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Abstract

A quantum deformation of the conformal algebra of the Minkowskian spacetime in(3 + 1) dimensions is identified with
a deformation of the(4 + 1)-dimensional AdS algebra. Both Minkowskian and AdS first-order non-commutative spac
explicitly obtained, and the former coincides with the well-knownκ-Minkowski space. Next, by working in the conform
basis, a new non-commutative Minkowskian spacetime is constructed through the full (all orders) dual quantum group
by deformed Poincaré and dilation symmetries. Although Lorentz invariance is lost, the resulting non-commutative spa
quantum group covariant, preserves space isotropy and, furthermore, can be interpreted as a generalization of theκ-Minkowski
space in which a variable fundamental scale (Planck length) appears.
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1. Introduction

One of the most relevant applications of qua
tum groups in physics is the construction of d
formed spacetime symmetries that generalize clas
Poincaré kinematics beyond Lie algebras, such as
well-known κ-Poincaré [1–3] and the quantum nu
plane (or light-cone) Poincaré [4,5] algebras. For
these cases, the deformation parameter has been
preted as a fundamental scale which may be rel
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with the Planck length. In fact, these results can
seen as different attempts to develop new approa
to physics at the Planck scale, an idea that was e
presented in [6]. A further physical development
the κ-Poincaré algebra has led to the so-called d
bly special relativity (DSR) theories [7–11] that an
lyze the fundamental role assigned to the deforma
parameter/Planck length as an observer-indepen
length scale to be considered together with the u
observer-independent velocity scalec, in such a man
ner that Lorentz invariance is preserved [12–14].

From a dual quantum group perspective, wh
the quantum spacetime coordinatesx̂µ conjugated
to theκ-Poincaré momentum-spacePµ (translations)
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are considered, the non-commutativeκ-Minkowski
spacetime arises [15–18]. Some field theories
such a space have been proposed (see [19]
references therein) and its role in DSR theories
been analyzed [20]. More general non-commuta
Minkowskian spacetimes can be expressed by me
of the following Lie algebra commutation rules [21]

(1)
[
x̂µ, x̂ν

] = 1

κ

(
aµx̂ν − aνx̂µ

)
,

whereaµ is aconstant four-vector in the Minkowskian
space.

In the context ofκ-deformations, which are un
derstood as quantum algebras with a dimens
ful deformation parameter related with the Plan
length, Poincaré symmetry should be taken only
a first stage that should be embedded in some
within more general structures such as deform
conformal or AdS/dS symmetries, that is, quant
so(4,2)/so(5,1) algebras. Thus, it is natural to thin
that a non-commutative Minkowskian space of
form (1) could also be either embedded or generaliz
In this respect, by considering the simplest quan
deformation of the Weyl–Poincaré algebra (isomet
plus dilations),Uτ (WP) [22], a new DSR proposa
has been presented in [23]. Such a quantum alg
arises as a Hopf subalgebra of a ‘mass-like’ quan
deformationUτ (so(4,2)) of the conformal algebra o
the(3+ 1)D Minkowskian space.

The aim of this Letter is to analyze the firs
order (in both the deformation parameter and n
commutative coordinates) quantum group dual
Uτ (so(4,2)), to construct the complete (all order
Hopf algebra dual toUτ (WP) and, afterwards, to ex
tract some physical implications of the associated n
commutative Minkowskian spacetime.

In the next section we identify the deformatio
Uτ (so(4,2)), formerly obtained in a conformal basi
with a (4 + 1)D quantum AdS algebra at both alg
bra and dual group levels. By using the Hopf su
algebra spanned by the deformed Poincaré and
tion generators we compute in Section 3 the ass
ated dual quantum group by making use of the qu
tum R-matrix. The last section is devoted to deri
the physical consequences conveyed by the re
ing non-commutative Minkowskian spacetime whi
is covariant under quantum group transformations
does preserve space isotropy, although its Lorentz
variance is lost. Moreover, this new non-commutat
spacetime generalizesκ-Minkowski space since it is
defined through Lie algebra commutation rules wh
structure constants are the quantum group entries
sociated to the Lorentz sector.

