A note on sum of powers of the Laplacian eigenvalues of bipartite graphs ${ }^{\text {h }}$

${ }^{\text {a }}$ School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, PR China
${ }^{\text {b }}$ Department of Mathematics, South China Normal University, Guangzhou, Guangdong 510631, PR China

A R T I C L E I N F O

Article history:

Received 16 October 2008
Accepted 28 December 2008
Available online 7 February 2009
Submitted by S. Fallat

AMS classification:

05C50
Keywords:
Bipartite graph
Laplacian matrix
Laplacian eigenvalues

Abstract

For a graph G and a real number $\alpha \neq 0$, the graph invariant $s_{\alpha}(G)$ is the sum of the α th power of the non-zero Laplacian eigenvalues of G. In this note, we obtain some bounds of $s_{\alpha}(G)$ for a connected bipartite graph G, which improve some known results of Zhou [B. Zhou, On sum of powers of the Laplacian eigenvalues of graphs, Linear Algebra Appl. 429 (2008) 2239-2246].

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a simple finite undirected connected graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. For $v_{i} \in V$, the degree of v_{i} and the sum of the degrees of the vertices adjacent to v_{i} are denoted by d_{i} and t_{i}, respectively. Note that t_{i} is also called the 2 -degree of v_{i}. Denote by ($d_{1}, d_{2}, \ldots, d_{n}$) the degree sequence of G. Denote by $i \sim j$ if the vertices v_{i} and v_{j} are adjacent.

A graph G is called regular if every vertex of G has equal degree, that is, $d_{1}=d_{2}=\cdots=d_{n}$. G is said a semiregular bipartite graph if there is a bipartition V_{1}, V_{2} of $V(G)$ such that each vertex in the same part V_{i} has the same degree for $i=1,2$.

[^0]For a connected graph G, the matrix $L(G)=D(G)-A(G)$ is called the Laplacian matrix of G, where $D(G)=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is the diagonal matrix of vertex degrees of G and $A(G)$ is the adjacency matrix of G. The eigenvalues of $L(G)$ are called the Laplacian eigenvalues and denoted by $\mu_{1} \geqslant \mu_{2} \geqslant$ $\cdots \geqslant \mu_{n-1} \geqslant \mu_{n}=0$. The eigenvalue μ_{1} is called the Laplacian spectral radius of G. In addition, $L(G)$ and $D(G)+A(G)$ have the same eigenvalues if G is bipartite [1].

Let G be a simple connected graph. For a non-zero real number $\alpha, s_{\alpha}(G)$, recently introduced in [13], is defined as

$$
s_{\alpha}(G)=\sum_{i=1}^{n-1} \mu_{i}^{\alpha} .
$$

This definition was motivated by the graph energy $[2,10]$ and the Laplacian energy [4-6,12]. The case $\alpha=1$ is trivial as $s_{1}(G)=2 m$. Some properties for $s_{2}(G)$ and $s_{\frac{1}{2}}(G)$ have been established in [5,6], respectively. In fact, for a connected graph G with n vertices, $n s_{-1}(G)$ is equal to its Kirhhoff index and quasi-Wiener index, which have extensive applications in electric circuit, probabilistic theory and chemistry [3,9]. Recently, Zhou [13] obtained some bounds for sum of powers of the Laplacian eigenvalues of $G, s_{\alpha}(G)$ with $\alpha \neq 0,1$. For a bipartite graph G, Zhou [13] gave:

