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1. Introduction

Let G be a simple finite undirected connected graph with vertex set V(G) = {v1, v2, . . . , vn} and

edge set E(G) = {e1, e2, . . . , em}. For vi ∈ V , the degree of vi and the sum of the degrees of the vertices

adjacent to vi are denoted by di and ti, respectively. Note that ti is also called the 2-degree of vi. Denote

by (d1, d2, . . . , dn) the degree sequence of G. Denote by i ∼ j if the vertices vi and vj are adjacent.

A graph G is called regular if every vertex of G has equal degree, that is, d1 = d2 = · · · = dn. G is said

a semiregular bipartite graph if there is a bipartition V1,V2 of V(G) such that each vertex in the same

part Vi has the same degree for i = 1, 2.
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For a connected graph G, the matrix L(G) = D(G) − A(G) is called the Laplacian matrix of G, where

D(G) = diag(d1, d2, . . . , dn) is the diagonal matrix of vertex degrees of G and A(G) is the adjacency

matrix of G. The eigenvalues of L(G) are called the Laplacian eigenvalues and denoted by μ1 � μ2 �
· · · � μn−1 � μn = 0. The eigenvalue μ1 is called the Laplacian spectral radius of G. In addition, L(G)

and D(G) + A(G) have the same eigenvalues if G is bipartite [1].

Let G be a simple connected graph. For a non-zero real number α, sα(G), recently introduced in [13],

is defined as

sα(G) =
n−1∑
i=1

μα
i .

This definition was motivated by the graph energy [2,10] and the Laplacian energy [4–6,12]. The case

α = 1 is trivial as s1(G) = 2m. Some properties for s2(G) and s 1
2
(G) have been established in [5,6],

respectively. In fact, for a connected graph G with n vertices, ns−1(G) is equal to its Kirhhoff index

and quasi-Wiener index, which have extensive applications in electric circuit, probabilistic theory

and chemistry [3,9]. Recently, Zhou [13] obtained some bounds for sum of powers of the Laplacian

eigenvalues of G, sα(G) with α /= 0, 1. For a bipartite graph G, Zhou [13] gave:

TheoremA [13]. Let G be a connected bipartite graph with n � 3 vertices, t spanning trees. Then, for a real

number α /= 0, 1,

sα �
⎛
⎝2

√∑n
i=1 d

2
i

n

⎞
⎠

α

+ (n − 2)

⎛
⎜⎜⎝ tn

2

√∑n
i=1 d

2
i

n

⎞
⎟⎟⎠

α
n−2

with equality if and only if G = K n
2
, n
2
.

Theorem B [13]. Let G be a connected bipartite graph with n � 3 vertices,m edges:

(i) If α < 0 or α > 1, then

sα(G) �
⎛
⎝2

√∑n
i=1 d

2
i

n

⎞
⎠

α

+ (n − 2)1−α

⎛
⎝2m − 2

√∑n
i=1 d

2
i

n

⎞
⎠

α

with equality if and only if G = K n
2
, n
2
.

(ii) If 0 < α < 1, then

sα(G) �
⎛
⎝2

√∑n
i=1 d

2
i

n

⎞
⎠

α

+ (n − 2)1−α

⎛
⎝2m − 2

√∑n
i=1 d

2
i

n

⎞
⎠

α

with equality if and only if G = K n
2
, n
2
.

In this note, we obtain a new lower bound on the Laplacian spectral radius for a bipartite graph G.

Applying this result, we also present some bounds on sum of powers of the Laplacian eigenvalues of

G, sα(G) with α /= 0, 1 and determine the extremal graphs of these bounds. Theoretic analysis shows

that these results improve Theorems A and B.

2. Main results

We first present a new lower bound of the Laplacian spectral radius of bipartite graphs, which

improves some known results in [11].

Theorem 1. Let G be a simple connected bipartite graph with degrees d1, d2, . . . , dn. Then
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μ1 �
√√√√∑n

i=1(di(d
2
i

+ ti) + ∑
j∼i(d

2
j

+ tj))
2∑n

i=1(d
2
i

+ ti)
2

. (1)

The equality holds in (1) if and only if there exists a positive constant number t such that, for all i ∈
{1, 2, . . . ,n},

di(d
2
i

+ ti) + ∑
j∼i(d

2
j

+ tj)

d2
i

+ ti
= t.