2. Quantum AdS algebra

Let us consider the quantum deformation [22]
the conformal algebra of the(3 + 1)D Minkowskian
spacetime,Uτ (so(4,2)) ≡ Uτ (CM3+1), which is
spanned by the generators of rotationsJi , time and
space translationsPµ, boostsKi , conformal transfor-
mationsCµ and dilationsD. Hereafter we assum
c = h̄ = 1 (ω = 1 in [22]), sum over repeated in
dices, Latin indicesi, j, k = 1,2,3, and Greek in-
dicesµ,ν = 0,1,2,3. The non-vanishing deforme
commutation rules and coproduct forUτ (CM3+1) are
given by

[Ji, Jj ] = εijkJk, [Ji,Kj ] = εijkKk,

[Ji,Pj ] = εijkPk, [Ki,Kj ] = −εijkJk,

[Ki,P0] = e−τP0Pi, [D,Pi ] = Pi,

(2)[Ki,Pi ] = eτP0 − 1

τ
, [D,P0] = 1− e−τP0

τ
,

[Ji,Cj ] = εijkCk, [D,Ci ] = −Ci,

[D,C0] = −C0 + τD2, [P0,C0] = −2D,

[Ki,C0] = Ci, [Ki,Ci ] = C0 − τD2,

[C0,Ci] = −τ (DCi +CiD),

[P0,Ci] = e−τP0Ki +Kie−τP0,

[Pi,Cj ] = 2(δijD − εijkJk),

(3)[C0,Pi] = 2Ki + τ (DPi + PiD),

∆(P0)= 1⊗P0 +P0 ⊗ 1,

∆(Pi)= 1⊗ Pi + Pi ⊗ eτP0,

∆(Ji)= 1⊗ Ji + Ji ⊗ 1,

∆(D) = 1⊗D +D ⊗ e−τP0,

∆(Ki)= 1⊗Ki +Ki ⊗ 1− τD ⊗ e−τP0Pi,

∆(C0)= 1⊗C0 +C0 ⊗ e−τP0,

(4)

∆(Ci)= 1⊗Ci +Ci ⊗ e−τP0 + 2τD ⊗ e−τP0Ki

− τ2(D2 +D
) ⊗ e−2τP0Pi.
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The deformation parameterτ will be identified with
the Planck length:τ ∼ Lp [23].

Some properties ofUτ (so(4,2)) can be unveiled
by studying its Lie bialgebra structure, that is, t
first-order relations in the deformation parame
generators and dual coordinates. If we write
deformed coproduct∆ as formal power series inτ ,

(5)∆=
∞∑
k=0

∆(k) =
∞∑
k=0

τ kδ(k),

the cocommutatorδ is given by the skewsymmetri
part of the first-order deformation,

(6)δ = δ(1) − σ ◦ δ(1),
whereσ(a⊗ b)= b⊗ a. In our case, from (4) we find
that

δ(P0)= 0, δ(Pi)= τPi ∧ P0,

δ(Ji)= 0, δ(D)= −τD ∧ P0,

δ(Ki)= −τD ∧ Pi, δ(C0)= −τC0 ∧ P0,

(7)δ(Ci)= −τCi ∧ P0 + 2τD ∧Ki,

where∧ denotes the skewsymmetric tensor produ
Next, Lie bialgebra duality [24,25] leads to the du
commutation rules in the form

(8)δ(Yi)= f
jk
i Yj ∧ Yk ⇒ [

ŷj , ŷk
] = f

jk
i ŷi ,

whereYi is a generic generator and̂yi its associated
dual quantum group coordinate fulfilling〈ŷi |Yj 〉 =
δij . Therefore if we denote by{x̂µ, θ̂ i , ξ̂ i , d̂, ĉµ} the
dual non-commutative coordinates of the genera
{Pµ,Ji,Ki,D,Cµ}, respectively, we obtain from (7
the following non-vanishing first-order quantum gro
commutation rules:
[
x̂0, x̂i

] = −τ x̂i,
[
x̂0, d̂

] = τ d̂,[
x̂0, ĉµ

] = τ ĉµ,

(9)
[
d̂, x̂i

] = −τ ξ̂ i,
[
d̂, ξ̂ i

] = 2τ ĉi.