Theorem A [13]. Let G be a connected bipartite graph with $n \geqslant 3$ vertices, t spanning trees. Then, for a real number $\alpha \neq 0,1$,

$$
s_{\alpha} \geqslant\left(2 \sqrt{\frac{\sum_{i=1}^{n} d_{i}^{2}}{n}}\right)^{\alpha}+(n-2)\left(\frac{t n}{2 \sqrt{\frac{\sum_{i=1}^{n} d_{i}^{2}}{n}}}\right)^{\frac{\alpha}{n-2}}
$$

with equality if and only if $G=K_{\frac{n}{2}, \frac{n}{2}}$.
Theorem B [13]. Let G be a connected bipartite graph with $n \geqslant 3$ vertices, m edges:
(i) If $\alpha<0$ or $\alpha>1$, then

$$
s_{\alpha}(G) \geqslant\left(2 \sqrt{\frac{\sum_{i=1}^{n} d_{i}^{2}}{n}}\right)^{\alpha}+(n-2)^{1-\alpha}\left(2 m-2 \sqrt{\frac{\sum_{i=1}^{n} d_{i}^{2}}{n}}\right)^{\alpha}
$$

with equality if and only if $G=K_{\frac{n}{2}, \frac{n}{2}}$.
(ii) If $0<\alpha<1$, then
$s_{\alpha}(G) \leqslant\left(2 \sqrt{\frac{\sum_{i=1}^{n} d_{i}^{2}}{n}}\right)^{\alpha}+(n-2)^{1-\alpha}\left(2 m-2 \sqrt{\frac{\sum_{i=1}^{n} d_{i}^{2}}{n}}\right)^{\alpha}$
with equality if and only if $G=K_{\frac{n}{2}}, \frac{n}{2}$.
In this note, we obtain a new lower bound on the Laplacian spectral radius for a bipartite graph G. Applying this result, we also present some bounds on sum of powers of the Laplacian eigenvalues of $G, s_{\alpha}(G)$ with $\alpha \neq 0,1$ and determine the extremal graphs of these bounds. Theoretic analysis shows that these results improve Theorems A and B.

2. Main results

We first present a new lower bound of the Laplacian spectral radius of bipartite graphs, which improves some known results in [11].

Theorem 1. Let G be a simple connected bipartite graph with degrees $d_{1}, d_{2}, \ldots, d_{n}$. Then

$$
\begin{equation*}
\mu_{1} \geqslant \sqrt{\frac{\sum_{i=1}^{n}\left(d_{i}\left(d_{i}^{2}+t_{i}\right)+\sum_{j \sim i}\left(d_{j}^{2}+t_{j}\right)\right)^{2}}{\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}}} . \tag{1}
\end{equation*}
$$

The equality holds in (1) if and only if there exists a positive constant number t such that, for all $i \in$ $\{1,2, \ldots, n\}$,

$$
\frac{d_{i}\left(d_{i}^{2}+t_{i}\right)+\sum_{j \sim i}\left(d_{j}^{2}+t_{j}\right)}{d_{i}^{2}+t_{i}}=t
$$

In fact, $t=\mu_{1}$.
Proof. Since G is a bipartite graph, then $L(G)=D(G)-A(G)$ and $D(G)+A(G)$ have the same eigenvalues. Note that $D(G)+A(G)$ is a nonnegative irreducible symmetric matrix.

Now assume that $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the positive Perron eigenvector of $D(G)+A(G)$ corresponding to μ_{1}.

By the Raleigh principle, we have

$$
\begin{equation*}
\mu_{1}^{2}=\mu_{1}\left((D(G)+A(G))^{2}\right)=\frac{x^{T}(D(G)+A(G))^{2} \chi}{x^{T} \chi} . \tag{2}
\end{equation*}
$$

Take $C=\left(d_{1}^{2}+t_{1}, d_{2}^{2}+t_{2}, \ldots, d_{n}^{2}+t_{n}\right)^{T}$. Then

$$
\begin{aligned}
& (D(G)+A(G)) C \\
& =D(G) C+A(G) C \\
& =\left(d_{1}\left(d_{1}^{2}+t_{1}\right)+\sum_{j=1}^{n} a_{1 j}\left(d_{j}^{2}+t_{j}\right), \ldots, d_{n}\left(d_{n}^{2}+t_{n}\right)+\sum_{j=1}^{n} a_{n j}\left(d_{j}^{2}+t_{j}\right)\right)^{T} \\
& =\left(d_{1}\left(d_{1}^{2}+t_{1}\right)+\sum_{j \sim 1}\left(d_{j}^{2}+t_{j}\right), \ldots, d_{n}\left(d_{n}^{2}+t_{n}\right)+\sum_{j \sim n}\left(d_{j}^{2}+t_{j}\right)\right)^{T}
\end{aligned}
$$

