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Abstract Unsteady settling behavior of solid spherical particles falling in water as a
Newtonian fluid is investigated using a drag coefficient of the form given by Ferreira et al.
Differential transformation method (DTM), Galerkin method (GM), collocation method (CM),
and numerical methods are applied to analyze the characteristics of particles motion. The
influence of physical parameters on terminal velocity is discussed and moreover, comparing
the techniques, it is showed that GM and CM are very efficient for solving the governing
equation and DTM with Padé approximation has the best agreement with numerical results.
The novelty of this work is introducing three simple and exact analytical method for solving
the nonlinear equation of sedimentation and applied it in many industrial and chemical
applications.
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1. Introduction

Description of the motion of immersed bodies in fluids
has long been a subject of great interest due to its wide
range of applications in industry e.g. sediment transport,
deposition in pipelines, alluvial channels, etc [1–2]. The
settling mechanism of solid particle, bubble, or drop, both
in Newtonian and non-Newtonian fluids, is reported by
Clift et al. [3] and Chhabra [4] and several types of drag
coefficients for spherical and non-spherical particles were
duction and hosting by Elsevier B.V. All rights reserved.
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Nomenclature

a, b, c, d constants
Acc acceleration (unit: m/s2)
CM collocation method
CD drag coefficient
D particle diameter (unit: m)
DTM differential transformation method
f(η) analytic function
g acceleration due to gravity (unit: m/s2)
GM Galerkin method
H constant value
m particle mass (unit: kg)
n number of iteration
Num numerical method
P Padé approximation

R(x) residual function
t time (unit: s)
u velocity (unit: m/s)
~u trial function
Wi weight function
x(t) analytic function
X(k) DTM transformed function
[L,M] order of accuracy in Padé

Greek letters

μ dynamic viscosity (unit: kg/(m � s))
ρ fluid density (unit: kg/m3)
ρs spherical particle density (unit: kg/m3)
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presented by Haider and Levenspiel [5]. Guo [6] and
Mohazzabi [7] have studied the behavior of spheres and
objects falling into fluids. It is well known that a particle
falling vertically in a stationary fluid under the influence of
gravity accelerates until the gravitational body force is
balanced by the resistance forces, including buoyancy and
drag forces. At the equilibrium, particle reaches a constant
velocity so-called “terminal velocity” or “settling velocity”.
The Knowledge of the terminal velocity of solids and
particles falling in liquids is required in many industrial
applications such as mineral processing, solid-liquid mix-
ing, hydraulic transport, slurry systems, abrasive water jets,
fluidized bed reactors and so on [3]. Reviewing the
technical literature, it is clear that most of the pervious
investigations are performed for steady-state conditions (at
terminal velocity) and few of them has been studied the
unsteady motion of falling objects (accelerating motion).

Recently, several attempts have been made to develop
analytical tools to solve the motion equation of falling
objects in fluids. Ganji [8] employed Variational Iteration
Method (VIM) and derived a semi-exact solution for the
instantaneous velocity of the particle over time, setting in
incompressible fluid. Yaghoobi and Torabi [9] investigated
the acceleration motion of a vertically falling non-spherical
particle in incompressible Newtonian media by VIM. They
considered water, glycerin and ethylene-glycol as liquid
phase also they combined VIM with Padé approximation
for increasing the solution accuracy of the non-spherical
particle equation of motion [10]. More applications of VIM
for solving the nonlinear differential equations are presented
by Mohyud-Din et al. [11]. Jalaal et al. [12] used Homotopy
Analysis Method (HAM) and obtained the solution of the
one-dimensional non-linear particle equation. They demon-
strated that using appropriate initial guess and auxiliary
parameter, HAM is an accurate and reliable method.

Jalaal et al. [13] applied He’s homotopy perturbation method
(HPM) [14,15] to solve the acceleration motion of a vertically
falling spherical particle in incompressible Newtonian media.
Mohyud-Din et al. [16] used HPM for solving a wide class of
nonlinear problems and they suggest that this method is capable
to cope with the versatility of the physical problems such as
sedimentation process, the system of linear partial differential
equations for waves [17] and MHD flow over nonlinear
stretching sheeting [18]. Torabi and Yaghoobi [19] combined
HPM with Padé approximation for increasing the solution
accuracy of the particle equation of motion. The motion of a
spherical particle rolling down an inclined plane submerged in a
Newtonian environment has been studied by Jalaal et al. [20,21]
through HPM.

