].

However, no previous study has examined the relation between FASN
expression and PIK3CA mutation in colorectal cancer. The PI3K-AKT
pathway has been known to mediate signals from growth factors that are
influenced by the state of energy balance [1,2], and FASN is also regu-
lated by the altered energy balance in cells through AMP-dependent
kinase [50,51]. Taken together, the PI3K-AKT pathway and FASN
may indeed link altered energy balance and pathogenesis of neoplasia.

PIK3CA mutation has been associated with poor prognosis in co-
lorectal cancer, although there were only 18 PIK3CA-mutated tu-
mors [10]. Larger studies are necessary to confirm the association
between PIK3CA mutation and poor outcome. A large population-
based study has shown that a combination of PIK3CA, KRAS, and
BRAF mutations predicts poor outcome in colon cancer [13]. Again,
these results need to be confirmed by independent data sets.
In conclusion, using a large number of population-based colorectal

cancers, we have demonstrated that PIK3CA mutation is significantly
associated with KRAS mutation, CIMP-high, and FASN expression
and inversely with p53 and β-catenin alterations. Pyrosequencing
technology has proven to be a useful method in detecting PIK3CA
mutation in a paraffin-embedded tumor tissue. In addition, loss of
MGMT expression may play a role in the development of PIK3CA
G>A mutation. PIK3CA mutational data by us and others further
emphasize heterogeneity of colorectal cancer at the molecular level.
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