In fact, t = μ1.

Proof. SinceG is a bipartite graph, then L(G) = D(G) − A(G) andD(G) + A(G)have the sameeigenvalues.

Note that D(G) + A(G) is a nonnegative irreducible symmetric matrix.

Now assume that x = (x1, x2, . . . , xn)
T is the positive Perron eigenvector of D(G) + A(G) correspond-

ing to μ1.

By the Raleigh principle, we have

μ2
1 = μ1((D(G) + A(G))2) = xT (D(G) + A(G))2x

xTx
. (2)

Take C = (d2
1

+ t1, d
2
2

+ t2, . . . , d
2
n + tn)

T . Then

(D(G) + A(G))C

= D(G)C + A(G)C

=
⎛
⎝d1(d

2
1 + t1) +

n∑
j=1

a1j(d
2
j + tj), . . . , dn(d

2
n + tn) +

n∑
j=1

anj(d
2
j + tj)

⎞
⎠T

=
⎛
⎝d1(d

2
1 + t1) +

∑
j∼1

(d2j + tj), . . . , dn(d
2
n + tn) +

∑
j∼n

(d2j + tj)

⎞
⎠T

and CTC = ∑n
i=1(d

2
i

+ ti)
2. It follows from (2) that

μ1 =
√
xT (D(G) + A(G))2x

xTx

�
√
CT (D(G) + A(G))2C

CTC

=

√√√√√∑n
i=1

(
di(d

2
i

+ ti) + ∑
j∼i(d

2
j

+ tj)
)2

∑n
i=1(d

2
i

+ ti)
2

.

Now suppose that the equality holds in (1). Then C is the positive Perron eigenvector of (D(G) +
A(G))2 corresponding toμ1((D(G) + A(G))2), that is, (D(G) + A(G))2C = μ1((D(G) + A(G))2)C. If themul-

tiplicity ofμ2
1

= μ1((D(G) + A(G))2) is two, then−μ1 is also an eigenvalue ofD(G) + A(G). This is impos-

sible asD(G) + A(G) is anonnegative irreduciblepositive semidefinitematrix .Hence, themultiplicityof

μ2
1

= μ1((D(G) + A(G))2) is one, and C is the positive Perron eigenvector of D(G) + A(G) corresponding

to μ1, that is, (D(G) + A(G))C = μ1C. This implies, for all i ∈ {1, 2, . . . ,n},
di(d

2
i

+ ti) + ∑
j∼i(d

2
j

+ tj)

d2
i

+ ti
= μ1.
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Conversely, if there exists a positive constant number t such that, for all i ∈ {1, 2, . . . ,n},
di(d

2
i

+ ti) + ∑
j∼i(d

2
j

+ tj)

d2
i

+ ti
= t.

Then (D(G) + A(G))C = tC. By Perron–Frobenius Theorem, we have

μ1 = t =

√√√√√∑n
i=1

(
di(d

2
i

+ ti) + ∑
j∼i(d

2
j

+ tj)
)2

∑n
i=1(d

2
i

+ ti)
2

.

This completes our proof. �

Corollary 2 [11]. Let G be a simple connected bipartite graph with degrees d1, d2, . . . , dn. Then

μ1 �
√√√√∑n

i=1(d
2
i

+ ti)
2∑n

i=1 d
2
i

. (3)

The equality holds in (3) if and only if G is a semiregular connected bipartite graph.

Proof. By a simple calculation, we have⎛
⎝ n∑

i=1

(d2i + ti)
2

⎞
⎠2

=
⎛
⎝ n∑

i=1

d2i (d
2
i + ti) +

n∑
j=1

(d2j + tj)tj

⎞
⎠2

=
⎛
⎝ n∑

i=1

d2i (d
2
i + ti) +

n∑
j=1

(d2j + tj)

n∑
i=1

aijdi

⎞
⎠2

=
⎛
⎝ n∑

i=1

d2i (d
2
i + ti) +

n∑
i=1

di

n∑
j=1

aij(d
2
j + tj)

⎞
⎠2

=
⎛
⎝ n∑

i=1

(d2i (d
2
i + ti) + di

∑
j∼i

(d2j + tj))

⎞
⎠2

=
⎛
⎝ n∑

i=1

(di(d
2
i + ti) +

∑
j∼i

(d2j + tj)) · di
⎞
⎠2

.

