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Abstract

We give new weighted decompositions for simple polytopes, generalizing previous results of Lawrence–
Varchenko and Brianchon–Gram. We start with Witten’s non-abelian localization principle in equivariant
cohomology for the norm-square of the moment map in the context of toric varieties to obtain a decompo-
sition for Delzant polytopes. Then, by a purely combinatorial argument, we show that this formula holds
for any simple polytope. As an application, we study Euler–Maclaurin formulas.
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1. Introduction

The interplay between symplectic geometry and combinatorics through the study of mo-
ment maps and the use of equivariant cohomology and the geometry of toric varieties is a
well known and fertile theme in mathematics. See for example the work of Brion–Vergne [10],
Cappell–Shaneson [12,13], Ginzburg–Guillemin–Karshon [21], Guillemin [18,19], Morelli [32],
and Pommersheim and Thomas [34,35].

In this paper we use Witten’s non-abelian localization principle in equivariant cohomology
for the norm-square of the moment map [40], described by Paradan in [33], to motivate several
new weighted polytope decomposition formulas. Indeed, applying this principle to the case of
toric manifolds, we obtain weighted polytope decompositions for Delzant polytopes [14] (see
Example 17 in Section 3). Then, by a purely combinatorial argument, we show, in Section 4.4,
that they are in fact valid for any simple polytope not necessarily the moment map image of a
toric manifold (recall that a polytope in R

d is called simple if each vertex is the intersection of
exactly d facets). In Section 4.5, following the idea behind these decompositions, we construct
new ones that generalize the Lawrence–Varchenko decomposition (see [39] and [29]) and, in
some cases, the Brianchon–Gram formula (see [9,16,17,37]) (cf. Remark 37).

The well-known classical polytope decomposition formula of Brianchon–Gram expresses the
characteristic function 1P of a convex polytope P as the alternating sum of the characteristic
functions of all tangent cones to the faces of P . By flipping the edge vectors emanating from each
vertex of P in a systematic way using a polarizing vector, we obtain the Lawrence–Varchenko
decomposition also known as the polar decomposition. This formula expresses the characteristic
function of a convex simple polytope (only) in terms of the characteristic functions of polarized
cones supported at the vertices. Karshon, Sternberg and Weitsman [23] and Agapito [1] gave
weighted versions of this decomposition by assigning weights to the faces of the polytope and
of the cones in a consistent way. Our polytope decompositions combine the above two formulas.
Like Brianchon–Gram they express 1P in terms of characteristic functions of cones with apices
the different faces of the polytope. However, these cones may no longer be the ordinary tangent
cones to the polytope. In our formulas we assign a different polarizing vector to each face and we
flip the edges of the tangent cones accordingly. In the first decomposition presented, Theorem 4.1,
these polarizing vectors are obtained by choosing a suitable starting point ε (the same for all
vectors) and taking as end points its orthogonal projections β(ε,F ) onto the faces F of the
polytope, whenever these projections are nonempty (cf. Fig. 3). In the second decomposition
formula, Theorem 4.2, we take the vectors ε−β(ε,F ) as polarizing vectors (instead of β(ε,F )−
ε as above). Choosing ε appropriately we obtain the Lawrence–Varchenko and, in some cases,
the Brianchon–Gram relations.

As an application, in Section 5 we use our decompositions to give new Euler–Maclaurin
formulas with remainder similar to those of Karshon–Sternberg–Weitsman [23] and Agapito–
Weitsman [3]. The classical Euler–Maclaurin formula computes the sum of the values of a
function f over the integer points of an interval in terms of the integral of f over variations
of that interval. This formula was generalized by Khovanskii and Pukhlikov (see [24] and [25])
to a formula for the sum of the values of an exponential or polynomial function on the lattice
points of a regular integral polytope. In addition, Cappell and Shaneson [12,13,36], Guillemin
[19] and Brion and Vergne [10] generalized it to simple integral polytopes, and Berline, Brion,
Szenes and Vergne [6,11,38], to any rational polytope. Note that all these formulas are exact and
valid for sums of values of exponential or polynomial functions. Moreover, the formula in [6]
has the additional feature that it is local, in the sense that it is given as a sum of integrals over the
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faces of the polytope of maps D(F) ·p, for operators D(F) depending only on a neighborhood of
a generic point of the face F . In [23], Karshon, Sternberg and Weitsman prove a formula with re-
mainder for the sum of an arbitrary smooth function f of compact support, on the integer points
of a simple polytope. There, the remainder is given as a sum over the vertices of the polytope,
of integrals over cones with those vertices, of bounded periodic functions times several partial
derivatives of f . In our formulation (Theorem 5.1) both the Euler–Maclaurin formula and the
remainder are given as a sum over all faces of the polytope (not only over vertices) of integrals
over cones with apex the affine spaces generated by those faces. Since our formula generalizes to
symbols (in the sense of Hormander [22]), we show that, in the case of a polynomial function p,
we also obtain an exact Euler–Maclaurin formula for the sum of the values of p over the integer
points of the polytope. This relation is a weighted version of the exact Euler–Maclaurin formulas
obtained in [10] and in [23].

2. Critical set of the function ‖με‖2

Let (M,ω) be a compact connected symplectic manifold equipped with a Hamiltonian action
of a torus T . Denoting by t the Lie algebra of T and by t∗ its dual space, we consider the
moment map μ :M → t∗ associated to this action. This T -equivariant map is determined, up to
a constant, by the equation d〈μ,X〉 = ι(XM)ω for all X ∈ t. Since the action of T on t is trivial,
the perturbed map με := μ − ε for ε ∈ t∗ is also a moment map for the action of T .

Hereafter we will choose a scalar product on t∗ (inducing a linear isomorphism j : t → t∗) and
consider two kinds of orthogonality on t∗: the orthogonality resulting from the duality between
t and t∗ and the j -orthogonality defined by the scalar product. We will begin by reviewing the
structure of the critical points of the moment map and then define an index set B which will
enable us to define a partition of the set of critical points of the function ‖με‖2.

Following Paradan in [33], we will consider a modified definition of critical point. Usually,
for a smooth map f :M → N , a critical point x is defined to be a point where the derivative
dfx :TxM → Tf (x)N is not surjective. In the case of the moment map, dμx is not surjective if it
exists X ∈ t \ {0} such that 〈dμx,X〉 = 0. This is the case when XM(x) = 0. Hence, a point x is
a critical point of the moment map μ if and only if its stabilizer, Stab(x), contains a subtorus of
dimension 1. However, if the action is not effective, all points of M will be critical points of μ.
To avoid this situation we take the subgroup SM := ⋂

x∈M Stab(x), called the generic stabilizer,
and make the following definition:

Definition 1. The critical points of the moment map μ :M → t∗ are the points x ∈ M for which
Stab(x)/SM is not finite.

These are the critical points (by the usual definition) of the restriction μ :M → AM , where
AM is an affine subspace with the direction of

(sM)⊥ = {
ξ ∈ t∗: 〈ξ,X〉 = 0, ∀X ∈ sM

}
,

where sM is the Lie algebra of SM .
Let T ′ be a subtorus of T containing SM such that T ′/SM is not finite. Every connected com-

ponent F ′ of MT ′
is a symplectic submanifold of M . Its image P := μ(F ′) is a convex polytope

in t∗ equal to the convex hull of the image of the fixed points of T contained in F ′ (cf. [4,20]).
Moreover, the Lie algebra of T ′ is contained in P ⊥ (the set of vectors of t orthogonal to P ),
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and, denoting by TP the subtorus of T generated by exp(P ⊥), we have that tP , the Lie algebra
of TP , is equal to P ⊥. Hence, F ′ is a connected component of MTP where T/TP acts quasi-
effectively, meaning that the generic stabilizer of F ′ is a subgroup of T with identity component
equal to TP . Knowing this and denoting by ΔP the affine subspace of t∗ generated by P , we
consider the following sets:

B′ := {
convex polytopes P ⊂ t∗ for which there exists a connected

component F ′ of MTP with μ(F ′) = P
}; (2)

B := {ΔP | P ∈ B′}; (3)

B′
Δ := {

P ∈ B′ ∣∣ P ⊂ Δ and dim(P ) < dim(Δ)
}
, for Δ ∈ B; (4)

t∗reg := t∗
∖ ⋃

P∈B′\μ(M)

P, Δreg := Δ
∖ ⋃

P∈B′
Δ

P ; (5)

WΔ := Δreg + j (tΔ), for Δ ∈ B; (6)

W :=
⋂
Δ∈B

WΔ. (7)

Here, for Δ ∈ B, we denoted by TΔ the subtorus of T generated by exp(Δ⊥) and by tΔ its Lie
algebra. Note that the set B′ contains all the faces of the polytope μ(M) and that, if P is a
polytope in B′, all its faces are also in B′. Moreover, note that in (5) the set t∗reg ⊂ t∗ is the set of
regular points of the moment map and that, in (6), j (tΔ) is the j -orthogonal complement of Δ

in t∗.
With this notation we have the following proposition which characterizes the critical set of

‖με‖2 (cf. [26] and [33] for details):

Proposition 8 (Kirwan). For every ε ∈ t∗, the critical set of ‖με‖2 is given by

Cr
(‖με‖2) =

⋃
Δ∈B

MTΔ ∩ μ−1(β(ε,Δ)
)
,

where, for an affine subspace Δ of t∗, β(ε,Δ) is the orthogonal projection of ε on Δ. Moreover,

(i) for every ε ∈ WΔ, the set

Cε
Δ := MTΔ ∩ μ−1(β(ε,Δ)

)
(9)

is a submanifold of M on which T/TΔ acts locally freely;
(ii) the set W is dense in t∗ and, for every ε ∈ W , the submanifolds Cε

Δ, for Δ ∈ B, form a
partition of Cr(‖με‖2).