The non-commutative Minkowskian spacetime is th
characterized by

(10)
[
x̂0, x̂i

] = −τ x̂i,
[
x̂i, x̂j

] = 0,

which coincides with the usualκ-Minkowski space
(1) with aµ = (1,0,0,0), provided thatτ = −1/κ .
Nevertheless, in the next section we shall comp
the full (all orders) dual quantum group toUτ (WP),
and the associated non-commutative spacetime
generalize the first-order relations (10).

We stress that all the above expressions can
rewritten in terms of deformed symmetries of t
(4 + 1)D AdS spacetime,AdS4+1. Let LAB (A <

B) and TA (A,B = 0,1, . . . ,4) be the Lorentz and
translations undeformed generators obeying

[LAB,LCD] = ηACLBD − ηADLBC − ηBCLAD

+ ηBDLAC,

[LAB,TC ] = ηACTB − ηBCTA,

(11)[TA,TB] = − 1

R2LAB,

such thatη = (ηAB) = diag(−1,1,1,1,1) is Lorentz
metric associated toso(4,1), L0B are the four boost
in AdS4+1 and R is the AdS radius related wit
the cosmological constant byΛ = 6/R2. Then the
following change of basis (i = 1,2,3):

T0 = − 1

2R
(C0 + P0), T1 = 1

R
D,

Ti+1 = 1

2R
(Ci + Pi), L01 = 1

2
(C0 − P0),

L0,i+1 =Ki, L1,i+1 = 1

2
(Ci − Pi),

L23 = J3, L24 = −J2,

(12)L34 = J1,

connectsCM3+1 with AdS4+1 and can be taken in th
deformed case as a way to identify (2)–(4) as the qu
tum deformationUτ (so(4,2)) ≡ Uτ (AdS4+1). The
dual Lorentz l̂AB and spacetimêtA quantum AdS-
coordinates can also be written in terms of the c
formal ones as

t̂ 0 = −R
(
ĉ0 + x̂0), t̂1 =Rd̂,

t̂ i+1 =R
(
ĉi + x̂i

)
, l̂ 01 = ĉ0 − x̂0,

l̂ 0,i+1 = ξ̂ i , l̂1,i+1 = ĉi − x̂i ,

l̂ 23 = θ̂3, l̂ 24 = −θ̂2,

(13)l̂ 34 = θ̂1.

Hence the (first-order) non-vanishing commutat
rules for the non-commutativeAdS4+1 spacetime turn
out to be[
t̂ 0, t̂1

] = −τRt̂1,
[
t̂ 0, t̂ i+1] = −τR2l̂1,i+1,

(14)
[
t̂1, t̂ i+1] = −τR2l̂ 0,i+1,
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which involve both the boost̂l 0,i+1 and the rotation
l̂1,i+1 quantum coordinates. A Lie bialgebra contra
tion analysis [26] shows that the contractionR → ∞
from Uτ (AdS4+1) and its dual to a(4+ 1)D quantum
Poincaré algebra/group is well defined whenever
deformation parameter is transformed asτ → τR2.

Therefore, the maps (12) and (13) can be u
to express the same quantum deformation ofso(4,2)
within two physically different frameworks
Uτ (CM3+1) ↔ Uτ (AdS4+1). In fact, such a quantum
group relationship might further be applied in order
analyze the role that quantum deformations ofso(4,2)
could play in relation with the “AdS-CFT correspo
dence” that relates local QFT onAdS(d−1)+1 with a
conformal QFT on the (compactified) Minkowskia
spacetimeCM(d−2)+1 [27–29] (in our case up to
d = 5). We also remark that a more general (thr
parameter) quantum deformation ofo(3,2) can be
found in [30], where the connection between the c
responding quantumCM2+1 andAdS3+1 algebras is
explicitly described.

