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Abstract

A guantum deformation of the conformal algebra of the Minkowskian spacetini@-nl) dimensions is identified with
a deformation of thé4 + 1)-dimensional AdS algebra. Both Minkowskian and AdS first-order non-commutative spaces are
explicitly obtained, and the former coincides with the well-knomaMinkowski space. Next, by working in the conformal
basis, a new non-commutative Minkowskian spacetime is constructed through the full (all orders) dual quantum group spanned
by deformed Poincaré and dilation symmetries. Although Lorentz invariance is lost, the resulting non-commutative spacetime is
guantum group covariant, preserves space isotropy and, furthermore, can be interpreted as a generalizatidfimafdteski
space in which a variable fundamental scale (Planck length) appears.
0 2003 Elsevier B.MOpen access under CC BY license.
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1. Introduction with the Planck length. In fact, these results can be

seen as different attempts to develop new approaches

One of the most relevant applications of quan- to physics at the Planck scale, an idea that was early

tum groups in physics is the construction of de- presented in [6]. A further physical development of
formed spacetime symmetries that generalize classicalthe «-Poincaré algebra has led to the so-called dou-
Poincaré kinematics beyond Lie algebras, such as thebly special relativity (DSR) theories [7—11] that ana-
well-known «-Poincaré [1-3] and the quantum null- lyze the fundamental role assigned to the deformation
plane (or light-cone) Poincaré [4,5] algebras. For all parameter/Planck length as an observer-independent
these cases, the deformation parameter has been intertength scale to be considered together with the usual
preted as a fundamental scale which may be related observer-independent velocity scalen such a man-

ner that Lorentz invariance is preserved [12-14].
 E-mail addresses angelb@ubu.es (A. Ballesteros), From a dual quaptum grou'p pfarspect.ive, when
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are considered, the non-commutativeMinkowski variance is lost. Moreover, this new non-commutative
spacetime arises [15-18]. Some field theories on spacetime generalizasMinkowski space since it is
such a space have been proposed (see [19] anddefined through Lie algebra commutation rules whose
references therein) and its role in DSR theories has structure constants are the quantum group entries as-
been analyzed [20]. More general hon-commutative sociated to the Lorentz sector.

Minkowskian spacetimes can be expressed by means

of the following Lie algebra commutation rules [21]:

[#4, %] = %(a”)?” —a"f"), (1)

2. Quantum AdSalgebra

Let us consider the quantum deformation [22] of
wherea” is aconstant four-vector in the Minkowskian  the conformal algebra of the8 4+ 1)D Minkowskian
space. spacetime, U, (s0(4, 2)) = U.(CM3t1), which is

In the context ofk-deformations, which are un-  spanned by the generators of rotatiohs time and
derstood as quantum algebras with a dimension- space translations,,, boostsk;, conformal transfor-
ful deformation parameter related with the Planck mationsC, and dilationsD. Hereafter we assume
length, Poincaré symmetry should be taken only as ¢ =4 =1 (w = 1 in [22]), sum over repeated in-
a first stage that should be embedded in some way dices, Latin indices, j,k = 1,2,3, and Greek in-
within more general structures such as deformed dicesu,v = 0,1, 2, 3. The non-vanishing deformed
conformal or AdS/dS symmetries, that is, quantum commutation rules and coproductﬁU{(CM3+1) are
s0(4, 2)/s0(5, 1) algebras. Thus, it is natural to think  given by
that a non-commutative Minkowskian space of the
form (1) could also be either embedded or generalized. [ /i, Jj1 =¢ijcJk. Ui, Kj1 = ¢iji K,