The main concept of differential transformation method
(DTM) was first introduced by Zhou [22] in 1986. This method
can be applied directly for linear and nonlinear differential
equation without requiring linearization, discretization, or
perturbation and this can be the main advantage of this method.
Borhanifar et al. [23] employed DTM on some PDEs and their
coupled versions. Abdel-Halim Hassan [24] has applied the
DTM for different systems of differential equations. Yildirim
et al. [25] used DTM for solving the partial and fractional
differential Fornberg-Whitham equation and they observed that
this method is an effective method for strongly nonlinear partial
equations. Rashidi et al. [26] applied Padé approximation to
increase the convergence of DTM series in a mixed convection
problem an inclined flat plate embedded in a porous medium.

Collocation and Galerkin are two kinds of the methods
of weighted residuals (MWR) which are approximation
techniques for solving differential equations. Stern and
Rasmussen [27] used collocation method and trigonometric
series to approximate the solution and coefficients of a third
order linear differential equation. Hu and Li [28] and
Herrera et al. [29] applied Collocation method for Poisson’s
and advection-diffusion equations, respectively. Hendi and
Albugami [30] solved Fredholm-Volterra integral equation
using collocation and Galerkin methods. Legendre wavelet
Galerkin method has been used for solving ordinary differ-
ential equations with non analytic solution by Mohammadi
et al. [31].

In this paper, first DTM and DTM-Padé approximations
are used to reproduce the results of Torabi and Yaghoobi
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[9,10]. Moreover, Collocation and Galerkin analytical
methods and a numerical technique are applied to solve
the equation of motion of a spherical particle settling
equation. The presented analytical methods are simpler
and faster than numerical one.
Figure 1 Schematic view of particles settling in water. It is assumed
particles are falling freely such that no particle-particle or particle-wall
interactions exists.

Table 1 Properties of the selected materials.

Material Density/(kg/m3) Viscosity/(kg/(m � s))

Aluminum 2702 –

Copper 8940 –

Lead 11340 –

Water 996.51 0.001
2. Problem description

For modeling the particle sediment phenomenon, con-
sider a small, rigid particle with a spherical shape of
diameter D and mass of m and density of ρs, falling in
infinite extent filled water as an incompressible Newtonian
fluid. Density of water, ρ, and its viscosity, μ, are known.
We considered the gravity, buoyancy, Drag forces and
added mass (virtual mass) effect on particle. According to
the Basset-Boussinesq-Ossen (BBO) equation for the
unsteady motion of the particle in a fluid, for a dense
particle falling in light fluids and by assuming ρ{ρs Basset
history force is negligible. So by rewriting force balance
for the particle, the equation of motion is gained as
follows [19],

m
du
dt

¼mgð1� ρ

ρs
Þ� 1

8
πD2ρCDu

2� 1
12

πD3ρ
du
dt

ð1Þ

where CD is the drag coefficient, in the right hand side of
the Eq. (1), the first term represents the buoyancy affect, the
second term corresponds to drag resistance, and the last
term is due to the added mass effect which is due to
acceleration of fluid around the particle. The main difficulty
of solving Eq. (1) is non-linear terms due to the non-
linearity nature of the drag coefficient CD. Ferreira et al.
[32], in their analytical study, suggested a correlation for CD

of spherical particles which has good agreement with the
experimental data in a wide range of Reynolds number,
0rRer105. This appropriate Equation is