Since the group T/TΔ acts locally freely on the manifold Cε
Δ, we can define the quotient

Mε
Δ := Cε

Δ/(T /TΔ) which will be an orbifold. Moreover, for each connected component F of
Cε

Δ, we will consider the subgroup SΔ(F ) := ⋂
x∈F Stab(x) and the map F → |SΔ(F )| (defining

a locally constant function on Mε
Δ) which will be denoted by |SΔ|.
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Remark 10. Note that, if dim(T ) = 1
2 dim(M) (i.e. if M is a toric manifold), then Mε

Δ =
μ−1(β(ε,Δ))/T is either empty or a point.

From now on we will consider ε ∈ W .

3. Localization formulas

3.1. Equivariant cohomology

Let us begin by reviewing the different T -equivariant de Rham complexes on M (a compact
connected symplectic T -manifold). We have three spaces of equivariant differential forms on M ,
Ω∗

T (M) ⊂ Ω∞
T (M) ⊂ Ω−∞

T (M), respectively with polynomial, smooth and generalized coef-
ficients. The model for Ω∗

T (M) is due to Cartan while the other two were studied by Berline,
Duflo, Kumar and Vergne (see [5,7,15,28]). Let us recall their definition.

Let C∞(t,Ω(M)) be the algebra of forms α(X) on M which depend smoothly on X ∈ t. We
will denote by Ω∞

T (M) the sub-algebra formed by its T -invariant elements (called equivariant
forms). Let S(t∗) be the space of polynomials on t and denote by Ω∗

T (M) := (S(t∗) ⊗ Ω(M))T

the subalgebra of Ω∞
T (M) of equivariant forms with polynomial coefficients. On Ω∞

T (M) we
have the differential dT defined by

(dT α)(X) := (
d − ι(XM)

)(
α(X)

)
for every α ∈ Ω∞

T (M) and X ∈ t. The cohomologies associated to (Ω∞
T (M), dT ) and

(Ω∗
T (M), dT ) are called the T -equivariant cohomology with C∞ and polynomial coefficients

and denoted by H∞
T (M) and H ∗

T (M).
Let C−∞(t,Ω(M)) be the space of generalized functions on t with values on Ω(M). This

is, by definition, the space of continuous R-linear maps Hom(D(t),Ω(M)) from the space of
smooth compactly supported densities on t to the space Ω(M), where D(t) and Ω(M) are both
endowed with the C∞-topologies. An element α ∈ C−∞(t,Ω(M)) is denoted by α(X) although
the value at X ∈ t may not be defined. By definition, it is always defined in the distributional
sense: if φ(X) is a C∞ function on t with compact support (a test function) then 〈α,φ dX〉 is a
well-defined differential form on M denoted by

∫
t
α(X)φ(X)dX. Let Ω−∞

T (M) be the subspace
of T -invariant elements of C−∞(t,Ω(M)). We have a canonical inclusion Ω∞

T (M) ⊂ Ω−∞
T (M)

and the differential dT defined on Ω∞
T (M) extends to Ω−∞

T (M). The cohomology of the com-
plex (Ω−∞

T (M), dT ) is called the T -equivariant cohomology on M with generalized coefficients
and is denoted by H−∞

T (M). We can also consider the sub-algebras Ω∞
T ,cpt(M) and Ω−∞

T ,cpt(M)

of T -equivariant forms of compact support. These are stable with respect to dT and the coho-
mologies associated to the corresponding complexes (Ω∞

T ,cpt(M), dT ) and (Ω−∞
T ,cpt(M), dT ) are

denoted by H∞
T ,cpt(M) and H−∞

T ,cpt(M).

If M is oriented, integration over M defines a map
∫
M

from Ω−∞
T ,cpt(M) to the space of

T -invariant generalized functions on t:

〈∫
α,φ dX

〉
:=

∫
〈α,φ dX〉,
M M
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for any test function φ on t. This map induces a map from H−∞
T ,cpt(M) to the space of T -invariant

generalized functions on t.

3.2. Equivariant Euler classes

Let p :E → M be a T -equivariant real vector bundle. The vector bundle is said to have
T -oriented fibers if the fibers are oriented with an orientation varying continuously and if the
T -action on M preserves the orientation of all the fibers. Let us fix a T -orientation on the fibers
of E and let p∗ :Ω−∞

T ,cpt(E) → Ω−∞
T (M) be integration along the fibers (here Ω−∞

T ,cpt(E) denotes
the space of equivariant forms with compact support on the total space E). This operator induces
a map in cohomology (again denoted by p∗), p∗ :H−∞

T ,cpt(E) → H−∞
T (M). This map is in fact an

isomorphism since we are fixing a T -orientation on E (cf. Proposition 11 in [28]).
Still fixing a T -orientation on the vector bundle p :E → M , there is a unique equivariant class

u ∈ H∞
T ,cpt(E) such that p∗u = 1M , where 1M is the constant function equal to 1 on M . This class

is called the equivariant Thom class of E and denoted by ThomT (E). The uniqueness of this form
for a T -oriented, T -equivariant vector bundle follows from [31]. Moreover, its restriction to M

is the equivariant Euler class of the bundle E, i.e. eT (E) := i∗ ThomT (E), where i :M → E is
the inclusion map.

Fixing a T -invariant pair of a scalar product on the fibers and an Euclidean connection ∇E ,
Berline, Getzler and Vergne construct in [7] an explicit representative element of the equivariant
Euler class which, to simplify notation, we will also denote by eT (E).

Let us assume now that there is an element β ∈ t for which the zero set of the vector field on
E generated by β is equal to M . For every s > 0 and every X ∈ t the form eT (E)(X + isβ) has
a 0-degree component which does not vanish on M and so we can take its inverse (eT (E)(X +
isβ))−1 in Ω(M). Then, taking the limit

e−1
β (E) := lim

s→0+
(
eT (E)(X + isβ)

)−1
,

we obtain an equivariant closed form on M that satisfies eT (E) · eβ(E) = 1M (see [33] for
details).

Example 11. Consider the trivial bundle E := M × C equipped with a T -action which is trivial
on M and which, on C, is determined by the weight α ∈ t∗ (that is, exp(X) · z := ei〈α,X〉z, for
X ∈ t and z ∈ C). Choosing β ∈ t such that 〈α,β〉 �= 0, we have eT (E)(X) = − 1

2π
〈α,X〉 and,

“polarizing,” that is, taking α+ := εβα with 〈α+, β〉 > 0 and εβ = ±1, we have

e−1
β (E)(X) = −2π lim

s→0+
1

〈α,X + isβ〉 = 2πiεβ

∞∫
0

ei〈α+,X〉t dt

as generalized functions. Taking the Fourier transform we obtain the equality of measures on t∗,
F(e−1

β (E)) = 2πiεβHα+ , where Hα+ is the Heaviside distribution associated to α+ defined by

〈Hα+ , φ〉 =
∞∫

0

φ
(
uα+)

du,

for every φ in the Schwartz space of rapidly decreasing functions on M .
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Example 12. If M = {F } is a single point, fixed by the action of T , the bundle E decomposes as
a sum of non-trivial 2-dimensional real representations of T , E := L1 ⊕ · · · ⊕ Lk → F , with the
action of T on each Lj determined by a weight αj ∈ t∗. Following Paradan (cf. Proposition 4.8
in [33]) we obtain the expression for the Fourier transform of e−1

β (E):

F
(
e−1
β (E)

) = (2πi)kεβHα+
1

∗ · · · ∗ Hα+
k
,

where we polarize each αj according to some β ∈ t (such that 〈αj ,β〉 �= 0 for j = 1, . . . , k),

obtaining α+
j := ε

j
βαj with ε

j
β = ±1, and we take εβ := ∏k

j=1 ε
j
β . Note that ∗ denotes the con-

volution product. This measure, supported on the cone R
+α+

1 + · · · + R
+α+

k , is defined by

〈Hα+
1

∗ · · · ∗ Hα+
k
, φ〉 =

∞∫
0

· · ·
∞∫

0

φ

(
k∑

i=1

uiα
+
i

)
du1 . . . duk,

for every rapidly decreasing function φ on M .

3.3. Localization

Using the sets B, W and Cε
Δ defined in (3), (7) and (9) of Section 2, and the orbifold Mε

Δ =
Cε

Δ/(T /TΔ), Paradan proves the following localization theorem:

Theorem 3.1 (Paradan). Let ε ∈ W and let η ∈ Ω∞
T (M) be a closed form. Then, on C−∞(t) we

have ∫
M

η =
∑
Δ∈B

I ε
Δ(η),

where I ε
Δ(η) is the generalized function supported on tΔ defined by

I ε
Δ(η)(X1 + X2)

= (2πi)dimΔ

∫
Mε

Δ

1

|SΔ|kΔ(η)(X1)e
−1
βΔ

(EΔ)(X1) � δ(X2 − wΔ). (13)

Here,

(i) the variables X1,X2 are respectively in tΔ and t/tΔ (note that, for each Δ ∈ B, t decom-
poses as a sum of vector spaces tΔ and t/tΔ, where tΔ is the Lie algebra of the subtorus
TΔ generated by exp(Δ⊥));

(ii) βΔ := j−1(β(ε,Δ) − ε), where β(ε,Δ) is the orthogonal projection of ε on Δ;
(iii) EΔ := NΔ/(T /TΔ), where NΔ is the normal bundle of MTΔ inside M , restricted to Cε

Δ;
(iv) the operator �:

Ω−∞
TΔ

(
Cε

Δ

) × Ω−∞
T/TΔ

(
Cε

Δ

) → Ω−∞
T

(
Cε

Δ

)
(η, ν) → η � ν
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is defined by 〈
η � ν,φ(X)dX

〉 := 〈
η,

〈
ν,φ(X1 + X2) dX2

〉
dX1

〉
for every density φ(X)dX of compact support on t, with the Lebesgue measure dX decom-
posed as a product dX1 dX2 of two Lebesgue measures on tΔ and t/tΔ;

(v) wΔ is the curvature of the principal orbibundle Cε
Δ → Mε

Δ;
(vi) kΔ :H∞

T (M) → H∞
TΔ

(Mε
Δ) is the map defined by Kirwan in [26] as the composition

of the restriction morphism i∗Δ :H∞
T (M) → H∞

TΔ
(Mε

Δ) and the Chern–Weil isomorphism
WΔ :H∞

T (Cε
Δ) → H∞

TΔ
(Mε

Δ) determined by wΔ (see [28] for details);

(vii) the equivariant form δ(X2 − wΔ) ∈ Ω−∞
T/TΔ

(Mε
Δ) is defined by

〈
δ(X2 − wΔ),φ(X2) dX2

〉 = φ(wΔ)vol(T /TΔ,dX2),

for every function φ ∈ C∞(t/tΔ), where vol(T /TΔ,dX2) is the volume of the group T/TΔ

with respect to the Haar measure compatible with the Euclidean measure3 on t/tΔ, dX2.