and $C^{T} C=\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}$. It follows from (2) that

$$
\begin{aligned}
\mu_{1} & =\sqrt{\frac{x^{T}(D(G)+A(G))^{2} x}{x^{T} x}} \\
& \geqslant \sqrt{\frac{C^{T}(D(G)+A(G))^{2} C}{C^{T} C}} \\
& =\sqrt{\frac{\sum_{i=1}^{n}\left(d_{i}\left(d_{i}^{2}+t_{i}\right)+\sum_{j \sim i}\left(d_{j}^{2}+t_{j}\right)\right)^{2}}{\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}} .}
\end{aligned}
$$

Now suppose that the equality holds in (1). Then C is the positive Perron eigenvector of $(D(G)+$ $A(G))^{2}$ corresponding to $\mu_{1}\left((D(G)+A(G))^{2}\right)$, that is, $(D(G)+A(G))^{2} C=\mu_{1}\left((D(G)+A(G))^{2}\right) C$. If the multiplicity of $\mu_{1}^{2}=\mu_{1}\left((D(G)+A(G))^{2}\right)$ is two, then $-\mu_{1}$ is also an eigenvalue of $D(G)+A(G)$. This is impossible as $D(G)+A(G)$ is a nonnegative irreducible positive semidefinite matrix. Hence, the multiplicity of $\mu_{1}^{2}=\mu_{1}\left((D(G)+A(G))^{2}\right)$ is one, and C is the positive Perron eigenvector of $D(G)+A(G)$ corresponding to μ_{1}, that is, $(D(G)+A(G)) C=\mu_{1} C$. This implies, for all $i \in\{1,2, \ldots, n\}$,

$$
\frac{d_{i}\left(d_{i}^{2}+t_{i}\right)+\sum_{j \sim i}\left(d_{j}^{2}+t_{j}\right)}{d_{i}^{2}+t_{i}}=\mu_{1} .
$$

Conversely, if there exists a positive constant number t such that, for all $i \in\{1,2, \ldots, n\}$,

$$
\frac{d_{i}\left(d_{i}^{2}+t_{i}\right)+\sum_{j \sim i}\left(d_{j}^{2}+t_{j}\right)}{d_{i}^{2}+t_{i}}=t
$$

Then $(D(G)+A(G)) C=t C$. By Perron-Frobenius Theorem, we have

$$
\mu_{1}=t=\sqrt{\frac{\sum_{i=1}^{n}\left(d_{i}\left(d_{i}^{2}+t_{i}\right)+\sum_{j \sim i}\left(d_{j}^{2}+t_{j}\right)\right)^{2}}{\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}}} .
$$

This completes our proof.
Corollary 2 [11]. Let G be a simple connected bipartite graph with degrees $d_{1}, d_{2}, \ldots, d_{n}$. Then

$$
\begin{equation*}
\mu_{1} \geqslant \sqrt{\frac{\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}}{\sum_{i=1}^{n} d_{i}^{2}}} . \tag{3}
\end{equation*}
$$

The equality holds in (3) if and only if G is a semiregular connected bipartite graph.
Proof. By a simple calculation, we have