In this respect, by considering the simplest quantum .. Pj1=s¢iji Pr, (Ki, Kjl1=—¢ijx i,

deformation of the Weyl-Poincareé algebra (isometries =~ p .
plus dilations),U; WWP) [22], a new DSR proposal [Ki, Pol =€ 2R, (D, Fil = £i,

has been presented in [23]. Such a quantum algebrag g p.q_ efo—1 (D. Po] = 1-eh

. . S i il= , , Pol = > (2)
arises as a Hopf subalgebra of a ‘mass-like’ quantum
deformationU; (so(4, 2)) of the conformal algebra of [Ji. C;1= £k Cr. [D.C;]=—C;,
the (3+ 1)D Minkowskian space. 5

The aim of this Letter is to analyze the first- [D, Col = —Co+ D%, [Po, Col = —2D,
order (in both the deformation parameter and non- [X;, Cg] = C;, [K;, Ci]=Co—tD?,
commutative coordinates) quantum group dual to g ‘ ‘

U.(s0(4,2)), to construct the complete (all orders) [Co. Cil = —t(DCi + Ci D),
Hopf algebra dual td/, )WP) and, afterwards, to ex-  [Po, Cil=¢€ ""°K; + K;e ",
tract some physicl?l imﬁlications of the associated non- [ p; Cj1=2(8;jD — &ijiJi),
commutative Minkowskian spacetime.

In the next section we identify the deformation [Co, Pi]=2Ki +7(DF; + P D), (3)
U (s0(4, 2)), formerly obtained in a conformal basis, A(py)=1® Py+ Po®1,
with a (4 + 1)D quantum AdS algebra at both alge-
bra and dual group levels. By using the Hopf sub-
algebra spanned by the deformed Poincaré and dila-A(J;)) =1® J; + J; ® 1,
tion generators we compute in Section 3 the associ- AD)=1® D+ D e,
ated dual quantum group by making use of the quan- P
tum R-matrix. The last section is devoted to derive AK)=1®Ki+Ki®l—1D®@e"0h,
the physical consequences conveyed by the result-A(Cg) =1® Co+ Co® e * 7o,
ing non-commutative Minkowskian spacetime which ¢,y — 1@ ¢; + ¢; @ e + 2t D @ e THK;
is covariant under quantum group transformations and 5 o Corp
does preserve space isotropy, although its Lorentz in- —t3(D°+D)®e TP, (4)

AP)=1® P, + P, @€/,
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The deformation parameter will be identified with
the Planck lengtht ~ L, [23].

Some properties ot/ (so(4, 2)) can be unveiled
by studying its Lie bialgebra structure, that is, the
first-order relations in the deformation parameter,
generators and dual coordinates. If we write the
deformed coproduct as formal power series in,

) o
A= Z Ay = Z Tk5(k),
k=0 k=0

the cocommutato$ is given by the skewsymmetric
part of the first-order deformation,

®)

(6)

wheres (a ® b) = b ® a. In our case, from (4) we find
that

1) =3(1) —0 03(1),

3(Po) =0, 8(P;)) =t P; A Py,
8(Ji)=0, 8(D)=—tD A Py,
8(Ki)=—tDAP;, 8(Co) =—1tCo A Po,
8(Ci) =—1C; A Po+2tD AN K, (7

where A denotes the skewsymmetric tensor product.
Next, Lie bialgebra duality [24,25] leads to the dual
commutation rules in the form

sy =i ave = [.55]=£%5. (9

whereY; is a generic generator arid its associated
dual quantum group coordinate fulfillingy'|Y;) =

8'.. Therefore if we denote byit, 0l & d, ¢} the
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the full (all orders) dual quantum group o, WWP),
and the associated non-commutative spacetime will
generalize the first-order relations (10).