By the Cauchy–Schwartz inequality,⎛
⎝ n∑

i=1

(d2i + ti)
2

⎞
⎠2

�
n∑

i=1

⎛
⎝di(d

2
i + ti) +

∑
j∼i

(d2j + tj)

⎞
⎠2

·
n∑

i=1

d2i (4)

with equality if and only if there exists a positive constant number l such that, for all i ∈ {1, 2, . . . ,n},
di(d

2
i

+ ti) + ∑
j∼i(d

2
j

+ tj)

di
= l.

Following from (4) and Theorem 1, the inequality (3) holds.

Now suppose that the equality holds in (3). By Theorem 1, there exists a positive constant number

t such that, for all i ∈ {1, 2, . . . ,n},
di(d

2
i

+ ti) + ∑
j∼i(d

2
j

+ tj)

d2
i

+ ti
= t.
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Thus we have, for all i ∈ {1, 2, . . . ,n},
d2
i

+ ti

di
= l

t
.

The rest of the proof is similar to that of Theorem 9 in [11].

Conversely, assume thatG is a semiregular connected bipartite graphof order nwithfirstn1 vertices

of degree� and the remaining n2 vertices of degree δ. Then μ1 = � + δ is the Laplacian spectral radius

of L(G) and the corresponding eigenvector is (�eTn1 ,−δeTn2 )
T , where eTn ∈ Rn is the vector with each

element 1. On the other hand, noting that ti = �δ for all i ∈ {1, 2, . . . ,n}, we have√√√√∑n
i=1(d

2
i

+ ti)
2∑n

i=1 d
2
i

= � + δ.

Hence, the equality holds in (3). �

Applying Corollary 2, we can get the following result, which is exactly Corollary 10 in [11].

Corollary 3 [11]. Let G be a simple connected bipartite graph with degrees d1, d2, . . . , dn. Then

μ1 � 2

√√√√1

n

n∑
i=1

d2
i
. (5)

The equality holds in (5) if and only if G is a regular connected bipartite graph.

For a connected graph G, the diameter of G is the maximum distance between any two vertices of

G. Denote the complement of the graph G by G. Let Kn be the complete graph on n vertices; let Kr,n−r

be the complete bipartite graph with a bipartition V1 and V2, where |V1| = r and |V2| = n − r with

1 � r � n − 1. The join G1 ∨ G2 of two graphs G1,G2 is formed from G1 and G2 by adding edges joining

every vertex of G1 to every vertex of G2.

Lemma 4 [7]. Let G be a connected graph with diameter d. Then G has at least d + 1 distinct Laplacian

eigenvalues.

Lemma 5 [8]. Let G1 and G2 be two graphs with r vertices and s vertices, respectively. If the Laplacian

eigenvalues of G1 and G2 are λ1, λ2, . . . , λr and μ1,μ2, . . . ,μs, respectively, then the Laplacian eigenvalues

of G1 ∨ G2 are r + s; λ1 + s, . . . , λr−1 + s; μ1 + r, . . . ,μs−1 + r; and 0.

Lemma 6. Let G be a connected bipartite graph with n � 3 vertices. Then G has exactly three distinct

Laplacian eigenvalues if and only if G = K1,n−1 or K n
2
, n
2
, where n is even.

Proof. Suppose that G has exactly three distinct Laplacian eigenvalues. By Lemma 4, G has diameter

at most 2. If the diameter of G equals to 1, then G = Kn, which contradicts with the condition that G

is a connected bipartite graph of order n � 3. Thus, the diameter of G is 2, which implies that G is a

complete bipartite graphKr,n−r with1 � r � n − 1. SinceKr,n−r = Kr ∨ Kn−r , by Lemma5, the Laplacian

eigenvalues of Kr,n−r are

n,n − r, . . . ,n − r︸ ︷︷ ︸
r−1

, r, . . . , r︸ ︷︷ ︸
n−r−1

, 0

If r = 1,n − 1, then G has three distinct Laplacian eigenvalues n, 1 and 0. Thus, G = K1,n−1; If 2 � r �
n − 2, thenG has exactly threedistinct Laplacian eigenvalueswhenn − r = r, thus forcing r = n

2
. Hence,

G = Kn
2
, n
2
.