$$
\begin{aligned}
\left(\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}\right)^{2} & =\left(\sum_{i=1}^{n} d_{i}^{2}\left(d_{i}^{2}+t_{i}\right)+\sum_{j=1}^{n}\left(d_{j}^{2}+t_{j}\right) t_{j}\right)^{2} \\
& =\left(\sum_{i=1}^{n} d_{i}^{2}\left(d_{i}^{2}+t_{i}\right)+\sum_{j=1}^{n}\left(d_{j}^{2}+t_{j}\right) \sum_{i=1}^{n} a_{i j} d_{i}\right)^{2} \\
& =\left(\sum_{i=1}^{n} d_{i}^{2}\left(d_{i}^{2}+t_{i}\right)+\sum_{i=1}^{n} d_{i} \sum_{j=1}^{n} a_{i j}\left(d_{j}^{2}+t_{j}\right)\right)^{2} \\
& =\left(\sum_{i=1}^{n}\left(d_{i}^{2}\left(d_{i}^{2}+t_{i}\right)+d_{i} \sum_{j \sim i}\left(d_{j}^{2}+t_{j}\right)\right)\right)^{2} \\
& =\left(\sum_{i=1}^{n}\left(d_{i}\left(d_{i}^{2}+t_{i}\right)+\sum_{j \sim i}\left(d_{j}^{2}+t_{j}\right)\right) \cdot d_{i}\right)^{2} .
\end{aligned}
$$

By the Cauchy-Schwartz inequality,

$$
\begin{equation*}
\left(\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}\right)^{2} \leqslant \sum_{i=1}^{n}\left(d_{i}\left(d_{i}^{2}+t_{i}\right)+\sum_{j \sim i}\left(d_{j}^{2}+t_{j}\right)\right)^{2} \cdot \sum_{i=1}^{n} d_{i}^{2} \tag{4}
\end{equation*}
$$

with equality if and only if there exists a positive constant number l such that, for all $i \in\{1,2, \ldots, n\}$,

$$
\frac{d_{i}\left(d_{i}^{2}+t_{i}\right)+\sum_{j \sim i}\left(d_{j}^{2}+t_{j}\right)}{d_{i}}=l .
$$

Following from (4) and Theorem 1, the inequality (3) holds.
Now suppose that the equality holds in (3). By Theorem 1, there exists a positive constant number t such that, for all $i \in\{1,2, \ldots, n\}$,

$$
\frac{d_{i}\left(d_{i}^{2}+t_{i}\right)+\sum_{j \sim i}\left(d_{j}^{2}+t_{j}\right)}{d_{i}^{2}+t_{i}}=t
$$

Thus we have, for all $i \in\{1,2, \ldots, n\}$,

$$
\frac{d_{i}^{2}+t_{i}}{d_{i}}=\frac{l}{t}
$$

The rest of the proof is similar to that of Theorem 9 in [11].
Conversely, assume that G is a semiregular connected bipartite graph of order n with first n_{1} vertices of degree Δ and the remaining n_{2} vertices of degree δ. Then $\mu_{1}=\Delta+\delta$ is the Laplacian spectral radius of $L(G)$ and the corresponding eigenvector is $\left(\Delta e_{n_{1}}^{T},-\delta e_{n_{2}}^{T}\right)^{T}$, where $e_{n}^{T} \in R^{n}$ is the vector with each element 1 . On the other hand, noting that $t_{i}=\Delta \delta$ for all $i \in\{1,2, \ldots, n\}$, we have

$$
\sqrt{\frac{\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}}{\sum_{i=1}^{n} d_{i}^{2}}}=\Delta+\delta
$$

Hence, the equality holds in (3).
Applying Corollary 2, we can get the following result, which is exactly Corollary 10 in [11].
Corollary $\mathbf{3}$ [11]. Let G be a simple connected bipartite graph with degrees $d_{1}, d_{2}, \ldots, d_{n}$. Then

$$
\begin{equation*}
\mu_{1} \geqslant 2 \sqrt{\frac{1}{n} \sum_{i=1}^{n} d_{i}^{2}} \tag{5}
\end{equation*}
$$

The equality holds in (5) if and only if G is a regular connected bipartite graph.
For a connected graph G, the diameter of G is the maximum distance between any two vertices of G. Denote the complement of the graph G by \bar{G}. Let K_{n} be the complete graph on n vertices; let $K_{r, n-r}$ be the complete bipartite graph with a bipartition V_{1} and V_{2}, where $\left|V_{1}\right|=r$ and $\left|V_{2}\right|=n-r$ with $1 \leqslant r \leqslant n-1$. The join $G_{1} \vee G_{2}$ of two graphs G_{1}, G_{2} is formed from G_{1} and G_{2} by adding edges joining every vertex of G_{1} to every vertex of G_{2}.