For every compactly supported function φ ∈ C∞(t) we have〈∫
M

η,φ dX

〉
=

∫
M

〈η,φ dX〉 =
∫

M×t

η(X)φ(X)dX

=
∑
Δ∈B

cΔ

∫
Mε

Δ×tΔ

1

|SΔ|kΔ(η · φ)(X1)e
−1
βΔ

(EΔ)(X1) dX1,

with cΔ = (2πi)dimΔ vol(T /TΔ,dX2) and dX = dX1 dX2.

Example 14. If Δ = {p} is a vertex of the polytope μ(M), then Cε
Δ = μ−1(p) is a connected

component F of MT and

I ε{p}(η)(X) =
∫
F

i∗F (η)(X)e−1
βp

(NF )(X),

where NF is the normal bundle of F inside M and βp = j−1(p − ε). If, in addition, the action
of T is toric, then F is an isolated point. Moreover, taking η = eiω�

, where ω� is the equivariant
symplectic form on M defined by ω�(X) := ω + 〈μ,X〉, we obtain

I ε{p}
(
eiω�)

(X) = εpei〈p,X〉
dim(M)/2∏

j=1

∞∫
0

e
i〈α+

j ,X〉t
dt, (15)

3 Given a Lebesgue measure dX on the Lie algebra g of a compact Lie group G we can construct a translation-invariant
measure on a neighborhood of G at e, and then extend this by translation in G to a Haar measure on G. For a general
formula on how to compute the volume of G relative to this measure see, for instance, [30].
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Fig. 1.

where the α+
j ’s are the weights of the action of T on the normal bundle of F polarized with

respect to βp (i.e. the polarized edge vectors at p) and εp is the sign obtained by polarization.
Taking its Fourier transform we get

F
(
I ε{p}

(
eiω�)) = εpδp ∗ H+

α1
∗ · · · ∗ H+

αn
, (16)

where δp is the Dirac measure on p ∈ t∗. Moreover, the measure (16) is supported on the polar-

ized cone C�
{p} := p + R+α+

1 + · · · + R+α+
n .

Example 17. For a toric manifold M2n with moment map μ and for η = eiω�
, where again ω� is

the equivariant symplectic form on M (cf. Example 14), the reduced space Mε
Δ for ε ∈ t∗ is either

empty or a single point {x}. Moreover, TΔ acts (toricaly) on the manifold EΔ := NΔ/(T /TΔ),
where NΔ is the normal bundle of MTΔ inside M restricted to Cε

Δ. The moment map image for
this TΔ-action can be identified with a neighborhood of β(ε,Δ) inside the “slice” of the moment
map polytope μ(M) that passes through β(ε,Δ) and is perpendicular to Δ (represented by the
shaded region in Fig. 1).

Denoting by β1(ε,Δ) and ε1 the orthogonal projections of β(ε,Δ) and ε onto t∗Δ, formula
(13) becomes

I ε
Δ(X1 + X2)

= (2πi)dimΔεΔ

(
ei〈β1(ε,Δ),X1〉

rΔ∏
j=1

∞∫
0

e
i〈α+

Δ,j ,X1〉t dt

)
� δ0(X2), (18)

whenever β(ε,Δ) ∩ μ(M) is nonempty. Here,

(i) rΔ is the codimension of Δ;
(ii) the α+

Δ,j ’s are the weights of the TΔ-action on the manifold EΔ restricted to the normal
bundle of the fixed point x, polarized with respect to

j−1
1

(
β1(ε,Δ) − ε1

);
(iii) εΔ = ∏rΔ ε

j
Δ, with α+ = ε

j
ΔαΔ,j , is the sign obtained by polarization.
j=1 Δ,j
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Taking the Fourier transform of (18) we obtain

(2πi)nεΔ

(
(δβ1(ε,Δ) ∗ Hα+

Δ,1
∗ · · · ∗ Hα+

Δ,r
) � 1(t/tΔ)∗

)
, (19)

which is supported on the polarized cone C�

β1(ε,Δ) := β1(ε,Δ) + R
+α+

Δ,1 + · · · + R
+α+

Δ,rΔ
.

Moreover, changing variables, we obtain

〈Hα+
Δ,1

∗ · · · ∗ Hα+
Δ,rΔ

,φ〉 =
∞∫

0

· · ·
∞∫

0

φ

(
rΔ∑
i=1

uiα
+
Δ,i

)
du1 . . . durΔ

= 1

|det(α+
Δ,i)i |

∫
C�

0

φ = 1

|det (α+
Δ,i)i |

〈1C�
0
, φ〉,

for any rapidly decreasing function φ, where 1C�
0

is the characteristic function of the cone

C�
0 := R

+α+
Δ,1 + · · · + R

+α+
Δ,rΔ

.

However, since the αΔ,i ’s are the weights of the action of TΔ on the toric manifold EΔ at the fixed
point, we have |det (α+

Δ,i)i | = 1 and so (19) becomes (2πi)nεΔ1C�
0
� 1(t/tΔ)∗ . On the other hand,

since the Fourier transform of
∫
M

eiω�t is the direct image μ∗(dmL) of the Liouville measure
dmL := ωn/n! on M (which is supported on μ(M)), we obtain (up to a factor of (2πi)n)

1μ(M) =
∑
Δ∈B

ϕ(ε,Δ)εΔ1C�
Δ

(20)

almost everywhere on the polytope μ(M), where ϕ(ε,Δ) is equal to 1 when β(ε,Δ) ∩ μ(M) is
nonempty, and zero otherwise.

4. Polytope decompositions

In this section we will show that the polytope decomposition for Delzant polytopes that was
obtained in (20), remains valid for any compact convex simple polytope. Moreover, we will give
a weighted version of this decomposition that also holds on the boundary of the polytope.

Hereafter, we will consider the usual Euclidean inner product 〈 , 〉 of R
d . Let P be a compact

convex simple polytope in R
d and let B′ be the set of faces of P . For each F ∈ B′ we write ΔF

for the affine subspace of R
d generated by F . Then, just as in Section 2, we have the following

sets:

B := {ΔF | F ∈ B′}; (21)

B′
Δ := {

F ∈ B′ ∣∣ F ⊂ Δ and dim(F ) < dim(Δ)
}
, for Δ ∈ B; (22)

Δreg := Δ
∖ ⋃

F∈B′
F ; (23)
Δ
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Fig. 2. Paradan regions for a triangle.

WΔ := Δreg + Δ⊥ for Δ ∈ B; (24)

W :=
⋂
Δ∈B

WΔ. (25)

The set W is a disjoint union of open sets which we will call Paradan regions (see Fig. 2 for an
illustration). In fact, W is the complement in R

d of a finite set of walls of codimension 1, Wc =
E1 ∪ · · · ∪ EK ∪ {facets of P }, where each wall Ei is contained in a hyperplane perpendicular to
an element of B. Note that, in the case of a moment polytope μ(M) of a toric manifold, the set
W is the same as in (7).

4.1. Tangent cones

For each Δ ∈ B, we define the tangent cone of P at Δ by

CΔ := {
y + r(x − y)

∣∣ r � 0, y ∈ Δ, x ∈ P
}
.

It is a full-dimensional cone with apex Δ (i.e. Δ is the maximal affine space contained in CΔ).
Taking ε in R

d , we denote by β(ε,Δ) its orthogonal projection onto the affine space Δ, and we
take the intersection of β(ε,Δ) + Δ⊥ (the orthogonal space of Δ at β(ε,Δ)) with the tangent
cone of Δ:

CΔ⊥,ε := (
β(ε,Δ) + Δ⊥) ∩ CΔ.

This is now a pointed cone (i.e. a cone with a single point as apex) with vertex β(ε,Δ). Note that
CΔ is the direct product of the affine space Δ and the pointed cone CΔ⊥,ε . Then, considering
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Fig. 3. Projections and generating vectors for some faces of a triangle.

vectors αΔ,j ∈ R
d along the edges of CΔ⊥,ε , pointing away from the vertex (j = 1, . . . , rΔ,

where rΔ = dim CΔ⊥,ε = codimΔ), the tangent cone CΔ can be written as

CΔ = Δ + CΔ⊥,ε = Δ +
rΔ∑

j=1

R
+αΔ,j . (26)

Hence, CΔ is the cone along Δ which contains P and is bounded by the affine spaces in B which
contain Δ. The vectors αΔ,j , which are only determined up to a positive scalar, will be called the
generators of CΔ (see Fig. 3 for an illustration).

4.2. Polarization

We will now “polarize” the tangent cones defined in the previous section. For that, let us
first fix a point ε ∈ W and denote by β(ε,Δ) the orthogonal projection of ε onto Δ ∈ B. By
the definition of W , for each Δ ∈ B for which β(ε,Δ) ∈ P , we have 〈βΔ,αΔ,j 〉 �= 0 for all
j = 1, . . . , rΔ, where βΔ := β(ε,Δ) − ε. Indeed, if codimΔ = 1, then βΔ is perpendicular to Δ

and consequently parallel to αΔ,1, the generator of CΔ. If, on the other hand, codimΔ �= 1, then,
taking a generator αΔ,j of CΔ, we have that 〈βΔ,αΔ,j 〉 = 0 implies βΔ ⊥ Δ̃, where Δ̃ ∈ B is the
affine space

Δ̃ := Δ + spanαΔ,j

(note that dim Δ̃ = dimΔ + 1 and that βΔ ⊥ Δ and βΔ ⊥ αΔ,j ). Then, since β(ε,Δ) ∈ Δ,
ε would be in the hyperplane HΔ,Δ̃ through Δ that is perpendicular to the face F ∈ B′ that
generates Δ̃, which is impossible by the definition of W (H ˜ ⊂ Wc ).
Δ,Δ Δ̃
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Fig. 4. Weighted characteristic function for a triangle with weights (q1, q2, q3).