CD ¼ 24
Re

1þ 1
48

Re

� �
ð2Þ

Jalaal et al. [13] have shown that Eq. (2) represents a more
accurate resistance of the particle in comparison with the
pervious equations presented by others. Substituting Eq. (2)
in to Eq. (1) and mass of the spherical particle

m¼ 1
6
πD3ρs ð3Þ

Eq. (1) can be rewritten as

a
du
dt

þ buþ cu2�d¼ 0; uð0Þ ¼ 0 ð4Þ

Where

a¼ 1
12

πD3ð2ρs þ ρÞ ð5Þ

b¼ 3πDμ ð6Þ

c¼ 1
16

πD2ρ ð7Þ
d¼ 1
6
πD3gðρs�ρÞ ð8Þ

Eq. (4) is a non-linear equation with an initial condition and
it can be solved by numerical and analytical methods. In the
present study, we choose three different materials for solid
particle, Aluminum, Copper and Lead and considered three
different diameters (1, 3, and 5 mm) for them. A schematic
of described problem is shown in Figure 1. Physical
properties of the selected material are shown in Table 1
and the resulted coefficients a, b, c, and d from Eqs. (5)-(8)
are listed in Table 2 and Eq. (4) as a non-linear equation, is
solved by Numerical method, DTM-Padé approximation,
collocation method and Galerkin method. It is necessary to
inform that professional version of this problem with more
complexity can be solved by CFD methods which is
available in the literatures [33–36].
3. Principles of methods and their application
in problem

3.1. Differential transformation method

The priciple of DTM for the nonlinear differential
equations is previously described in details by Torabi and
Yaghoobi [9]. Thus, we only present a short summary of
needed transformations and the application of this method



Table 2 Coefficient in Eq. (4).

Liquid Solid (Particle) Diameter/mm a b c d

Water Aluminum 1 0.0000016756496 0.00000942477796 0.000195664281 0.000008760256
3 0.0000452425392 0.00002827433389 0.001760978529 0.000236526917
5 0.0002094562001 0.00004712388981 0.004891607024 0.001095032024

Copper 1 0.0000049418587 0.00000942477796 0.000195664281 0.000040801768
3 0.0001334301866 0.00002827433389 0.001760978529 0.001101647738
5 0.0006177323456 0.00004712388981 0.004891607024 0.005100221010

Lead 1 0.0000061984958 0.00000942477796 0.000195664281 0.000053129377
3 0.0001673593872 0.00002827433389 0.001760978529 0.001434493196
5 0.0007748119783 0.00004712388981 0.004891607024 0.006641172207

Table 3 Fundamental operations of the differential transform
method.

Origin function Transformed function

xðtÞ ¼ αf ðxÞ7βgðtÞ XðkÞ ¼ αFðkÞ7βGðkÞ
xðtÞ ¼ dmf ðtÞ

dtm
XðkÞ ¼ ðk þmÞ!Fðk þ mÞ

k!
xðtÞ ¼ f ðtÞgðtÞ XðkÞ ¼∑k

l ¼ 0FðlÞGðk� lÞ
xðtÞ ¼ tm

XðkÞ ¼ δðk�mÞ ¼
1; if k¼m;

0; if kam:

(

xðtÞ ¼ expðtÞ
XðkÞ ¼ 1

k!
xðtÞ ¼ sin ðωt þ αÞ

XðkÞ ¼ωk

k!
sin

kπ

2
þ α

� �
xðtÞ ¼ cos ðωt þ αÞ

XðkÞ ¼ωk

k!
cos

kπ

2
þ α

� �
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for the current problem. For understanding method’s con-
cept, suppose that x(t) is an analytic function in domain D,
and t¼ ti represents any point in the domain. The function
x(t) is then represented by one power series whose center is
located at ti. The Taylor series expansion function of x(t) is
in form of:

xðtÞ ¼ ∑
1

k ¼ 0

ðt� tiÞk
k!

dkxðtÞ
dtk

� �
t ¼ ti

8 tAD ð9Þ

The Maclaurin series of x(t) can be obtained by taking ti¼0
in Eq. (9) expressed as:

xðtÞ ¼ ∑
1

k ¼ 0

tk

k!

dkxðtÞ
dtk

� �
t ¼ 0

8 tAD ð10Þ

As explained in [22] the differential transformation of the
function x(t) is defined as follows:

XðkÞ ¼ ∑
1

k ¼ 0

Hk

k!