3. Quantum Weyl–Poincaré group

The classicalr-matrix associated toUτ (so(4,2))
reads

(15)r = −τD ∧ P0 ≡ τR2T1 ∧ T0 + τR T1 ∧L01,

which satisfies the classical Yang–Baxter equa
[31]. Therefore,Uτ (so(4,2)) is a triangular (or twist-
ing) quantum deformation, different to the Drinfeld
Jimbo type, which is supported by the Hopf subal
bra spanned by{D,P0}. The universalT -matrix for
the latter can be written as [32]

(16)T = ed̂Dex̂
0P0,

while theR-matrix reads

(17)R = exp(τP0 ⊗D)exp(−τD ⊗P0).

Since this element is also a universalR-matrix for
bothUτ (WP)⊂Uτ (so(4,2)) [22], the corresponding
dual quantum groups can be deduced explicitly
applying the FRT procedure [33]. This requires
matrix representationR for (17) as well as to choos
a matrix elementT of the quantum group with non
commutative entries. However, the consideration
the completeUτ (so(4,2)) structure (in both conforma
and AdS bases) precludes a clear identification
the non-commutative spacetime coordinates as t
would appear as arguments of functions that a
depend on many other coordinates. In this respect
for instance, [34] for the construction of a quantu
AdS space from aq-SO(3,2) of Drinfeld–Jimbo type.

Since we are mainly interested in the struct
and physical consequences of the associated
commutative spacetime coordinates (dual to the tra
lation generators), we shall consider here the FRT c
struction for the Weyl–Poincaré Hopf subalgebra
the conformal basis.

A deformed matrix representation for the defini
relations ofUτ (WP) (2) can be obtained from th
6× 6 matrix representation ofAdS4+1; namely,

P0 = τ

2
(e00 − e01 + e10 − e11)− e02 − e12

+ e20 − e21,

Pi = e0,i+2 + e1,i+2 + ei+2,0 − ei+2,1,

D = e01 + e10,

(18)Ji = −εijk ej+2,k+2, Ki = e2,i+2 + ei+2,2,

whereeab (a, b = 0, . . . ,5) is the matrix with entries
δab. We construct the quantum group elementT in
such a representation by considering the following m
trix product, which is consistent with the exponent
form of the universalT -matrix (16) for the carrier sub
algebra{D,P0}:
T = ed̂Dex̂

0P0ex̂
1P1ex̂

2P2ex̂
3P3eθ̂

1J1eθ̂
2J2eθ̂

3J3

× eξ̂
1K1eξ̂

2K2eξ̂
3K3

(19)=




α̂+ β̂− γ̂0 γ̂1 γ̂2 γ̂3

β̂+ α̂− γ̂0 γ̂1 γ̂2 γ̂3

x̂0 −x̂0 Λ̂0
0 Λ̂0

1 Λ̂0
2 Λ̂0

3

x̂1 −x̂1 Λ̂1
0 Λ̂1

1 Λ̂1
2 Λ̂1

3

x̂2 −x̂2 Λ̂2
0 Λ̂2

1 Λ̂2
2 Λ̂2

3

x̂3 −x̂3 Λ̂3
0 Λ̂3

1 Λ̂3
2 Λ̂3

3



,

where the non-commutative entries are the quan
Minkowskian coordinateŝxµ and

α̂± = coshd̂ ± 1

2
ed̂

(
x̂µx̂

µ + τ x̂0),
γ̂ν = ed̂ x̂µΛ̂µ

ν ,
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β̂± = sinhd̂ ± 1

2
ed̂

(
x̂µx̂

µ + τ x̂0),
Λ̂µ
ν = Λ̂µ

ν

(
θ̂ i , ξ̂ i

)
,

Λ̂µ
ν Λ̂

ρ
σ g

νσ = gµρ, x̂µ = gµνx̂
ν,

(20)
(
gµρ

) = diag(−1,1,1,1).