Lemma 4 [7]. Let G be a connected graph with diameter d. Then G has at least $d+1$ distinct Laplacian eigenvalues.

Lemma 5 [8]. Let G_{1} and G_{2} be two graphs with r vertices and s vertices, respectively. If the Laplacian eigenvalues of G_{1} and G_{2} are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ and $\mu_{1}, \mu_{2}, \ldots, \mu_{s}$, respectively, then the Laplacian eigenvalues of $G_{1} \vee G_{2}$ are $r+s ; \lambda_{1}+s, \ldots, \lambda_{r-1}+s ; \mu_{1}+r, \ldots, \mu_{s-1}+r$; and 0 .

Lemma 6. Let G be a connected bipartite graph with $n \geqslant 3$ vertices. Then G has exactly three distinct Laplacian eigenvalues if and only if $G=K_{1, n-1}$ or $K_{\frac{n}{2}, \frac{n}{2}}$, where n is even.

Proof. Suppose that G has exactly three distinct Laplacian eigenvalues. By Lemma 4, G has diameter at most 2 . If the diameter of G equals to 1 , then $G=K_{n}$, which contradicts with the condition that G is a connected bipartite graph of order $n \geqslant 3$. Thus, the diameter of G is 2 , which implies that G is a complete bipartite graph $K_{r, n-r}$ with $1 \leqslant r \leqslant n-1$. Since $K_{r, n-r}=\overline{K_{r}} \vee \overline{K_{n-r}}$, by Lemma 5, the Laplacian eigenvalues of $K_{r, n-r}$ are

$$
n, \underbrace{n-r, \ldots, n-r}_{r-1}, \underbrace{r, \ldots, r}_{n-r-1}, 0
$$

If $r=1, n-1$, then G has three distinct Laplacian eigenvalues $n, 1$ and 0 . Thus, $G=K_{1, n-1}$; If $2 \leqslant r \leqslant$ $n-2$, then G has exactly three distinct Laplacian eigenvalues when $n-r=r$, thus forcing $r=\frac{n}{2}$. Hence, $G=K_{\frac{n}{2}, \frac{n}{2}}$.

Conversely, assume that $G=K_{1, n-1}$ or $K_{\frac{n}{2}, \frac{n}{2}}$. It is easy to verify that G has exactly three distinct Laplacian eigenvalues.

Now we shall present some bounds on sum of powers of the Laplacian eigenvalues of a bipartite graph G and determine the extremal graphs of these bounds.

Let G be a simple connected graph with n vertices. For convenience, let $w_{i}=d_{i}\left(d_{i}^{2}+t_{i}\right)+\sum_{j \sim i}\left(d_{j}^{2}+\right.$ t_{j}) for all $i \in\{1,2, \ldots, n\}$.

Theorem 7. Let G be a connected bipartite graph with $n \geqslant 3$ vertices, t spanning trees. Then, for a real number $\alpha \neq 0,1$,

$$
\begin{equation*}
s_{\alpha}(G) \geqslant\left(\sqrt{\frac{\sum_{i=1}^{n} w_{i}^{2}}{\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}}}\right)^{\alpha}+(n-2)(t n)^{\frac{\alpha}{n-2}}\left(\sqrt{\frac{\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}}{\sum_{i=1}^{n} w_{i}^{2}}}\right)^{\frac{\alpha}{n-2}} . \tag{6}
\end{equation*}
$$