dkxðtÞ
dtk

� �
t ¼ 0

ð11Þ

where X(k) represents the transformed function and x(t) is
the original function. The differential spectrum of X(k) is
confined within the interval tA ½0;H�, where H is a constant
value. The differential inverse transform of X(k) is defined
as follows:

xðtÞ ¼ ∑
1

k ¼ 0

t

H

� �k

XðkÞ ð12Þ
From Eq. (12), it can be carried out easily that the theory of
differential transformation is based upon the Taylor series
expansion. The values of function X(k) at values of argument
k are referred to as discrete, i.e. X(0) is known as the zero
discrete, X(1) as the first discrete, etc. The more discrete
available, the more precise it is possible to restore the unknown
function. The function x(t) consists of the T-function X(k), and
its value is given by the sum of the T-function with (t/H)k as its
coefficient. In real applications, at the right choice of constant
H, the larger values of argument k the discrete of spectrum
reduce rapidly. The function x(t) is expressed by a finite series
and Eq. (12) can be written as:

xðtÞ ¼ ∑
n

k ¼ 0

t

H

� �k

XðkÞ ð13Þ

Some important mathematical operations performed by differ-
ential transform method are listed in Table 3.

3.1.1. Padé approximation
There are some techniques to increase the convergence of

series. Among them, the Padé technique is widely applied.
Suppose that a function f(η) is represented by a power series so
that

f ðηÞ ¼ ∑
1

i ¼ 0
ciη

i ð14Þ

This expansion is the fundamental starting point of any analysis
using Padé approximants. The notation ci, i¼0, 1, 2, … is
reserved for the given set of coefficients and f(η) is the associated
function. [L,M] Padé approximant is a rational fraction

P L;M½ � ¼ a0 þ a1ηþ :::þ aLηL

b0 þ b1ηþ :::þ bMηM
ð15Þ

This has a Maclaurin expansion which agrees with
Eq. (14) as far as possible.

3.1.2. Application in problem
Applying the DTM transformation from Table 3 into

Eq. (4) to find u(t) we have:

aðk þ 1ÞUðk þ 1Þ þ bUðkÞ

þ c ∑
k

l ¼ 0
UðlÞUðk� lÞ�dδðkÞ ¼ 0; Uð0Þ ¼ 0 ð16Þ



Figure 2 Comparison between numerical, collocation, Galerkin
methods and DTM (in three different iterations) for Eq. (4) and
a¼b¼c¼d¼1.

Figure 3 Convergence of the DTM-Padé regarding to the method
order, [L,M], for Eq. (4) and a¼b¼c¼d¼1.
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Rearranging Eq. (16), we have

Uðk þ 1Þ ¼
dδðkÞ�c ∑

k

l ¼ 0
½UðlÞUðk� lÞ��bUðkÞ

aðk þ 1Þ ; Uð0Þ ¼ 0

ð17Þ

where

δðkÞ ¼ 1 if k ¼ 0

0 if ka0

(
ð18Þ

By solving Eq. (17) and using the initial condition, the
DTM terms are obtained as

Uð1Þ ¼ d

a

Uð2Þ ¼ � 1
2
bd

a2

Uð3Þ ¼ 1
6
dðb2�2cdÞ

a3

Uð4Þ ¼ � 1
24

bdðb2�8cdÞ
a4

ð19Þ

Now representing Eq. (19) in series form [19], u(t) function
will be obtained. After five iterations in DTM series for
a¼b¼c¼d¼1, the u(t) function is obtained as

uðtÞ ¼ t� 1
2
t2� 1

6
t3 þ 7

24
t4� 1

24
t5 ð20Þ

Subsequently, applying Padé approximation to Eq. (20) (for
Padé [4,4] accuracy), we have,

Pade

`

4; 4½ �ðuðtÞÞ ¼
3441
13480 t

4� 224
1011 t

3� 227
674 t

2 þ t

1þ 55
337 t þ 9

337 t
2 þ 7

1685 t
3 þ 1

1685 t
4

ð21Þ

3.2. Galerkin method

Suppose a differential operator D, is applied on a function u
to produce a function p.