Polarizing the vectors αΔ,j according to βΔ, that is, taking the vectors α+
Δ,j = ε

j
βΔ

αΔ,j with

〈α+
Δ,j , βΔ〉 > 0 and ε

j
βΔ

= ±1, we define C�
Δ, the polarized tangent cone of P at Δ as

C�
Δ := Δ +

rΔ∑
j=1

R
+α+

Δ,j . (27)

4.3. Weighted characteristic functions

Let us now see how to assign weights to each affine space in B in order to obtain our polytope
decomposition. Take Δ1, . . . ,ΔN , the codimension-1 elements of B, that is, the affine subspaces
generated by the facets of P . Each Δ ∈ B that is generated by a non-trivial face of P (i.e.
Δ �= ∅,R

d ) can be described as an intersection⋂
i∈JΔ

Δi,

where JΔ denotes the index set of the hyperplanes Δi that contain Δ. Note that, since P is
simple, the number of elements of JΔ is equal to rΔ, the codimension of Δ. To each Δi we
assign an arbitrary complex number qi and to each affine space Δ ∈ B \ {Rd} we assign the
value

∏
i∈JΔ

qi . Finally, to Δ = R
d we assign the value 1. With this, we define a weight function

w :P → C, given by w(x) = ∏
i∈JΔx

qi , where Δx is the smallest-dimensional element of B that
contains x. Using this function, we define the weighted characteristic function

1w
P (x) =

{
w(x), if x ∈ P,

0, otherwise
(28)

(see Fig. 4 for an illustration).
Similarly, for each Δ ∈ B, we define a weighted characteristic function for the tangent cone

CΔ. For polarized tangent cones C�
Δ the weighted characteristic function is defined as follows.

To each hyperplane Δi that contains a facet of C�
Δ and whose tangent cone CΔi

(a half-space)

intersects C�
Δ \ Δi , we assign the weight qi . If, on the other hand, the tangent cone CΔi

does not
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Fig. 5. Weighted characteristic functions for two polarized tangent cones with weights (q1, q2, q3).

intersect C�
Δ \ Δi we assign the weight 1 − qi to Δi . Then, we define the set B�

Δ of affine spaces

generated by faces of C�
Δ and we proceed as we did for polytopes. To each Δ̃ ∈ B�

Δ \ {Rd} we
assign the value ∏

i∈J+
Δ̃

,j∈J−
Δ̃

qi(1 − qj ),

where J−
Δ̃

is the index set of hyperplanes Δi containing Δ̃ whose tangent cone does not intersect

C�
Δ \ Δi , and J+

Δ̃
= JΔ̃ \ J−

Δ̃
. To Δ̃ = R

d we assign the value 1. Finally, we define the weight

function and the weighted characteristic function as before: w : C�
Δ → C is such that

w(x) =
∏

i∈J+
Δx

,j∈J−
Δx

qi(1 − qj ),

where Δx is the smallest-dimensional element of B�
Δ that contains x, and

1w

C�
Δ

(x) =
{

w(x), if x ∈ C�
Δ,

0, otherwise
(29)

(see Fig. 5 for an example).

4.4. Decomposition formulas

Finally, defining ϕ(ε,Δ) as

ϕ(ε,Δ) =
{

1, if β(ε,Δ) ∩ P �= ∅,
(30)
0, otherwise,
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Fig. 6. Polytope decomposition for a triangle.

we obtain, for each ε ∈ W , the following polytope decomposition formula (see Fig. 6 for an
illustration). Note that, by the definition of ϕ, this formula only takes into account the polarized
cones C�

Δ for which β(ε,Δ)∩P �= ∅, that is, those for which the orthogonal projection of ε onto
Δ is in P .

Theorem 4.1. Let P be a compact convex simple polytope of dimension d in R
d . For any choice

of ε in W , we have

1w
P =

∑
Δ∈B

(−1)mΔϕ(ε,Δ)1w

C�
Δ

, (31)

where the sum is taken over the set B of affine spaces generated by the faces of P , where C�
Δ is

the polarized tangent cone of P at Δ ∈ B with respect to the vector β(ε,Δ)−ε (where β(ε,Δ) is
the orthogonal projection of ε onto Δ), where mΔ is the number of generators of the tangent cone
CΔ whose signs change by polarization, and where 1w

P and 1w

C�
Δ

are the weighted characteristic

functions of the polytope and of the polarized cones, respectively.

Proof. We will prove this formula in two steps. First, we will find an ε in a Paradan region for
which formula (31) holds. Then, we will show that the right-hand side is independent of the
choice of ε.
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Step 1. Let us choose an ε such that ϕ(ε,Δ) = 0 for every Δ ∈ B with dimΔ > 0, i.e. we
choose

ε ∈
⋂

F a facet of P

(
F + Δ⊥

F

)c
.

Then (31) becomes

1w
P =

∑
v a vertex of P

(−1)mv 1w

C�
v

. (32)

Choosing a vector ξ ∈ R
d such that, for every vertex v of P , 〈ξ,αv,j 〉 > 0 whenever 〈v − ε,

αv,j 〉 > 0, where the αv,j ’s are the edge vectors at v, formula (32) becomes a weighted version
of the Lawrence–Varchenko polytope decomposition (see [1,23,29,39]), where the tangent cones
at vertices are polarized according to ξ , and the result follows. Note that this weighted version
of the Lawrence–Varchenko relation is different from the ones in [1,23] because here we may
assign different weights qi ∈ C to the faces of the polytope, instead of a fixed complex number.
Nevertheless, the proof of this decomposition formula follows easily from the ones in [1,23].
Indeed, if x is in the boundary of P , then the left-hand side of (32) is

1w
P (x) =

∏
i∈JΔx

qi

while, taking a vertex in Δx and a polarizing vector such that C�
v = Cv (see [23]), the right-hand

side becomes equal to

1w

C�
v

(x) =
∏

i∈JΔx

qi .

Note that, for every other vertex, v′, the cone C�

v′ is disjoint from the relative interior of the face
that generates Δx and so it does not contain x.

This choice of polarizing vector ξ for which (32) becomes a weighted version of the
Lawrence–Varchenko polytope decomposition can be done in the following way. First, we con-
sider the vertex v0 of P that is closest to ε. Clearly, for v0 we have Cv0 = C�

v0 (where this cone is
polarized with respect to the vector v0 − ε). Then, for any other vertex v and for each edge vector
αv,j satisfying 〈v − ε,αv,j 〉 > 0, we take the hyperplane Hε

v,j through ε which is perpendicular
to αv,j . These hyperplanes intersect at ε and each of them separates the whole space R

d into two
open regions. Let us denote by (Hε

v,j )
+ those regions that contain v0 and take a vector ξ starting

at ε and ending somewhere on the intersection⋂
v a vertex of P

⋂
j s.t.

〈v−ε,αv,j 〉>0

(
Hε

v,j

)+

(we can take for instance ξ = v0 − ε). Then clearly 〈ξ,αv,j 〉 > 0 for all edge vectors αv,j satis-
fying 〈v − ε,αv,j 〉 > 0 (see Fig. 7).
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Fig. 7.

Step 2. Recall that the complement Wc of W is a finite family of walls of codimension 1, Wc =
E1 ∪ · · · ∪ EK ∪ {facets of P }, where each wall Ei is contained in a hyperplane perpendicular to
an element of B. Let ε1 and ε2 be in two contiguous Paradan regions R1 and R2, respectively,
and let E be its common “wall” (either one of the Ei ’s or a facet of P ). Let εt be any path in R

d

from ε1 to ε2 that crosses a single wall (i.e. E) once. When εt crosses E, the sign of〈
β(εt ,Δ) − εt , αΔ,k

〉
(33)

(for Δ ∈ B \ R
d and for a generator αΔ,k of the tangent cone at Δ) flips exactly when Δ ∩ ∂P is

contained in E and αΔ,k is perpendicular to E. Hence, if dimΔ �= d − 1, this sign flips iff Δ is
contained in (exactly) one affine space Δ̃ perpendicular to E with dim Δ̃ = dimΔ+ 1 (see Fig. 8
for an illustration). Indeed, we can take

Δ̃ := Δ + spanαΔ,k

and unicity follows from dimensional reasons. On the other hand, if dimΔ = d − 1, the sign of
(33) flips iff Δ ∩ P ⊆ E. In this case, we define Δ̃ to be the entire space R

d .
Let us assume without loss of generality that the sign of (33) flips from negative to positive as

εt crosses E. In this case, the polarized tangent cones at Δ before and after εt crosses the wall
are (

C�
Δ

)1 = Δ +
∑

R
+α

�
Δ,j − R

+αΔ,k and
(
C�

Δ

)2 = Δ +
∑

R
+α

�
Δ,j + R

+αΔ,k.
j �=k j �=k
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Fig. 8. Generators of some polarized tangent cones C�
Δ for a cube, with ε1 and ε2 in two contiguous Paradan regions.

Hence, the corresponding contributions of Δ to the right-hand side of (31) are

±1w

(C�
Δ)1

and ∓ 1w

(C�
Δ)2

.

Note that the union of the two cones (C�
Δ)1 and (C�

Δ)2 is the polarized tangent cone at Δ̃, C�

Δ̃
,

for both ε1 and ε2 (cf. Fig. 9), and so

1w

(C�
Δ)1

+ 1w

(C�
Δ)2

= 1w

C�

Δ̃

.

On the other hand, we have β(ε1, Δ̃) ∩ P �= ∅, while β(ε2, Δ̃) ∩ P = ∅. Hence, the corre-
sponding contributions of Δ̃ to the right-hand side of (31) are

∓1w

C�

Δ̃

and 0.