We stress that all the above expressions can be
rewritten in terms of deformed symmetries of the
(44 1)D AdS spacetimeAdS*. Let Lap (A <
B)andT4 (A,B=0,1,...,4) be the Lorentz and
translations undeformed generators obeying

[Lap,Lcpl=nacLep —napLpc —ncLap
+nspLac,
[Lag,Tcl=nacTB —npcTa,

1
[Ta, Tl = —FLAB,

such thaty = (n4p) = diag(—1,1,1,1,1) is Lorentz
metric associated teo(4, 1), Log are the four boosts
in AdS**! and R is the AdS radius related with
the cosmological constant byt = 6/R?. Then the
following change of basis & 1, 2, 3):

1 1

To=—=—(Co+ Po),
0 2R( o+ Po)

1
Tiv1= E(Cl‘ + P),

(11)

1
Lo1= E(CO — Po),

1
Loiy1=Ki;, Lij+1= E(Ci - P),
Loz = Js, Lyy=—J>,
L3sa=J1, (12)

connect€ M3+1 with AdS*! and can be taken in the
deformed case as a way to identify (2)—(4) as the quan-
tum deformationU, (so(4, 2)) = U, (AdS*?1). The

dual non-commutative coordinates of the generators dual Lorentzi4? and spacetimé” quantum AdS-

{P..Ji, Ki, D, C,}, respectively, we obtain from (7)
the following non-vanishing first-order quantum group
commutation rules:

[0, %] =—2#!,  [2%d]=1d,
[£0, e =zem,
[d,2]=-7&, [d,E]=2r¢" 9)

The non-commutative Minkowskian spacetime is then
characterized by

[0, %)= —&!,  [¢',%/]=0, (10)

which coincides with the usual-Minkowski space
(1) with a* = (1,0,0,0), provided thatr = —1/«.

Nevertheless, in the next section we shall compute [7*, 7] = —zR? %/,

coordinates can also be written in terms of the con-
formal ones as

%= —R(+3%, =Rd,
l’:i+l — R(éi +)2i), iOlz 60 _)20’

jO.+L _ gi FLitl _ ai _ 4

c —Xx,
j23_ 43 j24 _ _§2
[34=0t. (13)
Hence the (first-order) non-vanishing commutation
rules for the non-commutativddS* spacetime turn

out to be
[;0,; ] = —TRi, [;O’ fi+1] — _¢RLi+1,

(14)
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which involve both the boodt®*1 and the rotation
[%i+1 quantum coordinates. A Lie bialgebra contrac-
tion analysis [26] shows that the contractiBn— oo
from U, (AdS*1) and its dual to @4 + 1)D quantum
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the completd/; (so(4, 2)) structure (in both conformal

and AdS bases) precludes a clear identification of
the non-commutative spacetime coordinates as these
would appear as arguments of functions that also

Poincaré algebra/group is well defined whenever the depend on many other coordinates. In this respect see,

deformation parameter is transformedras> t R?.

for instance, [34] for the construction of a quantum

Therefore, the maps (12) and (13) can be used AdS space from g-S0(3, 2) of Drinfeld—Jimbo type.

to express the same quantum deformatiosagfl, 2)
within  two physically different frameworks:
U, CM3Y) & U, (AdS*1). In fact, such a quantum
group relationship might further be applied in order to
analyze the role that quantum deformationsag#l, 2)
could play in relation with the “AdS-CFT correspon-
dence” that relates local QFT ohdS“—D+1 with a
conformal QFT on the (compactified) Minkowskian
spacetimeCM@=2+1 [27-29] (in our case up to
d =5). We also remark that a more general (three-
parameter) quantum deformation of3,2) can be
found in [30], where the connection between the cor-
responding quanturdM?*! and AdS*t! algebras is
explicitly described.

3. Quantum Weyl-Poincar é group

The classical--matrix associated td/; (so(4, 2))
reads

r=—tDAPy=tR’TiATo+TRTLALo1, (15)

which satisfies the classical Yang-Baxter equation
[31]. ThereforeU;(so(4, 2)) is a triangular (or twist-
ing) quantum deformation, different to the Drinfeld—
Jimbo type, which is supported by the Hopf subalge-
bra spanned byD, Po}. The universalZ -matrix for
the latter can be written as [32]