DðuðxÞÞ ¼ pðxÞ ð22Þ
u is approximated by a function ~u, which is a linear
combination of basic functions chosen from a linearly indepen-
dent set. That is,

uffi ~u ¼ ∑
n

i ¼ 1
ciφi ð23Þ

Now, when substituted into the differential operator, D, the
result of the operations is not, in general, p(x). Hence an error or
residual will exist as,

EðxÞ ¼ RðxÞ ¼Dð ~uðxÞÞ�pðxÞa0 ð24Þ
The main idea of the Galerkin and collocation method is to
force the residual to zero in some average sense over the
domain. That isZ
X
RðxÞWiðxÞ ¼ 0; i¼ 1; 2; :::; n ð25Þ

where the number of weight functions Wi is exactly equal the
number of unknown constants ci in ~u function. The result is a
set of n algebraic equations for the unknown constants ci. In
Galerkin method weight functions are:

Wi ¼
∂ ~u
∂ci

; i¼ 1; 2; :::; n ð26Þ

3.2.1. Application in problem
Now GM is applied to the Eq. (4) for solving the particle

settling equation when a¼b¼c¼d¼1. First consider the
trial function as

~uðtÞ ¼ c1t þ c2t
2 þ c3t

3 þ c4t
4 þ c5t

5 þ c6t
6 ð27Þ

which satisfies the initial condition in Eq. (4). Using
Eq. (26), weight functions will be obtained as:

W1 ¼ t; W2 ¼ t2; W3 ¼ t3; W4 ¼ t4; W5 ¼ t5; W6 ¼ t6

ð28Þ



Table 4 Obtained values for u(m/s) from different methods for Eq. (4) and a¼b¼c¼d¼1.

Time/s Numerical method Collocation method Galerkin method DTM (n¼20) DTM-Padé [2,2] DTM-Padé [4,4] DTM-Padé [8,8]

0 0 0 0 0 0 0 0
0.2 0.17911335972 0.17916766 0.17911334 0.1791044 0.1791133 0.1791133 0.179113346
0.4 0.31600713125 0.31602345 0.31600709 0.3157894 0.3160070 0.3160070 0.316007092
0.6 0.41502836932 0.41506767 0.41502829 0.4137931 0.4150281 0.4150281 0.415028297
0.8 0.48383755960 0.48385852 0.48383508 0.4799999 0.4838364 0.4838364 0.483837459
1.0 0.53032985719 0.53032540 0.53010503 0.5217391 0.5303244 0.5303244 0.530329756
1.2 0.56115087915 0.56116612 0.55212889 0.5454545 0.5611313 0.5611313 0.561150740
1.4 0.58132582197 0.58132775 0.38037826 0.5562913 0.5812713 0.5812713 0.581325694
1.6 0.59442282455 0.59457135 – 0.5581395 0.5942956 0.5942956 0.594422665
1.8 0.60287916150 0.60512051 – 0.5538461 0.6026196 0.6026196 0.602879031
2 0.60832017092 0.62039362 – 0.5454545 0.6078431 0.6078431 0.608320058

Table 5 Calculated errors (%) for various methods solving Eq. (4) and a¼b¼c¼d¼1.

Time/s Collocation method Galerkin method DTM(n¼20) DTM-Padé [2,2] DTM-Padé [4,4] DTM-Padé [8,8]

0 0 0 0 0 0 0
0.2 0.000303 0.000303 7.27454E-08 4.95894E-05 7.33037E-08 7.44203E-08
0.4 0.000274 5.17E-05 1.24524E-07 0.000688774 1.36866E-07 1.23258E-07
0.6 0.000155 9.47E-05 1.88481E-07 0.002976341 4.32802E-07 1.73302E-07
0.8 8.6E-05 4.33E-05 5.1164E-06 0.007931504 2.31877E-06 2.06488E-07
1.0 5.75E-05 8.39E-06 0.000423933 0.016198837 1.02894E-05 1.89122E-07
1.2 2.36E-05 2.72E-05 0.016077644 0.027971681 3.4736E-05 2.46742E-07
1.4 0.000102 3.32E-06 0.345671144 0.043064372 9.36325E-05 2.18938E-07
1.6 0.002018 0.00025 4.902019398 0.06103953 0.000213981 2.66898E-07
1.8 0.012315 0.003718 - 0.081331402 0.000430478 2.14978E-07
2 0.047649 0.019847 - 0.10334299 0.000784182 1.85468E-07

Figure 4 Velocity variation for different particle diameters (Aluminum).