Note that quantum rotation and boost coordinates
jointly expressed through the formal Lorentz entr
Λ̂
µ
ν .
The representation (18) gives rise to a quant

R-matrix (17) with dimension 36× 36. SinceP 3
0

vanishes,R reads

R =
(

1 ⊗ 1 + τP0 ⊗D + 1

2
τ2P 2

0 ⊗D2
)

(21)×
(

1 ⊗ 1 − τD ⊗ P0 + 1

2
τ2D2 ⊗P 2

0

)
,

where1 is the 6× 6 unit matrix. Next in pursuing the
FRT program we impose that

(22)RT1T2 = T2T1R,

where T1 = T ⊗ 1 and T2 = 1 ⊗ T . This matrix
equation provides the commutation rules among all
entries in (19), which by taking into account (20) c
then be reduced to[
d̂, Λ̂µ

ν

] = 0,
[
x̂α, Λ̂µ

ν

] = 0,
[
Λ̂α
β, Λ̂

µ
ν

] = 0,[
d̂, x̂µ

] = τ
(
δ
µ
0 e−d̂ − Λ̂

µ
0

)
,

(23)
[
x̂µ, x̂ν

] = τ
(
Λ̂ν

0x̂
µ − Λ̂

µ
0 x̂

ν
)
,

where the quantum Lorentz entriesΛ̂µ
0 are given by

Λ̂0
0 = coshξ̂1 coshξ̂2 coshξ̂3,

Λ̂1
0 = sinhξ̂1 coshξ̂2 coshξ̂3,

Λ̂2
0 = sinhξ̂2 coshξ̂3,

(24)Λ̂3
0 = sinhξ̂3.

The coproduct for all the entries inT is just∆(T ) =
T ⊗̇T . By using again (20) the coproduct for{d̂, x̂µ,
Λ̂
µ
ν } can consistently be found:

∆(d̂)= d̂ ⊗ 1+ 1⊗ d̂,

∆
(
x̂µ

) = x̂µ ⊗ e−d̂ + Λ̂µ
η ⊗ x̂η,

(25)∆
(
Λ̂µ
ν

) = Λ̂µ
η ⊗ Λ̂η

ν,

which is a homomorphism of (23). Thus the expr
sions (23)–(25) together with the counitε(T ) = 1
and antipodeS(T )= T −1 determine the Hopf algebr
structure of the quantum Weyl–Poincaré group dua
Uτ (WP), which is the restriction̂cµ ≡ 0 of that dual
toUτ (CM3+1).

We remark that the commutation relations (9) (w
ĉµ ≡ 0) can be recovered from (23) by only taking t
first-order in all the quantum coordinates (notice t
in this case,Λ̂0

0 → 1 andΛ̂i
0 → ξ̂ i ).

Recall that the FRT approach was also used
the construction of the null-plane quantum Poinc
group [5]. However, asκ-Poincaré has no univers
R-matrix, the associated quantum group was obta
[15–18] through a direct quantization of the semicl
sical Poisson–Lie algebra coming from theκ-Poincaré
classicalr-matrix.

4. A new non-commutative Minkowskian
spacetime

Now we focus our attention on some structu
physical consequences of the new non-commuta
spacetime that comes out from (23)

(26)
[
x̂µ, x̂ν

] = τ
(
Λ̂ν

0(ξ̂ )x̂
µ − Λ̂

µ
0 (ξ̂ )x̂

ν
)
,

which can be seen as a generalization of (1) thro
aµ → Λ̂

µ
0 (ξ̂ ).

Firstly, we stress that sincêΛµ
0 (24) only depend on

the quantum boost parameters and the quantum
tion coordinateŝθ i do not play any role in the spac
time non-commutativity, the isotropy of the space
thus preserved. Furthermore, by taking into acco
the commutation rules (23),̂Λµ

0 can be considered t
play the role of the structure constants within the qu
tum space (26). In fact, the quantum boost coordin
ξ̂ i can be regarded as scalars (usual commutative
rameters) within the quantum Weyl–Poincaré gro
From this viewpoint, relations (26) would define a L
algebraic non-commutative spacetime of the type
However, this situation changes in the full quant
conformal group since, as shown in (9),ξ̂ i andΛ̂µ