The equality holds in (6) if and only if $G=K_{1, n-1}$ or $K_{\frac{n}{2}, \frac{n}{2}}$, where n is even.
Proof. Note that our proof is similar to the proof of Theorem 4 in [13]. By the Matrix Tree Theorem [1], we get $\prod_{i=1}^{n-1} \mu_{i}=t n$. Hence,

$$
s_{\alpha}(G)=\mu_{1}^{\alpha}+\sum_{i=2}^{n-1} \mu_{i}^{\alpha} \geqslant \mu_{1}^{\alpha}+(n-2)\left(\prod_{i=2}^{n-1} \mu_{i}^{\alpha}\right)^{\frac{1}{n-2}}=\mu_{1}^{\alpha}+(n-2)(t n)^{\frac{\alpha}{n-2}} \mu_{1}^{-\frac{\alpha}{n-2}}
$$

with equality if and only if $\mu_{2}=\cdots=\mu_{n-1}$. Take a function

$$
f(x)=x^{\alpha}+(n-2)(t n)^{\frac{\alpha}{n-2}} x^{-\frac{\alpha}{n-2}}
$$

for $x \geqslant(t n)^{\frac{1}{n-1}}$. Solving

$$
f^{\prime}(x)=\alpha x^{\alpha-1}-\alpha(t n)^{\frac{\alpha}{n-2}} x^{-\frac{\alpha}{n-2}-1} \geqslant 0,
$$

we get $x \geqslant(t n)^{\frac{1}{n-1}}$. Hence, $f(x)$ is increasing for $x \geqslant(t n)^{\frac{1}{n-1}}$. By Theorem 1, Corollaries 2, 3 and the proof of Theorem 4 in [13], we have

$$
\begin{equation*}
\mu_{1} \geqslant \sqrt{\frac{\sum_{i=1}^{n} w_{i}^{2}}{\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}}} \geqslant \sqrt{\frac{\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}}{\sum_{i=1}^{n} d_{i}^{2}}} \geqslant 2 \sqrt{\frac{1}{n} \sum_{i=1}^{n} d_{i}^{2}} \geqslant(t n)^{\frac{1}{n-1}}, \tag{7}
\end{equation*}
$$

where the last inequality holds as

$$
\begin{equation*}
2 \sqrt{\frac{1}{n} \sum_{i=1}^{n} d_{i}^{2}} \geqslant \frac{4 m}{n}>\frac{2 m}{n-1}=\frac{\sum_{i=1}^{n-1} \mu_{i}}{n-1} \geqslant\left(\prod_{i=1}^{n-1} \mu_{i}\right)^{\frac{1}{n-1}}=(t n)^{\frac{1}{n-1}} . \tag{8}
\end{equation*}
$$

Hence,

$$
s_{\alpha}(G) \geqslant f\left(\mu_{1}\right) \geqslant f\left(\sqrt{\frac{\sum_{i=1}^{n} w_{i}^{2}}{\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}}}\right),
$$

which implies that the inequality (6) holds, and the equality holds in (6) if and only if $\mu_{1}=\sqrt{\frac{\sum_{i=1}^{n} w_{i}^{2}}{\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}}}$ and $\mu_{2}=\cdots=\mu_{n-1}$.

Now assume that the equality holds in (6). Then G has at most three distinct Laplacian eigenvalues. If G has two distinct Laplacian eigenvalues, then $G=K_{n}$, which contradicts with the condition that G is a connected bipartite graph of order $n \geqslant 3$. Thus G has exactly three distinct Laplacian eigenvalues.
By Lemma 6 , we obtain that $G=K_{1, n-1}$ or $K_{\frac{n}{2}, \frac{n}{2}}$, where n is even.
Conversely, assume that $G=K_{1, n-1}$ or $K_{\frac{n}{2}, \frac{n}{2}}$. It is easy to verify that the equality holds in (6).
Remark 1. By the proof of Theorem 7, we may get

$$
\begin{aligned}
s_{\alpha}(G) & \geqslant f\left(\mu_{1}\right) \geqslant f\left(\sqrt{\frac{\sum_{i=1}^{n} w_{i}^{2}}{\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}}}\right) \geqslant f\left(\sqrt{\frac{\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}}{\sum_{i=1}^{n} d_{i}^{2}}}\right) \\
& \geqslant f\left(2 \sqrt{\frac{1}{n} \sum_{i=1}^{n} d_{i}^{2}}\right)
\end{aligned}
$$

