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We give a negative answer to the following question of Bel’nov: Can every Tychonoff space X 

be imbedded as a subspace of a topological group G so that dim Ccdim X? We show that if 

n # 0, 1,3,7, then the n-dimensional sphere S” cannot be imbedded into an n-dimensional 

topological group G (no matter which dimension function, ind, Ind or dim, is considered). 

However, in case dim X = 0 the answer to Bel’nov’s question is “yes”. We prove that, for every 

Tychonoff space X, dim X = 0 implies (in fact, equivalent to) dim F*(X) = 0 and dim A*(X) = 0, 
where F*(X) (A*(X)) is the free precompact (Abelian) group of X. As a corollary we obtain 

that every precompact group G is a quotient group of a precompact group H such that dim H = 0 
and w(H) = w(G). A complete metric space X, and a pseudocompact Tychonoff space X, are 
constructed such that ind X, =O, while ind F*(X,) #O and ind A*(X,)#O (i= 1,2). The 

equivalence of ind G = 0 and dim G = 0 for a precompact group G is established. We prove that 

dim H s dim G whenever H is a precompact subgroup of a topological group G. We also show 

that for every Tychonoff topology 3 on a set X with ind(X, .“i) = 0 one can find a precompact 

Hausdorff _group topology ? on the free (Abelian) group G(X) of X such that w(G(X), ?_) = 

w(X, 9), YJ,Y = .“7 and dim(G(X), 2) = 0. 
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Introduction 

In 1978 Bel’nov [7] showed that every Tychonoff space X can be imbedded as 

a closed subspace into a homogeneous Tychonoff space Y with dim Y s dim X. In 

connection with this result Bel’nov asked whether every Tychonoff space X can be 

imbedded into a Hausdorff topological group G with dim G s dim X (see [52, 

Question 111.231). Answering this question in the negative we prove the following: 

Theorem 0.1. If n # 0, 1,3,7, then the n-dimensional sphere S” cannot be imbedded 

into an n-dimensional HausdorfSgroup G (no matter which dimension function, ind, 

Ind or dim, is considered). 
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It turns out however that in case dim X = 0 the answer to Bel’nov’s question is 

“yes”. This will be proved in Section 4. In particular, in this section we show that 

dim X = 0 implies (in fact, equivalent to) dim F*(X) = 0 and dim A*(X) = 0, where 

F*(X) is the free precompact topological group of the space X, and A*(X) is the 

free precompact Abelian topological group of X. Examples are constructed serving 

to show that similar results for the dimension function ind do not hold. The main 

tool for proving these results is the technique of free precompact (Abelian) groups 

developed in Section 2. In Section 1 terminology, notations and preliminary facts 

are collected. In Section 3 some results concerning the dimension theory of compact- 

like topological groups are obtained. Finally, in Section 5 we give some applications 

of our results to closed imbeddings of Tychonoff spaces into Hausdorff topological 

groups which preserve zero-dimensionality. 

Proof of Theorem 0.1. Suppose the contrary, and let G be a Hausdorff n-dimensional 

group containing S” as a subspace. Let H be the smallest subgroup of G containing 

S”. Since H is generated algebraically by the compact space S”, H is cr-compact. 

So let H = U {K, : i E N}, where each Kj is compact. Fix an i E N. If ind G s n, then 

ind Ki G ind G s n, and since Ki is compact, dim K, c ind Ki G n [17, Theorem 7.2.71. 

If Ind G s n, then ind G s n, and therefore dim K, s n, by the instance proved above. 

If dim G s n, then dim PG s n, where PG is the Tech-Stone compactification of G 

[17, Theorem 7.1.171. Since Kj is closed in the compact (hence normal) space PG, 

dim Ki =Z dim PG s n [17, Theorem 7.1.181. Thus, in any case, dim Ki c n for every 

iEN. Being o-compact, the space H is normal. Now the countable sum theorem 

(see Theorem 1.13 below) implies dim H < n. 