Indeed, β(E,Δ) ∩ ∂P = Δ ∩ ∂P and β(β(εi, Δ̃),Δ) − β(εi, Δ̃) = riαΔ,k for i = 1,2, with
r1 < 0 and r2 > 0 (cf. Figs. 8 and 9).
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Fig. 9. Polarized tangent cones C�
Δ at the affine subspaces ΔD , ΔDH , ΔDA and ΔAEHD for the cube in Fig. 8.

Consequently, the differences of the contributions of Δ to the formula in (31) before and after
εt crosses the wall, and those of Δ̃, sum to zero.

Moreover, for a given Δ̃ ∈ B, if ϕ(εt , Δ̃) changes when crossing E, the intersection of Δ̃

with E contains Δ ∩ P for (exactly) one element Δ of B with dimΔ = dim Δ̃ − 1 and the result
follows. �
Remark 34. This new polytope decompositions (31) generalize the weighted version of the
Lawrence–Varchenko relation for a simple polytope presented in [1]. There, the edge vectors
emanating from each vertex are flipped in a systematic way using a polarizing vector, and the
weighted characteristic function of the polytope is expressed (only) in terms of the weighted
characteristic functions of the polarized cones supported at the vertices. In (31), not only the
polarization is carried out differently, but, for some values of ε, we consider the weighted char-
acteristic functions of polarized tangent cones to faces other than vertices. Indeed, given ε ∈ W ,
we obtain a different polarizing vector for each face of the polytope by taking ε as starting point,
and its projections onto the faces of the polytope as end points, whenever these projections are
nonempty. Then we polarize the tangent cones of the corresponding faces accordingly.

4.5. Other decomposition formulas

If we polarize the generators of tangent cones with respect to ε − β(ε,Δ) instead of
β(ε,Δ) − ε, and multiply each term on the right-hand side of (31) by a factor (−1)dimΔ, we
obtain new polytope decompositions, under the same hypotheses and statements of Theorem 4.1.



398 J. Agapito, L. Godinho / Advances in Mathematics 214 (2007) 379–416
Theorem 4.2. Let P be a compact convex simple polytope of dimension d in R
d . For any choice

of ε ∈ W , we have

1w
P =

∑
Δ∈B

(−1)mΔ+dimΔϕ(ε,Δ)1w

C�
Δ

, (35)

where the sum is taken over the set B of affine spaces generated by the faces of P , where C�
Δ is

the polarized tangent cone of P at Δ ∈ B with respect to the vector ε − β(ε,Δ) (where β(ε,Δ)

is the orthogonal projection of ε onto Δ), where mΔ is the number of generators of the cone
CΔ whose sign changes by polarization, and where 1w

P and 1w

C�
Δ

are the weighted characteristic

functions of the polytope P and of the polarized cones, respectively.

Proof. The fact that the right-hand side of (35) does not depend on ε can be proved as in the
proof of Theorem 4.1. Hence, we just have to show that we can find an ε in some Paradan region
for which (35) holds.

For that, we again choose an ε such that ϕ(ε,Δ) = 0 for every Δ ∈ B with dimΔ > 0, i.e. we
choose

ε ∈
⋂

F a facet of P

(
F + Δ⊥

F

)c
.

Then (35) becomes

1w
P =

∑
v a vertex of P

(−1)mv 1w

C�
v

. (36)

Choosing a vector ξ ∈ R
d such that, for every vertex v of P , 〈ξ,αv,j 〉 > 0 whenever 〈ε − v,

αv,j 〉 > 0, where the αv,j ’s are the edge vectors at v, formula (36) becomes a weighted version
of the Lawrence–Varchenko polytope decomposition (see [1,23,29,39]), where the tangent cones
at vertices are polarized according to ξ , and the result follows.

This choice of polarizing vector ξ can be done in the following way. First we consider the
vertex v0 of P that is furthest away from ε. Clearly, for v0 we have Cv0 = C�

v0 (where this
cone is polarized with respect to the vector ε − v0). Then, for any other vertex v and for each
edge vector αv,j satisfying 〈ε − v,αv,j 〉 > 0, we take the hyperplane H 0

v,j through v0 which is
perpendicular to αv,j . These hyperplanes intersect at v0 and each of them separates the whole
space R

d into two open regions. Let us denote by (H 0
v,j )

+ those regions that contain ε and take
a vector ξ starting at v0 and ending somewhere on the intersection⋂

v a vertex of P

⋂
j s.t.

〈ε−v,αv,j 〉>0

(
H 0

v,j

)+

(we can take for instance ξ = ε − v0). Then clearly 〈ξ,αv,j 〉 > 0 for all edge vectors αv,j satis-
fying 〈ε − v,αv,j 〉 > 0 (see Fig. 10). �
Remark 37. We have seen in the above proof that, choosing ε in an appropriate region, the
polytope decomposition formula (35) becomes the Lawrence–Varchenko relation. In addition, in
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Fig. 10.

some cases, we can also choose ε so that (35) becomes the weighted Brianchon–Gram formula
of [2]. Indeed, considering for each vertex v of P , the cone Cd

v generated by the inward normal
vectors to the facets through v, and taking the intersection

Pd :=
⋂

v vertex of P

Cd
v ,

then, whenever int(Pd ∩P) �= ∅, we can take ε ∈ int(Pd ∩P), and obtain mΔ = 0 and ϕ(ε,Δ) = 1
for every Δ in B. Then, with this choice of ε, (35) becomes the weighted Brianchon–Gram
formula:

1w
P =

∑
F

(−1)dimF 1w
CF

, (38)

where the sum is over all faces F of P .

5. The weighted Euler–Maclaurin formula

As an application of our polytope decompositions, we will give new weighted Euler–
Maclaurin formulas with remainder for the sum of the values of a smooth function f on the
integral points of a simple polytope P .
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5.1. Weighted Euler–Maclaurin for intervals

Let us first recall the weighted Euler–Maclaurin formula for this sum presented in [3] (see also
[23,27]). Let q be any complex number and let f be any Cm function on the real line (m � 1).
For integers a < b and k = �m/2�, the weighted sum of the values of f on the integral points of
the interval [a, b] is defined as∑

[a,b]
qf := qf (a) + f (a + 1) + · · · + f (b − 1) + qf (b)

= Q2k
q (D1)Q2k

q (D2)

b+h2∫
a−h1

f (x)dx

∣∣∣∣
h1=h2=0

+ Rm(f ), (39)

with

Rm(f ) := (−1)m−1

b∫
a

Pm(x)f (m)(x) dx, (40)

for

Pm(x) := 1

m!Bm

({x}), (41)

where Bm is the mth Bernoulli polynomial and {x} := x − �x� is the fractional part of x, where

D1 := ∂

∂h1
, D2 := ∂

∂h2
,

and where Q2k
q (S) denotes the truncation at the even integer 2k of the power series

Qq(S) = (q − 1)S + Td(S) = 1 +
(

q − 1

2

)
S +

∞∑
k=1

b2k

(2k)!S
2k

=
(

q − 1

2

)
S + S/2

tanh(S/2)
. (42)

Here Td is the classical Todd function defined by

Td(S) := S/
(
1 − e−S

) = 1 − b1S +
∞∑

k=1

b2k

(2k)!S
2k,

with bk the kth Bernoulli number [8].
Moreover, Pm(x) is given by

P2k+1(x) := (−1)k−1
∞∑ 2 sin(2nπx)

(2nπ)2k+1
(43)
n=1
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if m = 2k + 1 is odd, and by

P2k(x) := (−1)k−1
∞∑

n=1

2 cos(2nπx)

(2nπ)2k
(44)

if m = 2k is even.

Remark 45. The functions Q2k
q satisfy the following symmetry property

Q2k
q (S) = Q2k

1−q(−S). (46)

Indeed, Q2k
q (S) is a polynomial with constant coefficients, 1 + (q − 1

2 )S + terms of even degree
independent of q .

Equation (39), when applied to a Cm function of compact support, gives the weighted Euler–
Maclaurin formula for the half ray [a,∞):

∑
[a,∞)

qf := qf (a) + f (a + 1) + f (a + 2) + · · ·

= Q2k
q (D1)

∞∫
a−h1

f (x)dx

∣∣∣∣
h1=0

+ Rm(f ), (47)

where

Rm(f ) := (−1)m−1

∞∫
a

Pm(x)f (m)(x) dx and k =
⌊

m

2

⌋
. (48)

Moreover, for the half ray (−∞, a], we have

∑
(−∞,a]

qf := qf (a) + f (a − 1) + f (a − 2) + · · · (49)

and so, considering the function g defined by g(x) = f (a − x), we obtain

∑
(−∞,a]

qf =
∑

[0,∞)

qg = Q2k
q (D1)

∞∫
−h1

g(x)dx

∣∣∣∣
h1=0

+ (−1)m−1

∞∫
0

Pm(x)g(m)(x) dx

= Q2k
q (D1)

a+h1∫
f (x)dx

∣∣∣∣
h1=0

+ Rm(f ), (50)
−∞
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where now

Rm(f ) := (−1)m−1

a∫
−∞

Pm(x)f (m)(x) dx (51)

(here we used the parity and the 2π -periodicity of sin(x) and cos(x)). From (47) and (50) and
symmetry property (46), we obtain the Euler–Maclaurin formula for the whole real line R:

∑
R

′f :=
∑
x∈Z

f (x) =
∑

(−∞,0]
qf +

∑
[0,∞)

(1−q)f =
∫
R

f (x)dx + (−1)m−1
∫
R

Pm(x)f (m)(x) dx.

(52)

5.2. Twisted weighted Euler–Maclaurin formulas for intervals

We will now consider the twisted weighted sum for a half ray

∑
n�0

qλnf (n) = qf (0) +
∞∑

n=1

λnf (n), (53)

where λ �= 1 is a K th root of unity with K a positive integer. Let Qm,λ be the distributions defined
recursively in [23] by

Q0,λ(x) := −
∑
n∈Z

λnδ(x − n)

and

d

dx
Qm,λ(x) = Qm−1,λ(x) and

K∫
0

Qm,λ(x) dx = 0.