which implies that Theorem 7 improves Theorem A, that is, Theorem 4 in [13].
Theorem 8. Let G be a connected bipartite graph with $n \geqslant 3$ vertices, m edges. Then, for a real number $\alpha \neq 0,1$,
(i) If $\alpha<0$ or $\alpha>1$, then

$$
\begin{equation*}
s_{\alpha}(G) \geqslant\left(\sqrt{\frac{\sum_{i=1}^{n} w_{i}^{2}}{\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}}}\right)^{\alpha}+(n-2)^{1-\alpha}\left(2 m-\sqrt{\frac{\sum_{i=1}^{n} w_{i}^{2}}{\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}}}\right)^{\alpha} . \tag{9}
\end{equation*}
$$

The equality holds in (9) if and only if $G=K_{1, n-1}$ or $K_{\frac{n}{2}, \frac{n}{2}}$, where n is even.
(ii) If $0<\alpha<1$, then

$$
\begin{equation*}
s_{\alpha}(G) \leqslant\left(\sqrt{\frac{\sum_{i=1}^{n} w_{i}^{2}}{\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}}}\right)^{\alpha}+(n-2)^{1-\alpha}\left(2 m-\sqrt{\frac{\sum_{i=1}^{n} w_{i}^{2}}{\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}}}\right)^{\alpha} . \tag{10}
\end{equation*}
$$

The equality holds in (10) if and only if $G=K_{1, n-1}$ or $K_{\frac{n}{2}, \frac{n}{2}}$, where n is even.
Proof. Note that our proof is similar to the proof of Theorem 5 in [13].
To prove (i), assume that $\alpha<0$ or $\alpha>1$. Since $\chi^{\alpha}(x>0)$ is a strictly convex function when $\alpha<0$ or $\alpha>1$, then

$$
\sum_{i=2}^{n-1} \frac{1}{n-2} \mu_{i}^{\alpha} \geqslant\left(\sum_{i=2}^{n-1} \frac{1}{n-2} \mu_{i}\right)^{\alpha}
$$

with equality if and only if $\mu_{2}=\cdots=\mu_{n-1}$. Hence,

$$
s_{\alpha}(G)=\mu_{1}^{\alpha}+\sum_{i=2}^{n-1} \mu_{i}^{\alpha} \geqslant \mu_{1}^{\alpha}+(n-2)^{1-\alpha}\left(\sum_{i=2}^{n-1} \mu_{i}\right)^{\alpha}=\mu_{1}^{\alpha}+(n-2)^{1-\alpha}\left(2 m-\mu_{1}\right)^{\alpha} .
$$

Take a function

$$
g(x)=x^{\alpha}+(n-2)^{1-\alpha}(2 m-x)^{\alpha}
$$

for $x \geqslant \frac{2 m}{n-1}$. Solving

$$
g^{\prime}(x)=\alpha x^{\alpha-1}-\alpha(n-2)^{1-\alpha}(2 m-x)^{\alpha-1} \geqslant 0,
$$

we get $x \geqslant \frac{2 m}{n-1}$, which implies that $g(x)$ is increasing for $x \geqslant \frac{2 m}{n-1}$. Hence, from (7) and (8), we have

$$
s_{\alpha}(G) \geqslant g\left(\mu_{1}\right) \geqslant g\left(\sqrt{\frac{\sum_{i=1}^{n} w_{i}^{2}}{\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}}}\right),
$$

which implies that the inequality (9) holds, and the equality holds in (9) if and only if $\mu_{1}=\sqrt{\frac{\sum_{i=1}^{n} w_{i}^{2}}{\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}}}$ and $\mu_{2}=\cdots=\mu_{n-1}$.

In the following, using similar arguments as in Theorem 7, we get that the equality holds in (9) if and only if $G=K_{1, n-1}$ or $K_{\frac{n}{2}}, \frac{n}{2}$, where n is even.