Figure 5 Acceleration variation for different particle diameters
(Aluminum).
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Applying Eq. (25), a set of algebraic equations is defined.
Solving this set of equations, c1 to c6 coefficients will be
calculated as follows:

c1 ¼ 1:001706321; c2 ¼ �0:5118166769;
c3 ¼ �0:1420897415; c4 ¼ 0:2995302815;
c5 ¼ �0:1405245851;
c6 ¼ 0:02351981005 ð28Þ
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Consequently the velocity equation for particle is:

uðtÞ ¼ 1:001706321t�0:5118166769t2

�0:1420897415t3 þ 0:2995302815t4

�0:1405245851t5 þ 0:02351981005t6 ð29Þ

3.3. Collocation method
Governing equations in Collocation method are similar to the
GM one (i.e. Eqs. (22) to (25)), however, the weighting
functions are taken from the family of Dirac δ functions in
the domain. That is, Wi(x)¼δ(x�xi). The Dirac δ function has
the property that:

δðx�xiÞ ¼
1 if x¼ xi
0 Otherwise

�
ð30Þ
Figure 6 Velocity variation for different particle diametersb
(Copper).

Figure 7 Velocity variation for different particle diameters (Lead).
And residual function in Eq. (24) must force to be zero at
specific points.
3.3.1. Application in problem
Consider the pervious assumptions (a¼b¼c¼d¼1) for

solving the Eq. (4). With the trial function as Eq. (27) and
Eq. (24), residual function, R(c1, c2, c3, c4, c5, c6, t), is
found. This function must be close to zero and for reaching
this importance. For reaching this purpose, six specific
points should be chosen in the domain tA ½0; 1:6�. These
Figure 8 Comparison of velocity variation over time for different
particle materials when D¼1 mm.

Figure 9 Comparison of acceleration variation for different particle
materials (D¼1 mm).
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points are,

t1 ¼
8
35

; t2 ¼
16
35

; t3 ¼
24
35

; t4 ¼
32
35

; t5 ¼
40
35

; t6 ¼
48
35
ð31Þ

Finally by setting all of these points in to residual function,
R(c1, c2, c3, c4, c5, c6, t), a set of equations with six equations
and six unknown coefficients will be obtained. Solving this
set of equations and introducing these coefficients to trial
function, the velocity equation for particle will be found as,

uðtÞ ¼ 1:003795836t�0:5187232698t2�0:1347023045t3

þ0:2986629632t4�0:1433338394t5 þ 0:02468713536t6

ð32Þ
Figure 10 velocity variation for different particle materials when
D¼3 mm.

Figure 11 velocity variation for different particle materials when
D¼5 mm.
4. Results and discussion

At first, a comparison between the three analytical

methods and Runge-Kutta methods is provided to select
the best and reliable analytical method for present problem.
Eq. (4) is considered with all constants are equal to unity
(i.e. a¼b¼c¼d¼1). Results of the solutions are presented
in Eqs. (20), (29) and (32) and Runge-Kutta method and
they are depicted in Figure 2. From Figure 2, it is revealed
that GM and CM have a good agreement with Numerical
result, but DTM when time tends to infinity, even in high
iterations (20 iterates), cannot estimate a constant velocity
as “terminal velocity” and its value suddenly reaches to
zero. For eliminating this problem, Padé approximation in
different orders such as [2,2], [4,4], [8,8] (e.g. Eq. (21)) is
Figure 12 Positions of falling particles for different size of Alumi-
num particles, time interval¼0.02 s.

Figure 13 Positions of falling particle for different materials, D¼1
mm and time interval¼0.02 s.