Moreover, let us consider the polynomials defined in [3] by

Nk,λ
q (S) :=

(
q + λ

1 − λ

)
S + Q2,λ(0)S2 + Q3,λ(0)S3 + · · · + Qk,λ(0)Sk,

where λ �= 1 is a root of unity.
Since

d

dx
1[n,n+1)(x) = δ(x − n) − δ

(
x − (n + 1)

)
,

we have

d

dx

(∑
λn1[n,n+1)(x)

)
= λ − 1

λ

∑
λnδ(x − n) = 1 − λ

λ
Q0,λ(x),
n∈Z n∈Z
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implying that

Q1,λ(x) = λ

1 − λ

∑
n∈Z

λn1[n,n+1).

Note that

K∫
0

Q1,λ(x) dx = λ

1 − λ

K−1∑
n=0

λn = 0.

On the other hand, integrating by parts, we have

∞∫
0

Q1,λ(x)f ′(x) dx = λ

1 − λ

∞∑
n=0

n+1∫
n

λnf ′(x) dx = − λ

1 − λ
f (0) + λf (1) + λ2f (2) + · · ·

and so,

qf (0) +
∑
n�1

λnf (n) =
(

q + λ

1 − λ

)
f (0) +

∞∫
0

Q1,λ(x)f ′(x) dx

=
(

q + λ

1 − λ

)
f (0) − Q2,λ(0)f ′(0) + Q3,λ(0)f ′′(0) − · · · + (−1)k−1Qk,λ(0)f (k−1)(0)

+ (−1)k−1

∞∫
0

Qk,λ(x)f (k)(x) dx.

Then, since

(−1)m−1f (m−1)(0) =
(

∂

∂h

)m
∞∫

−h

f (x) dx

∣∣∣∣
h=0

,

we obtain the following twisted Euler–Maclaurin formula:

Proposition 54. (See [3,23].) Let k > 1 and let f ∈ Ck(R) be compactly supported. Then

∑
n�0

qλnf (n) = Nk,λ
q

(
∂

∂h

) ∞∫
−h

f (x) dx

∣∣∣∣
h=0

+ (−1)k−1

∞∫
0

Qk,λ(x)f (k)(x) dx. (55)

Remark 56. If, for λ �= 1, we write λ = e2πij/K , then, by the Poisson formula, we have

Q0,λ(x) = −
∑

λnδ(x − n) = −
∑

e2πi(r+ j
K

)x .
n∈Z r∈Z
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Hence, for m > 1, we obtain

Qm,λ(x) = − 1

(2πi)m

∑
r∈Z

e2πi(r+ j
K

)x

(r + j
K

)m
, (57)

and so

Qm,λ(0) = − 1

(2πi)m

∑
r∈Z

1

(r + j
K

)m

is the (m − 1)th coefficient of the Taylor series expansion of

1

1 − e2πi
j
K

−s
= 1

1 − λe−s

at s = 0. Note that the derivative of 1

1−e
2πi

j
K

−s
with respect to s is equal to

1

4 sin2 (
πj
K

− s
2i

)
= 1

4π2

∑
r∈Z

1

(r + j
K

− s
2πi

)2

(since π2

sin2 πz
= ∑

r∈Z
1

(r+z)2 ) and higher order derivatives are obtained differentiating this series
expansion. Consequently, considering the operators

T(λ,S) := S

1 − λe−S

defined in [10], we have that Nk,λ
q (S) is the truncation at the integer k of the power series

Nλ
q(S) :=

(
q + λ

1 − λ

)
S − S

1 − λ
+ T(λ,S) = (q − 1)S + T(λ,S).

From (57) it is clear that the operators Nm,λ
q satisfy the following symmetry property

Nm,λ−1

1−q (S) = Nm,λ
q (−S). (58)

Remark 59. If, for λ = 1, we define

Nk,1
q (S) := Q2�k/2�

q (S) and Qk,1 := Pk,

then formula (55) becomes formula (47) and so it is still valid. Note that, if λ �= 1, Nk,λ
q (S) is a

multiple of S and that, if λ = 1, then Nk,λ
q (S) = 1 + a multiple of S. Moreover, still when λ = 1,

symmetry property (58) becomes property (46).
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5.3. Weighted Euler–Maclaurin formulas for cones

For a subset J ⊂ {1, . . . , d}, let SJ be the standard J -sector SJ := {x ∈ R
d | xj � 0 for j ∈ J }.

Iterating Eqs. (47) and (52), we obtain an Euler–Maclaurin formula for SJ (J �= ∅) and a Cm

function of compact support f . Indeed, considering J = {j1, . . . , jn} and 1w
SJ

, the weighted char-
acteristic function for the J -sector defined in Section 4.3,∑

SJ ∩Zd

wf :=
∑

xj ∈Z+,j∈J

xj ∈Z,j /∈J

(
1w

SJ
f

)
(x1, . . . , xd)

=
∏
j∈J

Q2k
qj

(Dj )

∫
SJ (hJ )

f (x) dx

∣∣∣∣
hJ =0

+ RJst
m (f ), (60)

where Dj = ∂/∂hj , where hJ = (hj1 , . . . , hjn), where

SJ (hJ ) = {
x ∈ R

d
∣∣ xj � −hj , for j ∈ J

}
is the shifted J -sector, and where the remainder R

Jst
m (f ) is given by

RJst
m (f )

:=
∑
I⊆J

∑
R⊇J

R⊆{1,...,d}
R �=I

(−1)(m−1)(|R|−|I |) ∏
i∈I

Q2k
qi

(Di)

×
∫

SJ (hJ )

∏
i∈R\I

Pm(xi)
∏

j∈R\I

(
∂

∂xj

)m

f (x)dx

∣∣∣∣
hJ =0

.

If J = ∅ then SJ is the whole space R
d and so

∑
SJ ∩Zd

wf =
∫
Rd

f (x) dx + R∅
m(f ), (61)

with

R∅
m(f ) :=

∑
R �=∅

R⊆{1,...,d}

(−1)(m−1)|R|
∫
Rd

∏
i∈R

Pm(xi)
∏
j∈R

(
∂

∂xj

)m

f (x)dx. (62)

Let us now consider a regular integral J -sector CJ , the image of the standard J -sector by an
affine transformation

x → A
J
x := Mx + b, with M ∈ SL(d,Z) and b ∈ R

d .

Moreover, let us denote by CJ (h) the expanded sector, image of SJ (h) under this affine trans-
formation. For a Cm function of compact support f , let us consider g := A∗ f = f ◦ AJ . Then,
J
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∑
CJ ∩Zd

wf :=
∑

SJ ∩Zd

wg =
∏
j∈J

Q2k
qj

(Dj )

∫
SJ (hJ )

g(x) dx

∣∣∣∣
hJ =0

+ RJst
m (g),

and we obtain the Euler–Maclaurin formula for a regular J -sector

∑
CJ ∩Zd

wf =
∏
j∈J

Q2k
qj

(Dj )

∫
CJ (hJ )

f (x) dx

∣∣∣∣
hJ =0

+ RCJ
m (f ), (63)

where R
CJ
m (f ) = R

Jst
m (g).

5.4. Weighted Euler–Maclaurin formula for regular simple integral polytopes

From (63) we can write an Euler–Maclaurin formula for a regular integral polytope P with N

facets, by using a polytope decomposition from Theorem 4.1. First, we write P as an intersection
of N half spaces

P =
N⋂

j=1

Hi,

where Hi = {x ∈ R
d : 〈x,ηi〉 + λi � 0}, for i = 1, . . . ,N . The vector ηi is an inward normal

vector to the ith facet of P . Since P is a regular integral polytope the polarized tangent cones
C�

Δ are regular integral sectors. Moreover, we can write each tangent cone as

CΔ =
⋂

j∈JΔ

Hj ,

where JΔ = {j1, . . . , jn} is the index set of half spaces that contain CΔ (n = codimΔ). Then,
using Theorem 4.1, we have∑

P∩Zd

wf :=
∑

P∩Zd

1w
P f =

∑
Δ∈B

(−1)mΔϕ(ε,Δ)
∑

C�
Δ∩Zd

wf

=
∑
Δ∈B

(−1)mΔϕ(ε,Δ)

(
N∏

j=1

Q2k
qj

(Dj )

∫
C�

Δ(hΔ)

f (x) dx

∣∣∣∣
hΔ=0

+ R
C�

Δ
m (f )

)

=
N∏

j=1

Q2k
qj

(Dj )

∫
P(h1,...,hN )

f (x) dx

∣∣∣∣
h=0

+ SP
m(f ), (64)

where

SP
m(f ) :=

∑
(−1)mΔϕ(ε,Δ)R

C�
Δ

m (f ), (65)

Δ∈B
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where hΔ = (hj1 , . . . , hjn), and where the dilated polytope P(h1, . . . , hN) is obtained by shift-
ing the ith facet outward by a “distance” hi . Here we used the fact that, when multiplying the
differential operator in the first term of the right-hand side of (63) by any operator of the form
Q2k

qj
(Dj ), with j /∈ J , all that will remain of Q2k

qj
(Dj ) is the constant term 1, not affecting the

final result. Note that both
∑

P∩Zd
wf and

N∏
j=1

Q2k
qj

(Di)

∫
P(h1,...,hN )

f (x) dx

∣∣∣∣
h=0

do not depend on the choice of ε (that is, they do not depend on the Paradan region used).
Consequently, the remainder is also independent of this choice.

Remark 66. Alternatively, using the polytope decomposition of Theorem 4.2, we obtain a dif-
ferent expression for the remainder in (65). Indeed, we get

SP
m(f ) :=

∑
Δ∈B

(−1)mΔ+dimΔϕ(ε,Δ)R
C�

Δ
m (f ), (67)

where now the tangent cones CΔ are polarized with respect to the vectors ε − β(ε,Δ).