0 no

longer commute with the dilation parameterd̂ .
Secondly, relations (26) show that different o

servers in relative motion with respect to quant
group transformations have a different perception
the spacetime non-commutativity, i.e., Lorentz inva
ance is lost. Nevertheless, we remark that, in this c
text, covariance under quantum group transformat
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is ensured by construction. Explicitly, in the comm
tative case theT -matrix (19) is just a matrix repre
sentation of the transformation group of the spa
time, and the coproduct (25) represents the multi
cation of two different elements of the group. A sim
ilar interpretation holds in the quantum group ca
for which (25) provides the transformation law for t
non-commutative spacetime coordinates that can
rewritten as

(27)x̂ ′′µ = x̂µe−d̂ ′ + Λ̂µ
η x̂

′η,
where the tensor product notation has been repla
by two different copies of the non-commutative c
ordinates (̂x ⊗ 1 ≡ x̂, 1 ⊗ x̂ ≡ x̂ ′). The fact that the
spacetime (26) is quantum group covariant is a di
consequence of the Hopf algebra structure which
plies that

(28)
[
x̂ ′′µ, x̂ ′′ν] = τ

(
Λ̂′′ ν

0 (ξ̂ ′′)x̂ ′′µ − Λ̂
′′µ
0 (ξ̂ ′′)x̂ ′′µ)

,

where the new Lorentz entries are also given by (2

(29)Λ̂′′µ
ν (ξ̂ ′′)= Λ̂µ

η (ξ̂ )Λ̂
′η
ν (ξ̂

′).
Therefore, if we assume that two “observers” are
tually related through a quantum group transformat
(27), they will be “affected” by different structure con
stants for the spacetime commutation rule (26), yet
latter is manifestly quantum group covariant.

In order to illustrate these results, let us consider
(1+1)D case where the Lorentz sector is expresse
terms of a single quantum boost parameterξ̂ ≡ ξ̂1 as

(30)
(
Λ̂µ
ν

) =
(

coshξ̂ sinhξ̂

sinhξ̂ coshξ̂

)
.

The transformation (29) shows directly the additiv
of the quantum boost parameter (along the sa
direction):

Λ̂0
0(ξ̂

′′)= coshξ̂ ′′ =∆
(
Λ̂0

0

)
= coshξ̂ ⊗ coshξ̂ + sinhξ̂ ⊗ sinhξ̂

(31)= cosh(ξ̂ + ξ̂ ′),
and similarly for the remaininĝΛµ

ν . The non-commu
tative(1+ 1)D spacetime reads

(32)
[
x̂1, x̂0] = τ

(
x̂1 coshξ̂ − x̂0 sinhξ̂

)
,

which implies the following uncertainty relation:

(33)δx̂1δx̂0 � |τ | ∣∣〈x̂1〉coshξ̂ − 〈
x̂0〉sinhξ̂

∣∣,

2

whereδ denotes the root-mean-square deviation
〈x̂1〉, 〈x̂0〉 are the expectation values of the space
time operators.

To end with, we also stress that if the following ne
space variableŝXi in the(3 + 1)D spacetime (26) ar
considered

(34)x̂0 → x̂0, x̂i → X̂i = x̂iΛ̂0
0 − x̂0Λ̂i

0,

the transformed commutation rules for the quant
spacetime are given by

(35)
[
X̂i , x̂0] = τΛ̂0

0(ξ̂ )X̂
i ,

[
X̂i , X̂j

] = 0,

which, in turn, can be interpreted as a generaliza
of the κ-Minkowski space (10) with a “variable
Planck lengthτ ′ = τΛ̂0

0(ξ̂ ) that does depend onall
the quantum boost parameters (in the(1 + 1)D case,
this yields τ ′ = τ coshξ̂ ). This result is a direc
consequence of imposing a larger quantum gr
symmetry than Poincaré. Moreover, if the quant
conformal transformations and parameters are ta
into account and the corresponding quantum grou
constructed, then̂Λ0

0 becomes a non-central opera
in such a manner that (35) (and also (26)) define
quadratic non-commutative spacetime. This sugg
that a further study of non-Lie spacetime algeb
derived from conformal or AdS quantum symmetr
could be meaningful.
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