Consider the identity mapping i: S” + S”. Since S” is a closed subspace of the 

normal space H with dim H s n, by Alexandroff’s theorem [2,23,15] characterizing 

the dimension dim in terms of mappings into spheres, there exists a continuous 

mapping r: H + S” extending i. Thus we conclude that S” is a retract of H, which 

contradicts the following result of Uspenskii [54]: If n # 0, 1,3,7, then S” cannot 

be a retract ofa topological group. For completeness’ sake let us present Uspenskii’s 

argument here. Suppose that r : G + S” is a retraction of a topological group G onto 

S”. Without loss of generality we can assume that e E: S”, where e is the neutral 

element of G. (Otherwise, fix a g E S” and observe that rK : G + g-’ . S”, defined by 

rg( h) = g-’ . r(g . h) for every h E G, would be a retraction of G onto g-’ * S”, which 

is homeomorphic to S”, and that e E g-’ * 9.) Now one can easily verify that the 

punctiform space (S”, e), together with the continuous mapping m : S” x S” + S” 

defined by m(x, y) = r(x. y), is an H-space (see [ll, 251). So Adams’ theorem [l] 

implies that n = 0, 1,3,7. 0 

Note that if n = 0, 1,3, then S” is a topological group itself, but the author was 

unable to decide whether S’ can be imbedded into a topological group G with 

dim G = 7. 
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1. Notations, terminology and preliminary results 

Notations and terminology follow [17]. All topological spaces and topological 

groups considered are assumed to be Tychonoff. We fix PX for denoting the 

Tech-Stone compactification of X [17, Chapter 3.61, I is the unit interval [0, l] 

with the usual topology, N is the set of natural numbers, Nt = N\(O). We use S’ for 

the quotient group [w/Z of the group Iw of real numbers by the subgroup Z of integers 

equipped with the quotient topology. Clearly, S’ is homeomorphic to the unit circle. 

The bar denotes the closure of a set in a topological space. In what follows 1x1 

stands for the cardinality of a space X, w(X) and nw(X) denote the weight and 

the net weight of a space X respectively [ 171. We use X 0 Y for the disjoint sum 

of spaces X and Y [17, Chapter 2.21. If Y is a subset of X, 5 is a topology on X 

and 021 is a uniformity on X, then 91 y = {U n Y: U E y} is the subspace topology 

on Y induced by 3, and OUI y = { U n ( Y x Y): U E 021) is the subspace uniformity on 

Y induced by 9!L If for each (Y E A a continuous mapping fa : X+X,, is fixed, then 

the mapping f = n{f,: a E A} : X + n {X, : LY E A} defined by f(x) = {J;>(x)},,, for 

x E X, is continuous, and is said to be the diagonal product of the family {fU : a E A} 

[ 17, Chapter 2.31. The KatEtov-Smirnov dimension of a space X defined by means 

of functionally open covers is denoted by dim X; ind X and Ind X stand for the 

small and the large inductive dimensions of X respectively [17, Chapter 7.11. 

A subspace Y of a space X is C*-embedded in X provided that every continuous 

function f: Y + I has a continuous extension f : X + I over X. 

We start with facts concerning topological groups. 

Fact 1.1. If H is a dense subgroup of a topological group G, then w(G) = w(H). 

Proof. This follows from the equality w(G) =x(G) . d(G), which holds for every 

topological group G (see, for example, [13, Theorem 3.5(i)]), and from the equality 

x(G) =x(H), which holds because H is a dense subspace of the (regular) space 

G. 0 

Fact 1.2 [38]. Assume that T is a cardinal, (G, 9) is a (HausdorfS) topological group, 

%‘~Y,nw(G,T)~~and 181~~. Then there exists a (Hausdorfl) group topology 3 

on G such that ‘ZYc 9-c Tand w(G, ?_)cT. 