5.5. Weighted Euler–Maclaurin formula for simple integral polytopes

To extend formula (64) to simple integral polytopes we need to obtain an Euler–Maclaurin
formula for simple J -sectors. We can describe a simple J -sector, CJ , with J = {j1, . . . , jn} as
the intersection of n half spaces Hj in general position

CJ =
⋂
j∈J

Hj , (68)

where Hj := {x ∈ R
d | 〈x,ηj 〉 + λj � 0} for rational vectors ηj . Clearly, CJ is a polarized

tangent cone C�
ΔJ

along the affine space ΔJ defined by

ΔJ =
⋂
j∈J

∂Hj

(see (26)). Clearing denominators we can assume the ηj ’s to be integral and we impose the
normalizing condition that they are primitive elements of the dual lattice Z

d∗. Let TJ ⊆ R
d∗ be

the subspace generated by the vectors ηi and let ΞJ be the sublattice of Z
d∗ ∩ TJ generated by

these vectors. Then, to CJ we associate the finite abelian group

ΓJ := (
Z

d∗ ∩ TJ

)
/ΞJ . (69)

Alternatively, we can consider the projection πJ : Rd → R
d/ lin(ΔJ ), where lin(ΔJ ) is the vector

subspace of R
d parallel to ΔJ . Then we take the cone C̃J := πJ (CJ ) as well as the vectors

η̃j := πJ (ηj ). Note that these vectors are inward normals to the facets of C̃J . Let {α̃j1, . . . , α̃jn}
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be the dual basis in R
n (that is, such that 〈α̃k, η̃l〉 = δkl for k, l ∈ J ). The α̃j ’s are the projections

on R
d/ lin(ΔJ ) of the vectors αj defined in Section 4 (the generators of CΔJ

) and generate a
lattice �̂ in R

n which is a finite extension of Z
n (this extension is trivial exactly when CJ is

regular). Then ΓJ is equal to

ΓJ = Z
n∗/�̂∗. (70)

This group is trivial exactly when CJ is regular, and its order is |ΓJ | = |det �̂|.
Moreover, as it is shown in [23], γ → e2πi〈γ,x̃〉 defines a character of ΓJ , whenever x̃ ∈ �̂,

which is trivial iff x̃ ∈ Zn. Since, by a theorem of Frobenius, the average value of a character on
a finite group is equal to zero if the character is non-trivial, and equal to one otherwise, we have

1

|ΓJ |
∑
γ∈ΓJ

e2πi〈γ,x̃〉 =
{

1, if x̃ ∈ Z
n,

0, otherwise,

for all x̃ ∈ �̂. Consequently, for any compactly supported function f on R
d ,

∑
CJ ∩Zd

wf = 1

|ΓJ |
∑
γ∈ΓJ

∑
x

we2πi〈γ,x̃〉f (x), (71)

where we sum over all

x = y +
∑
j∈J

mjαj (72)

with y ∈ ΔJ ∩ Z
d , j ∈ J and mj ∈ Z

+, and where x̃ := πJ (x). Moreover, the cone CJ is the
image of the standard J -sector SJ under an affine map

t → A
J
t := UJ t + b, with b ∈ R

d, (73)

where, for j ∈ J , UJ ∈ GL(d,Z) carries the vectors ej of the standard basis of R
d into the basis

{αj }j∈J , and the remaining basis vectors to an orthonormal basis of the space (span({αj }j∈J ))⊥.
Thus, |detUJ | = 1/|det �̂| = 1/|ΓJ |. On the other hand, since in (72) we have y ∈ Zd , we get

e2πi〈γ,x̃〉 =
∏
j∈J

λ
mj

j , with λj = e2πi〈γ,α̃j 〉,

and so the inner sum in (71) becomes

∑
j∈J

∑
y∈ΔJ ∩Zn

∑
mj �0

qj

(∏
l∈J

λ
ml

l

)
f

(
y +

∑
l∈J

mlαl

)

=
∑
j∈J

∑
1�i�d

∑
mi∈Z

∑
mj �0

qj

(∏
l∈J

λ
ml

l

)
g(m1, . . . ,md), (74)
i /∈J
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where g = f ◦ AJ . Iterating the twisted remainder formula for the half ray (55) and the Euler–
Maclaurin formula (52) for the whole real line, the sum in (74) can be written as

∏
j∈J

N
k,λj
qj

(
∂

∂hj

) ∫
SJ (hj1 ,...,hjn )

gJ (t) dt

∣∣∣∣
h=0

+ Rstd
qJ ,k(λj1 , . . . , λjn;g), (75)

where again SJ (hj1 , . . . , hjn) = {(t1, . . . , td ) | tj � −hj for j ∈ J } denotes the dilated standard
J -sector, and where, for qJ := (qj1 , . . . , qjn), the remainder is given by

Rstd
qJ ,k(λγ,j1 , . . . , λγ,jn;g)

:=
∑
I⊂J

∑
R⊇J

R⊆{1,...,d}
R �=I

(−1)(k−1)(|R|−|I |)

×
∏
i∈I

N
k,λγ,i
qi

(
∂

∂hi

) ∫
SJ (hj1 ,...,hjn )

∏
j∈R\I

Qk,λγ,j
(tj )

∏
j∈R\I

(
∂

∂tj

)k

g(t) dt

∣∣∣∣
h=0

, (76)

with g = f ◦ A. Let us now change variables by the inverse transformation of (73). Then, the
Euler–Maclaurin formula in (71) becomes

∑
CJ ∩Zd

wf =
∑
γ∈ΓJ

∏
j∈J

N
k,λγ,j
qj

(
∂

∂hj

) ∫
CJ (hJ )

f (x) dx

∣∣∣∣
hJ =0

+ R
CJ

qJ ,k(f ), (77)

where λγ,j := e2πi〈γ,α̃j 〉, where, for hJ := (hj1 , . . . , hjn), CJ (hJ ) denotes the image of the
dilated standard J -sector SJ (hJ ) under the affine transformation AJ of (73), and where the
remainder R

CJ

qJ ,k(f ) is given by

R
CJ

qJ ,k(f ) :=
∑
γ∈ΓJ

∑
I⊂J

∑
R⊇J

R⊆{1,...,d}
R �=I

(−1)(k−1)(|R|−|I |) ∏
i∈I

N
k,λγ,i
qi

(
∂

∂hi

)

×
∫

CJ (hJ )

∏
j∈R\I

Qk,λγ,j

((
U−1

jk

)
k
(x − b)

) ∏
j∈R\I

Dk
j f (x) dx

∣∣∣∣
h=0

, (78)

with (U−1
jk )k the j th row of U−1

J and with Dj the directional derivative along the j th column

vector of U−1
J . Note that, when j ∈ J , this is the directional derivative along αj .

Let now P be a simple polytope and choose an ε on some Paradan region. Again we write P

as an intersection of half spaces

P =
N⋂

Hi.
i=1



410 J. Agapito, L. Godinho / Advances in Mathematics 214 (2007) 379–416
For each affine space Δ generated by a face of P there is a JΔ-sector, CJΔ (JΔ ⊂ {1, . . . ,N}),
equal to the polarized tangent cone of Δ, C�

Δ (cf. (27)), and so we can associate a finite group
ΓΔ to Δ by simply taking the corresponding group ΓJΔ . Let P(h) denote the dilated polytope
obtained by shifting the ith facet by a distance hi . Our decompositions of P(h) involve dilated
sectors but now, dilating the facets of P outward results in dilating some of the facets of C�

Δ

inward and some outward. Explicitly, taking JΔ = {j1, . . . , jnΔ} such that C�
Δ = CJΔ (see (68)),

the inward normal vector to the j th facet of C�
Δ (j ∈ JΔ) is

η
�
Δ,j =

{
ηj , if α

�
Δ,j = αΔ,j ,

−ηj , if α
�
Δ,j = −αΔ,j ,

where ηj is the inward pointing primitive normal vector to the j th facet of P . Note that, consid-
ering the projection πΔ : Rd → R

d/lin(Δ), the vectors {πΔ(αΔ,j )}j∈JΔ , are the dual basis in R
nΔ

to {πΔ(ηj )}j∈JΔ . The dilated sectors that appear on the right side of the polytope decompositions

of P(h) are then C�
Δ(h

�
Δ,j1

, . . . , h
�
Δ,jnΔ

), where

h
�
Δ,ji

=
{

hji
, if α

�
Δ,ji

= αΔ,ji
,

−hji
, if α

�
Δ,ji

= −αΔ,ji
.

Moreover, the roots of unity that appear in the Euler–Maclaurin formula for C�
Δ are

λ
�
γ,j,Δ = e

2πi〈γ,α̃
�
Δ,j 〉 =

{
λγ,j,Δ, if α

�
Δ,j = αΔ,j ,

λ−1
γ,j,Δ, if α

�
Δ,j = −αΔ,j ,

where α̃
�
Δ,j = πΔ(α

�
Δ,j ).

Hence, for any compactly supported function in R
d of type Cdk (for an integer k � 1), the

decomposition formula of Theorem 4.1 applied to P(h) along with formula (77) give

∑
P∩Zd

wf =
∑
Δ∈B

(−1)mΔϕ(ε,Δ)
∑

C�
Δ∩Zn

wf

=
∑
Δ∈B

(−1)mΔϕ(ε,Δ)
∑

γ∈ΓΔ

∏
j∈JΔ

N
k,λ

�
γ,j,Δ

q
�
j

(
∂

∂h
�
Δ,j

) ∫
C�

Δ(h
�
JΔ

)

f (x) dx

∣∣∣∣
h

�
JΔ

=0
+ RP

w,k(f ),

(79)

where h
�
JΔ

= (h
�
j1

, . . . , h
�
jnΔ

) and where

RP
w,k(f ) :=

∑
Δ∈B

(−1)mΔϕ(ε,Δ)R
C�

Δ

q
�
JΔ

,k
(f ). (80)
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Remark 81. Using the polytope decomposition of Theorem 4.2 we obtain∑
P∩Zd

wf =
∑
Δ∈B

(−1)mΔ+dimΔϕ(ε,Δ)
∑

C�
Δ∩Zn

wf

=
∑
Δ∈B

(−1)mΔ+dimΔϕ(ε,Δ)
∑

γ∈ΓΔ

∏
j∈JΔ

N
k,λ

�
γ,j,Δ

q
�
j

(
∂

∂h
�
Δ,j

) ∫
C�

Δ(h
�
JΔ

)

f (x) dx

∣∣∣∣
h

�
JΔ

=0

+ RP
w,k(f ), (82)

with h
�
J = (h

�
j1

, . . . , h
�
jnΔ

) and

RP
w,k(f ) :=

∑
Δ∈B

(−1)mΔ+dimΔϕ(ε,Δ)R
C�

Δ

q
�
JΔ

,k
(f ), (83)

where now the tangent cones CΔ are polarized by the vectors ε − β(ε,Δ).