Conversely, assume that G = K1,n−1 or K n
2
, n
2
. It is easy to verify that G has exactly three distinct

Laplacian eigenvalues. �
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Now we shall present some bounds on sum of powers of the Laplacian eigenvalues of a bipartite

graph G and determine the extremal graphs of these bounds.

LetG be a simple connected graphwith n vertices. For convenience, letwi = di(d
2
i

+ ti) + ∑
j∼i(d

2
j

+
tj) for all i ∈ {1, 2, . . . ,n}.

Theorem 7. Let G be a connected bipartite graph with n � 3 vertices, t spanning trees. Then, for a real

number α /= 0, 1,

sα(G) �
⎛
⎝

√√√√ ∑n
i=1 w

2
i∑n

i=1(d
2
i

+ ti)
2

⎞
⎠

α

+ (n − 2)(tn)
α

n−2

⎛
⎝

√√√√∑n
i=1(d

2
i

+ ti)
2∑n

i=1 w
2
i

⎞
⎠

α
n−2

. (6)

The equality holds in (6) if and only if G = K1,n−1 or K n
2
, n
2
, where n is even.

Proof. Note that our proof is similar to the proof of Theorem 4 in [13]. By theMatrix Tree Theorem [1],

we get
∏n−1

i=1 μi = tn. Hence,

sα(G) = μα
1 +

n−1∑
i=2

μα
i � μα

1 + (n − 2)

⎛
⎝n−1∏

i=2

μα
i

⎞
⎠

1
n−2

= μα
1 + (n − 2)(tn)

α
n−2 μ

− α
n−2

1
,

with equality if and only if μ2 = · · · = μn−1. Take a function

f (x) = xα + (n − 2)(tn)
α

n−2 x− α
n−2

for x � (tn)
1

n−1 . Solving

f ′(x) = αxα−1 − α(tn)
α

n−2 x− α
n−2

−1 � 0,

we get x � (tn)
1

n−1 . Hence, f (x) is increasing for x � (tn)
1

n−1 . By Theorem 1, Corollaries 2, 3 and the

proof of Theorem 4 in [13], we have

μ1 �
√√√√ ∑n

i=1 w
2
i∑n

i=1(d
2
i

+ ti)
2

�
√√√√∑n

i=1(d
2
i

+ ti)
2∑n

i=1 d
2
i

� 2

√√√√1

n

n∑
i=1

d2
i
� (tn)

1
n−1 , (7)

where the last inequality holds as

2

√√√√1

n

n∑
i=1

d2
i
� 4m

n
>

2m

n − 1
=

∑n−1
i=1 μi

n − 1
�

⎛
⎝n−1∏

i=1

μi

⎞
⎠

1
n−1

= (tn)
1

n−1 . (8)

Hence,

sα(G) � f (μ1) � f

⎛
⎝

√√√√ ∑n
i=1 w

2
i∑n

i=1(d
2
i

+ ti)
2

⎞
⎠ ,

which implies that the inequality (6) holds, and the equality holds in (6) if andonly ifμ1 =
√ ∑n

i=1 w
2
i∑n

i=1(d2
i
+ti)

2

and μ2 = · · · = μn−1.

Now assume that the equality holds in (6). Then G has at most three distinct Laplacian eigenvalues.

If G has two distinct Laplacian eigenvalues, then G = Kn, which contradicts with the condition that G

is a connected bipartite graph of order n � 3. Thus G has exactly three distinct Laplacian eigenvalues.

By Lemma 6, we obtain that G = K1,n−1 or K n
2
, n
2
, where n is even.