We use F(X) for denoting the free group of X [22]. Recall that any g E F(X) 

except the neutral element e has the unique representation ofthe form g = x71 . . . x2, 

where n E N+, xiEX, ~;=*l (i=l,..., n)andmoreover,foreveryi=l,...,n-1 

either x, # x,,, or F; = E,+, . The n above is called the length of g and denoted by 

I(g). The neutral element e of F(X) is the unique element of F(X) without any 

representation, and I(e) = 0 bq the definition. For n EN define F,,(X)= 

{g E F(X): Z(g) s n} and B,(X) = {g E F(X): I(g) = n}. For a space X define X-’ = 

{x-‘: x E X} and 2 = XOX-‘O{e}. Here we equip X-’ with the topology, which 
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is copied from X by means of mapping XHX~’ and {e} with the discrete topology. 

For n EN+ we define the mapping 13, : 2” -+ F(X) by Bn(y,, . . . , y,,) =y, . . . y, 

whenever yiEX, i=l,..., n (here the multiplication is taken in F(X)), and put 

2, = f3,‘( B,(X)) f= 3. 

Analogously, let A(X) be the free Abelian group of X [22]. Recall that each 

g E A(X) except the zero element 0 has the unique (up to permutation) representation 

oftheformg=s,*x,+. ..+E;x,, sothatnEN+,x,EX, si=*l (i=l,...,n),and 

ifxi=xj forsome i,j=l,..., n, then F; = sj. The n above is the length of g, and it 

is denoted by I(g). The zero element 0 has no representation, and I(0) = 0 by the 

definition. For n EN+ we define A,(X) = {g E A(X): l(g)< n} and B,(X) = 

{g E A(X): l(g) = n}. For A(X) the space X”, its subspace 2, and the mapping 

0, : 2” + A(X) can be defined similarly to these for F(X). 

Lemma 1.3. Suppose thud 9 is a group topology on F(X) (on A(X)), which induces 

on X the original topology of the space X. Then for every n E Nt mappings 0, : 2” + 

(F(X), y^) md blz,, :G + (&x(X), qB,,cxJ are continuous (here Z,, is considered as 

a subspace ofXn). Furthermore, 0,(X”) = F,,(X), and 13,,1~,, is a bijection of Z,, onto 

B,(X). 

In particular, if X is compact, then (F,,(X), 31 F,,(x ,) is a compact subspace of 

(F(X), 3) ((A,(X), 31 A,,CX)) is a compact subspace of (A(X), T)). 

A topological group G (and its topology) is said to be precompact iff G is 

isomorphic to a subgroup of some compact group or, equivalently, iff its two-sided 

uniformity completion is compact [57]. 

Fact 1.4 [57]. If T : G + H is a continuous homomorphism, G is a precompact group 

and H = T(G), then the group H is precompact too. 

Our next definition and proposition are folklore. 

Definition 1.5. Let (X, 9) be a space and S*, a (Hausdorff) group topology on 

F(X) (on A(X)). The topological group (F(X), TI*,) (the topological group (A(X), 

ST,)) is said to be the free precompact group of (X, Y) (the free precompact Abelian 

group of (X, 9)) iff: 

(i) S*,lx = 3, 

(ii) 9% is precompact, and 

(iii) whenever G is a compact group (a compact Abelian group) and f: (X, Y) + G 

is a continuous mapping, the natural homomorphic extension _?: (F(X), 3%) + G 

(J: (A(X), 9%) + G) of the mapping f is continuous. 

In this case Y-*, is called the free precompact topology (the free precompact Abelian 

topology) over the space (X, 9). 

Proposition 1.6. For every space (X, .T) there exists the free precompact group 

(F(X), 3%) of (X, 3) (th e ree f P recompact Abelian group (A(X), 55) of (X, Y)), 

and this group is unique. 
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Denote by xtx, .i) the set ofaflpairs (G,,f) consisting ofa compact (Abelian) group 

G, with w( G, ) s 2K[l”X’ and of a continuous mapping f: (X, .T) + G,. For (G,, f} E 

%TCx.,,, let 1: F(X) + G, (f: A(X) + G,) be the homomorphism extendingf Then 

%‘3(x,~,={j-‘(U): (Gt,f)~ &,,,,, and U is open in G,} 

is a base for Sz . 