Table 6 Terminal velocity (m/s) for particles calculated by DTM-Padé and compared by HPM [13] and numerical method.

Particle material Diameter/mm Numerical method DTM-Padé [8,8] HPM

Aluminum 1 0.1888759074 0.1771953458 0.1888743212
3 0.3585504311 0.3581483507 0.3585425621
5 0.4683308257 0.4682662708 0.4683267958

Copper 1 0.4332008767 0.4336398188 0.4332014752
3 0.7829089418 0.7828929076 0.7828921531
5 1.0156731422 1.015681926 1.0156721043

Lead 1 0.4975607949 0.4837738933 0.4965829147
3 0.8944267047 0.8944040156 0.8944159856
5 1.1589079584 1.158902486 1.1589059863
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used and convergence results are depicted in Figure 3. As
Figure 3 shows, higher order of Padé approximation leads
to obtain results closer to the numerical solution. Table 4
shows the velocity values versus time for applied analytical
methods and are compared with numerical procedure. The
errors (%) of these methods, with respect to the numerical
method, were listed in Table 5. As seen in Table 5, DTM-
Padé [8,8] is the best method for this equation, also GM has
a good agreement and acceptable accuracy, so it can be
considered as an efficient method. In the following section,
these two methods are used for analysis the practical
settling motion of some spherical particles in water.
Afterwards, to present some practical examples, Aluminum,

Copper and Lead are selected in various sizes submerged in
water. Physical properties of the materials and calculated
coefficients for Eq. (4) in these practical examples are listed
in Tables 1 and 2, respectively. Figures 4 and 5 depict the
variations of velocity and acceleration for Aluminum in
different diameters. Velocity variations for copper and lead
are showed in Figures 6 and 7. The effect of the particle
material on velocity and acceleration for these three metals,
Aluminum, Copper and Lead, are investigated in Figures 8
and 9 for a constant diameter of 1 mm. these effects for larger
diameters, D¼3 mm and D¼5 mm are shown in Figures 10
and 11 respectively. Figures 12 and 13 presented the position of
the particle in sedimentation process for each time step equal to
0.02 s. Figure 12 shows the effect of particle size and Figure 13
explains the material of particle’s effect on settling position.
Generally speaking, the physical behavior of the settling

particles is well captured. For all the selected particles, terminal
velocity is calculated and presented in Table 6. Results also are
compared with HPM which already was done by Jalal et al.
[13]. It can be concluded from Table 6 that DTM-Padé [8,8]
estimated the terminal velocity excellently, although it’s errors
might increase compared with HPM when t tends to infinity.
Outcomes reveal that the value of the terminal velocity increases
significantly with particle diameter and density. Moreover, the
smaller particle reaches to its terminal velocity earlier. Thus, the
acceleration period is shorter for smaller and lighter particles.
From a physical point of view, it can be concluded that larger
particles reach zero acceleration (terminal velocity) more slowly.
Results also explain that when particle is massive (because of
greater density or diameter) it has lower position in the same
time steps because of its greater terminal velocity.
5. Conclusion

Many problems in environment such as two-phase solid-
liquid flows include particle equation of motion. The majority
of the pervious investigations in this field is related to numerical
studies and is limited to steady state situations. In the current
study, for the first time, three analytical methods are introduced
for the unsteady settling behavior of solid spherical particles
falling in water which has many applications in chemical
sciences. DTM, DTM-Padé approximations, Galerkin method
(GM) and collocation method (CM) and numerical method
were presented to particles sedimentation and different particles
material (Aluminum, Copper, and Lead) behavior are investi-
gated. The following main conclusions can be drawn from the
current study:
I.
 Padé approximation is needed for convergence of
DTM at terminal velocity.
II.
 DTM-Padé had an excellent accuracy for the current
problem.
III.
 Galerkin method is the simplest method among
applied methods that has a good agreement with
numerical results. Accuracy of this method and
reduction in the size of computational domain make
it as a wider applicable method.
IV.
 The presented semi-exact solutions are very simple
and can be extended for much harder problems
including high nonlinear terms and/or integral terms
that, in contrast to the current problem [6,7], do not
have any exact solutions
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