T = elDeiPo, (16)
while the’R-matrix reads
R =exp(tPo® D)exp(—tD @ Po). a7

Since this element is also a universatmatrix for
bothU,; WP) C U, (s0(4, 2)) [22], the corresponding
dual quantum groups can be deduced explicitly by
applying the FRT procedure [33]. This requires a
matrix representatio® for (17) as well as to choose
a matrix elemenf of the quantum group with non-
commutative entries. However, the consideration of

Since we are mainly interested in the structure
and physical consequences of the associated non-
commutative spacetime coordinates (dual to the trans-
lation generators), we shall consider here the FRT con-
struction for the Weyl-Poincaré Hopf subalgebra in
the conformal basis.

A deformed matrix representation for the defining
relations of U; WP) (2) can be obtained from the
6 x 6 matrix representation #dS*"1; namely,

Pt
0=3

+ e20 — e21,

(eoo — ep1+ €10 — e11) — eg2 — e12

Pi=e0it2+e1i+2+ei120—¢it21,
D = ep1+ eio,
(18)

whereegp, (a,b=0,...,5) is the matrix with entries
84». We construct the quantum group eleméhtin
such arepresentation by considering the following ma-
trix product, which is consistent with the exponential
form of the universal-matrix (16) for the carrier sub-
algebra{ D, Pp}:

T = e/Pei*Fogt Prei*Pagi sl 1l ol *Is

Ji = —¢€ijk ejy2,k+2, Ki=ezit2+eiy22,

x & K1gi"K2gfKs
& B o 1 T2 s
Br G- P01 P2 P3
20 20 A5 A9 A9 A9
s Ay oaroar oAl @9
2 32 A2 A2 A% A3
3 3% A A3 A3 AB
where the non-commutative entries are the quantum

Minkowskian coordinateg* and
~ 1 5
a+ =coshd + Eed()@p?“ + 'L')eo),

Yy = edleA‘j,



T N S R
L= sinhd + Eed(x“x“ + TXO),

Av = An (@ &),
AAleApg =gl xA/L =gw)?”,
( ) diag—1,1,1,1). (20)
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and antipodes(T)) = T~! determine the Hopf algebra
structure of the quantum Weyl—Poincaré group dual to
U.(WP), which is the restrictiod”* = 0 of that dual
to U, (CM3H1),
We remark that the commutation relations (9) (with
= 0) can be recovered from (23) by only taking the

Note that quantum rotation and boost coordinates are flrst order in all the quantum coordinates (notice that

Jomtly expressed through the formal Lorentz entries
"
The representation (18) gives rise to a quantum
R-matrix (17) with dimension 36< 36. SincePO3
vanishesR reads

1
- <1®1+IP0®D+§r2P02®D2>

1
x (1@ 1-tD® Py+ ETZDZ ® P02>, (21)
wherel is the 6x 6 unit matrix. Next in pursuing the
FRT program we impose that
RTiT>» = ToTiR, (22)

whereTy =T ® 1 and T = 1 ® T. This matrix
equation provides the commutation rules among all the
entries in (19), which by taking into account (20) can
then be reduced to

[d.A*]=0, [ AY]=
[d, %] =(shed — AL),

[#%, 2] = T (AgH — AfRY),

0. [4%. A4]=0,

(23)
where the quantum Lorentz entrié%‘ are given by
A9 = coshé! coshé? coshé?,
A} =sinh&! coshé? coshé®,
A3 =sinhé? coshé?®,

A3 =sinhé3. (24)

The coproduct for all the entries ifi is just A(T) =
T ®T. By using again (20) the coproduct fof, £+,
Al'} can consistently be found:

Ad)=d®1+1®d,
AE) =t @e !+ Al @R,
A(A) = Al @ A, (25)

which is a homomorphism of (23). Thus the expres-
sions (23)—(25) together with the counitT) = 1

in this case,AO -1 andA’ — &),

Recall that the FRT approach was also used in
the construction of the null-plane quantum Poincaré
group [5]. However, ax-Poincaré has no universal
R-matrix, the associated quantum group was obtained
[15-18] through a direct quantization of the semiclas-
sical Poisson-Lie algebra coming from thé>oincaré
classical-matrix.