If $0<\alpha<1$, then $x^{\alpha}(x>0)$ is a strictly concave function and $g(x)$ is decreasing for $x \geqslant \frac{2 m}{n-1}$. By a parallel argument, we may prove (ii).

Remark 2. From the proof of Theorem 8, we may see
(i) If $\alpha<0$ or $\alpha>1$, then

$$
\begin{aligned}
s_{\alpha}(G) & \geqslant g\left(\mu_{1}\right) \geqslant g\left(\sqrt{\frac{\sum_{i=1}^{n} w_{i}^{2}}{\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}}}\right) \geqslant g\left(\sqrt{\frac{\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}}{\sum_{i=1}^{n} d_{i}^{2}}}\right) \\
& \geqslant g\left(2 \sqrt{\frac{1}{n} \sum_{i=1}^{n} d_{i}^{2}}\right)
\end{aligned}
$$

(ii) If $0<\alpha<1$, then

$$
\begin{aligned}
s_{\alpha}(G) & \leqslant g\left(\mu_{1}\right) \leqslant g\left(\sqrt{\frac{\sum_{i=1}^{n} w_{i}^{2}}{\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}}}\right) \leqslant g\left(\sqrt{\frac{\sum_{i=1}^{n}\left(d_{i}^{2}+t_{i}\right)^{2}}{\sum_{i=1}^{n} d_{i}^{2}}}\right) \\
& \leqslant g\left(2 \sqrt{\frac{1}{n} \sum_{i=1}^{n} d_{i}^{2}}\right) .
\end{aligned}
$$

Hence, Theorem 8 improves Theorem B, that is, Theorem 5 in [13].

Acknowledgements

The authors are grateful for the contributions of the referee(s) and editor Prof. Shaun Fallat, whose valuable and detailed comments, suggestions and help led to a substantial improvement on the presentation and contents of this paper. The authors are also thankful to Dr. Y.-F. Jing for providing many discussions and help in the course of modification on the original manuscript.

References

[1] R. Grone, R. Merris, V.S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (2) (1990) 218-238.
[2] I. Gutman, The energy of a graph: old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, 2001, pp. 196-211.
[3] I. Gutman, B. Mohar, The quasi-Wiener and the Kirchhoff indices coincide, J. Chem. Inf. Comput. Sci. 36 (1996) $982-985$.
[4] I. Gutman, B. Zhou, Laplacian energy of a graph, Linear Algebra Appl. 414 (2006) 29-37.
[5] M. Lazić, On the Laplacian energy of a graph, Czech. Math. J. 56 (2006) 1207-1213.
[6] J. Liu, B. Liu, A Laplacian-energy-like invariant of a graph, MATCH Commun. Math. Comput. Chem. 59 (2008) 355-372.
[7] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197-198 (1994) 143-176.
[8] R. Merris, Laplacian graph eigenvectors, Linear Algebra Appl. 278 (1998) 221-236.
[9] J. Palacios, Foster's formulas via probability and the Kirchhoff index, Methodol. Comput. Appl. Probab. 6 (2004) $381-387$.
[10] J. Rada, A. Tineo, Upper and lower bounds for the energy of bipartite graphs, J. Math. Anal. Appl. 289 (2004) 446-455.
[11] A. Yu, M. Lu, F. Tian, On the spectral radius of graphs, Linear Algebra Appl. 387 (2004) 41-49.
[12] B. Zhou, I. Gutman, A connection between ordinary and Laplacian spectra of bipartite graphs, Linear and Multilinear Algebra 56 (2008) 305-310.
[13] B. Zhou, On sum of powers of the Laplacian eigenvalues of graphs, Linear Algebra Appl. 429 (2008) 2239-2246.

[^0]: *Supported by Sichuan Province Project for Applied Basic Research (2008JY0052) and the Project for Academic Leader and Group of UESTC.

 * Corresponding author.

 E-mail addresses: guixiantian@uestc.edu.cn, guixiantian@163.com (G.-X. Tian), tzhuang@uestc.edu.cn, tingzhuhuang @126.com (T.-Z. Huang).