Let us now analyze some properties of the groups ΓΔ. These generalize Claims 61, 62 and
65 in [23] to spaces Δ ∈ B of arbitrary dimensions. Their proofs follow easily from the ones in
[23] but we will include them for completeness. For that, we will first introduce some necessary
notation. If Δ and Δ̃ are two elements of B with Δ ⊆ Δ̃, then JΔ̃ ⊆ JΔ and we have an inclusion
TJ

Δ̃
⊆ TJΔ . Moreover, if ΞΔ and ΞΔ̃ are the lattices in R

d∗ generated by the vectors ηj with
j ∈ JΔ and JΔ̃, respectively, we have TJ

Δ̃
∩ ΞΔ = ΞΔ̃. Hence, the natural map from ΓΔ̃ to ΓΔ

is one-to-one and provides a natural inclusion map ΓΔ̃ ⊆ ΓΔ. Therefore, we can define a subset

Γ
�
Δ of ΓΔ by

Γ
�
Δ := ΓΔ

∖ ⋃
Δ̃∈B|Δ�Δ̃

ΓΔ̃

and then

ΓΔ =
⊔

Δ̃∈B|Δ⊆Δ̃

Γ
�

Δ̃
. (84)

Claim 85. If γ ∈ ΓΔ and j ∈ JΔ, then λγ,j,Δ′ is the same for all Δ′ ⊂ Δ.

Claim 86. If γ ∈ ΓΔ, Δ′ ⊂ Δ and j ∈ JΔ′ \ JΔ, then λγ,j,Δ′ = 1.

Claim 87. If γ ∈ Γ
�
Δ and j ∈ ΓΔ, then λγ,j,Δ �= 1.

Proof. Let γ ∈ ΓΔ be represented by

γ̃ =
∑

bi η̃i ∈ Z
nΔ∗
i∈JΔ
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for some bi ∈ R (see (70)). Let Δ′ ⊂ Δ and let us identify R
d/ lin(Δ) with the orthogonal com-

plement (lin(Δ))⊥ in R
d/ lin(Δ′). Since the α̃Δ′,j ’s are dual to the η̃j ’s for j ∈ JΔ′ , we have

〈γ̃ , α̃Δ′,j 〉 =
{

bj , if j ∈ JΔ,

0, if j ∈ JΔ′ \ JΔ.

Consequently,

λγ,j,Δ′ =
{

e2πibj , if j ∈ JΔ,

1, if j ∈ JΔ′ \ JΔ

is independent of Δ′ and is equal to 1 if j ∈ JΔ′ \ JΔ, and so Claims 85 and 86 follow.
Let j ∈ JΔ. If λγ,j,Δ := e2πibj = 1, then bj ∈ Z and so

γ̃ =
∑

i∈JΔ\{j}
bi η̃i (88)

also represents γ . Let Δ̃ ⊃ Δ be the element of B such that JΔ̃ = JΔ \{j}. Then, by (88), γ ∈ ΓΔ̃,
and Claim 87 follows. �

With these properties we can further simplify formula (79). First, note that either h
�
Δ,j = hj ,

λ
�
γ,j,Δ = λγ,j,Δ and q

�
j = qj , or h

�
Δ,j = −hj , λ

�
γ,j,Δ = λ−1

γ,j,Δ and q
�
j = 1 − qj , and so, by

symmetry property (58), this gives

N
k,λ

�
γ,j,Δ

q
�
Δ,j

(
∂

∂h
�
Δ,j

)
= N

k,λγ,j,Δ
qj

(
∂

∂hj

)
. (89)

Moreover, from Claim 86, we have λγ,j,Δ = 1 for j /∈ JΔ, implying that

N
k,Δγ,j,Δ
qj

(
∂

∂hj

)
= 1 + powers of

∂

∂hj

.

Since, still for j /∈ JΔ, the cone C�
Δ(h

�
JΔ

) is independent of hj , (79) is equal to

∑
Δ∈B

(−1)mΔϕ(ε,Δ)
∑

γ∈ΓΔ

N∏
j=1

N
k,λγ,j,Δ
qj

(
∂

∂hj

) ∫
C�

Δ(h
�
J )

f (x) dx

∣∣∣∣
h=0

+ RP
w,k(f ), (90)

where N is the number of facets of P . Defining

Nk
γ,Δ :=

N∏
j=1

N
k,λγ,j,Δ
qj

(
∂

∂hj

)
, for γ ∈ ΓΔ (91)

we have, from Claim 85, that

Nk
γ,Δ = Nk

˜ whenever γ ∈ ΓΔ̃ and Δ ⊂ Δ̃. (92)

γ,Δ
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Consequently, using (84), formula (90) can be written as

∑
Δ∈B

(−1)mΔϕ(ε,Δ)
∑

γ∈ΓΔ

Nk
γ,Δ

∫
C�

Δ(h
�
JΔ

)

f (x) dx

∣∣∣∣
h=0

+ RP
w,k(f )

=
∑
Δ∈B

(−1)mΔϕ(ε,Δ)
∑
Δ̃∈B

∑
γ∈Γ

�

Δ̃

Nk

γ,Δ̃

∫
C�

Δ(h
�
JΔ

)

f (x) dx

∣∣∣∣
h=0

+ RP
w,k(f )

=
∑
Δ̃∈B

∑
γ∈Γ

�

Δ̃

Nk

γ,Δ̃

∑
Δ⊂Δ̃

(−1)mΔϕ(ε,Δ)

∫
C�

Δ(h
�
JΔ

)

f (x) dx

∣∣∣∣
h=0

+ RP
w,k(f ). (93)

In the interior summation on the left we can add similar terms that correspond to spaces Δ not
included in Δ̃. Indeed, these make a zero contribution for the following reason. If Δ is not a
subset of Δ̃ there exists a j ∈ JΔ̃ \ JΔ. Then, since j /∈ JΔ, the cone C�

Δ(h
�
JΔ

) does not depend

on hj . On the other hand, since γ ∈ Γ
�

Δ̃
and j ∈ JΔ̃, we know, from Claim 87, that λγ,j,Δ̃ �= 1

and so, by Remark 59, we have that N
k,λ

γ,j,Δ̃
qj

( ∂
∂hj

) (one of the factors of Nk

γ,Δ̃
) is a multiple of

( ∂
∂hj

).
Therefore, (93) is equal to

∑
Δ̃∈B

∑
γ∈Γ

�

Δ̃

Nk

γ,Δ̃

∑
Δ∈B

(−1)mΔϕ(ε,Δ)

∫
C�

Δ(h
�
JΔ

)

f (x) dx

∣∣∣∣
h=0

+ RP
w,k(f )

=
∑
Δ̃∈B

∑
γ∈Γ

�

Δ̃

Nk

γ,Δ̃

∫
P(h)

f (x) dx

∣∣∣∣
h=0

+ RP
w,k(f ), (94)

and we have our result:

Theorem 5.1. Let P be a simple polytope in R
d with N facets and let f ∈ Cdk

c (Rd) be a com-
pactly supported function on R

d for k � 1. Choosing an ε on a Paradan region determined by P ,
we obtain ∑

P∩Zd

wf =
∑
Δ∈B

∑
γ∈Γ

�
Δ

Nk
γ,Δ

∫
P(h)

f (x) dx

∣∣∣∣
h=0

+ RP
w,k(f ), (95)

where Nk
γ,Δ is the differential operator described in (91) and (92), and where the remainder

is given by (80). The operator Nk
γ,Δ is of order � k in each of the variables h1, . . . , hN with

N the number of facets of P . The remainder is a sum of integrals over sectors, of bounded
periodic functions times several partial derivatives of f of order no less than k and no more
than kd . Moreover, this remainder is independent of the choice of Paradan region of ε, and is a
distribution supported on the polytope P .
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Note that, even though the expression for the remainder (80) depends on ε, its final value is
independent of the choice of ε since both the left-hand side and the first term on the right-hand
side of (95) are independent of ε.

Remark 96. If we instead use the polytope decompositions of Theorem 4.2 the remainder in (95)
will be given by (83).

The Euler–Maclaurin formula (95) obtained in Theorem 5.1 is similar to the one presented

in [3]. However, in our formula, we allow the operators N
k,λγ,j,Δ
qj

that define Nk
γ,Δ and Nk

0 to
have different weights qj ∈ C while, in [3], the qj ’s are all equal to some fixed complex number
(in [23] this fixed weight is 1/2). Moreover, we obtain a different expression for the remainder
RP

w,k(f ) which is now given as a sum over the affine spaces generated by all the faces of the
polytope (not only over the vertices). In addition, the intermediate formulas that we obtain in (93)
(before adding terms with zero contribution in order to get an integral over the dilated polytope)
also involve sums of integrals over the polarized tangent cones to the polytope at the different
faces and not only at vertices.

Just as the Euler–Maclaurin formulas in [3,23] our formulas generalize to symbols that is, to
smooth functions f ∈ C∞(Rd) for which there is a positive integer N (called the order of the
symbol) such that, for every d-tuple of non-negative integers a := (a1, . . . , ad) there is a constant
Ca satisfying |∂a1

1 · · · ∂ad

d f (x)| � Ca(1 + |x|)N−a . In particular, for a polynomial function p

in R
d , we obtain the following exact formula

∑
P∩Zd

wp =
∑
Δ∈B

∑
γ∈Γ

�
Δ

Nk
γ,Δ

∫
P(h)

p(x) dx

∣∣∣∣
h=0

(97)

(where we choose k � degp + d + 1). From Remark 56 we see that this is a weighted version of
the exact Euler–Maclaurin formula obtained in [10], which is obtained from (97) by making all
the weights in w equal to 1.
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