4. A new non-commutative Minkowskian
spacetime

Now we focus our attention on some structural
physical consequences of the new non-commutative
spacetime that comes out from (23)

[#, 2] = T (AgE)3* — AL (©)R"), (26)
which can be seen as a generalization of (1) through
at — Al (&).

Firstly, we stress that sinoég (24) only depend on
the quantum boost parameters and the quantum rota-
tion coordinate®’ do not play any role in the space-
time non-commutativity, the isotropy of the space is
thus preserved. Furthermore, by taking into account
the commutation rules (23)&8 can be considered to
play the role of the structure constants within the quan-
tum space (26). In fact, the quantum boost coordinates
&' can be regarded as scalars (usual commutative pa-
rameters) within the quantum Weyl-Poincaré group.
From this viewpoint, relations (26) would define a Lie
algebraic non-commutative spacetime of the type (1).
However, this situation changes in the full quantum
conformal group since, as shown in (8),and A5 no
longer commute with the dilation parameter

Secondly, relations (26) show that different ob-
servers in relative motion with respect to quantum
group transformations have a different perception of
the spacetime non-commutativity, i.e., Lorentz invari-
ance is lost. Nevertheless, we remark that, in this con-
text, covariance under quantum group transformations
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is ensured by construction. Explicitly, in the commu- wheres denotes the root-mean-square deviation and
tative case the'-matrix (19) is just a matrix repre-  (£1), (x0) are the expectation values of the space and
sentation of the transformation group of the space- time operators.

time, and the coproduct (25) represents the multipli-  To end with, we also stress that if the following new
cation of two different elements of the group. A sim- space variableX’ in the (3 + 1)D spacetime (26) are
ilar interpretation holds in the quantum group case, considered

for which (25) provides the transformation law for the 0 ¥ i 20 a0 AP
non-commutative spacetime coordinates that can be* = X" X = X' =X"Ag—X"Ap, (34)

rewritten as the transformed commutation rules for the quantum

- fc“e"i’ + /i’,f)?’”, 27) spacetime are given by

where the tensor product notation has been replaced[ X', £°] = t A3(§) X, [X', X/] =0, (35)
by two different copies of the non-commutative co-
ordinates { ® 1= x, 1® x = x’). The fact that the
spacetime (26) is quantum group covariant is a direct
consequence of the Hopf algebra structure which im-
plies that

which, in turn, can be interpreted as a generalization
of the «-Minkowski space (10) with a “variable”
Planck lengtht’ = 7 AJ(€) that does depend ol

the quantum boost parameters (in {iet+ 1)D case,
this yields r' = rcoshé). This result is a direct
[#7#, 2" = T (Ag"EHR"" — At ENHR™), (28) consequence of imposing a larger quantum group
symmetry than Poincaré. Moreover, if the quantum
conformal transformations and parameters are taken
ATHE") = ALE)AE). (29) into account and the corresponding quantum group is
constructed, themg becomes a non-central operator
in such a manner that (35) (and also (26)) defines a
guadratic non-commutative spacetime. This suggests
that a further study of non-Lie spacetime algebras
derived from conformal or AdS quantum symmetries
could be meaningful.

where the new Lorentz entries are also given by (25):

Therefore, if we assume that two “observers” are ac-
tually related through a quantum group transformation
(27), they will be “affected” by different structure con-
stants for the spacetime commutation rule (26), yet the
latter is manifestly quantum group covariant.

In order to illustrate these results, let us consider the
(1+ 1)D case where the Lorentz sector is expressed in
terms of a single quantum boost paraméter &1 as

(A1) = (C‘_)Sf? Sirm?). (30)
sinhé  coshe

The transformation (29) shows directly the additivity
of the quantum boost parameter (along the same
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