Conversely, assume that G = K1,n−1 or K n
2
, n
2
. It is easy to verify that the equality holds in (6). �

Remark 1. By the proof of Theorem 7, we may get
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sα(G) � f (μ1) � f

⎛
⎝

√√√√ ∑n
i=1 w

2
i∑n

i=1(d
2
i

+ ti)
2

⎞
⎠ � f

⎛
⎝

√√√√∑n
i=1(d

2
i

+ ti)
2∑n

i=1 d
2
i

⎞
⎠

� f

⎛
⎝2

√√√√1

n

n∑
i=1

d2
i

⎞
⎠ ,

which implies that Theorem 7 improves Theorem A, that is, Theorem 4 in [13].

Theorem 8. Let G be a connected bipartite graph with n � 3 vertices,m edges. Then, for a real number

α /= 0, 1,

(i) If α < 0 or α > 1, then

sα(G) �
⎛
⎝

√√√√ ∑n
i=1 w

2
i∑n

i=1(d
2
i

+ ti)
2

⎞
⎠

α

+ (n − 2)1−α

⎛
⎝2m −

√√√√ ∑n
i=1 w

2
i∑n

i=1(d
2
i

+ ti)
2

⎞
⎠

α

. (9)

The equality holds in (9) if and only if G = K1,n−1 or K n
2
, n
2
, where n is even.

(ii) If 0 < α < 1, then

sα(G) �
⎛
⎝

√√√√ ∑n
i=1 w

2
i∑n

i=1(d
2
i

+ ti)
2

⎞
⎠

α

+ (n − 2)1−α

⎛
⎝2m −

√√√√ ∑n
i=1 w

2
i∑n

i=1(d
2
i

+ ti)
2

⎞
⎠

α

. (10)

The equality holds in (10) if and only if G = K1,n−1 or K n
2
, n
2
, where n is even.

Proof. Note that our proof is similar to the proof of Theorem 5 in [13].

To prove (i), assume that α < 0 or α > 1. Since xα(x > 0) is a strictly convex function when α < 0 or

α > 1, then

n−1∑
i=2

1

n − 2
μα
i �

⎛
⎝n−1∑

i=2

1

n − 2
μi

⎞
⎠α

with equality if and only if μ2 = · · · = μn−1. Hence,

sα(G) = μα
1 +

n−1∑
i=2

μα
i � μα

1 + (n − 2)1−α

⎛
⎝n−1∑

i=2

μi

⎞
⎠α

= μα
1 + (n − 2)1−α(2m − μ1)

α.

Take a function

g(x) = xα + (n − 2)1−α(2m − x)α

for x � 2m
n−1

. Solving

g′(x) = αxα−1 − α(n − 2)1−α(2m − x)α−1 � 0,

we get x � 2m
n−1

, which implies that g(x) is increasing for x � 2m
n−1

. Hence, from (7) and (8), we have

sα(G) � g(μ1) � g

⎛
⎝

√√√√ ∑n
i=1 w

2
i∑n

i=1(d
2
i

+ ti)
2

⎞
⎠ ,

which implies that the inequality (9) holds, and the equality holds in (9) if andonly ifμ1 =
√ ∑n

i=1 w
2
i∑n

i=1(d2
i
+ti)

2

and μ2 = · · · = μn−1.
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In the following, using similar arguments as in Theorem 7, we get that the equality holds in (9) if

and only if G = K1,n−1 or K n
2
, n
2
, where n is even.

If 0 < α < 1, then xα(x > 0) is a strictly concave function and g(x) is decreasing for x � 2m
n−1

. By a

parallel argument, we may prove (ii). �

Remark 2. From the proof of Theorem 8, we may see

(i) If α < 0 or α > 1, then

sα(G) � g(μ1) � g

⎛
⎝

√√√√ ∑n
i=1 w

2
i∑n

i=1(d
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2
i

⎞
⎠

� g

⎛
⎝2
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n

n∑
i=1

d2
i

⎞
⎠ ;

(ii) If 0 < α < 1, then

sα(G) � g(μ1) � g

⎛
⎝

√√√√ ∑n
i=1 w

2
i∑n

i=1(d
2
i

+ ti)
2

⎞
⎠ � g

⎛
⎝
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2
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+ ti)
2∑n
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⎞
⎠

� g

⎛
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n∑
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d2
i

⎞
⎠ .

Hence, Theorem 8 improves Theorem B, that is, Theorem 5 in [13].
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