In what follows the free precompact group and the free precompact Abelian 

group of a space X will be denoted by F*(X) and A*(X) respectively. All results 

will be formulated for F*(X) and the corresponding results for A*(X) will be 

formulated in round brackets. If proofs in both cases are similar to each other, we 

will give only a proof for F*(X) omitting that for A*(X). 

Definition 1.7 [50]. A topological group G is said to be [W-factorizabIe iff one of the 

following equivalent conditions holds: 

(i) for every continuous function f : G + R! there exist a topological group H with 

a countable base, a continuous homomorphism rr : G + H and a continuous function 

(p:H+R so thatf=cpon, 

(ii) if Z is a space and f: G + Z is a continuous mapping, then there exist a 

topological group H, a continuous homomorphism rr: G+ H and a continuous 

mapping cp: H + Z such that f = cp 0 TT and w(H) s w(Z). 

Fact 1.8 [49, Theorem 3.81. Each precompact group is R-factorizable. 

Fact 1.9 [5, Proposition 3.11. Suppose that G is a topological group, X is its subspace, 

which algebraically generates G. Then nw( G) c nw( X). In particular, if 3 is a topology 

on Xand 3-s a group topology on E(X) (on A(X)) so that FIX = T-and w(X, 9)~ T, 

then nw( F(X), 9) s T (nw(A(X), ?) s T). 

Fact 1.10 [53]. Let G be a topological group the space of which is a Lindeliif JT-space 

(see [29]). Then the closure B of each G,-subset B of G is a zero-set of G. 

Now we turn to facts from the dimension theory. 

Fact 1.11 [17, Theorem 7.3.31. Zf Z is a space with a countable base, then dim Z = 

ind Z. In particular, dim Y s dim Z for every subspace Y of the space Z. 

The following fact seems to be the part of the dimension theory folklore. Neverthe- 

less, since it will be used very often in our further proofs, for the sake of completeness 

we give its proof here. 
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Fact 1.12. For every space X the following conditions are equivalent: 

(i) dim X s n, 

(ii) if Z is a space with a countable base and f: X + Z is a continuous mapping, 

then there exist a space Y with a countable base and continuous mappings g : X + Y, 

h:Y+Zsuch thatf=hogand dim Ysn. 

Proof. (i)=+(ii). Let i : Z + IN be a homeomorphic imbedding of Z into the Hilbert 

cube I”, and let f: /3X + I” be the continuous extension of i 0 f: X + I” over PX. 

Since dim PX = dim X < n, using the MardeSiC factorization theorem [26] we can 

find a compact space ? having a countable base and continuous mappings g : PX + 

9, h”: ?+ IN such that f= 60s” and dim ? G n. Define Y=g(X), g=g”l, and 

h = iC’jiCz, 0 h”( y. Then Y has a countable base, f = h 0 g and dim Ys dim ?< n 

(Fact 1.11). 

(ii)*(i). Let y = { U,, . . . , U,} be a covering of X consisting of functionally open 

sets. For i = 1, . . . , k fix an open subset V, of [w and a continuous function f; : X + [w 

so that U, = f ,'( Vi), and define 

V”=Rx... XRX ViXxlwX~..Xlw. 
\ ~ / \ _ , 

i-1 times h-i times 

Setf=LI{f:i=l,..., k}:X+[W” and Z =f(X). Choose Y, g and h in accordance 

with (ii). Since 

A={hP’(Vy)ng(X),...,h-‘(V$)ng(X)} 

is a functionally open cover of g(X) and dim g(X) s dim Y < n (Fact 1.1 l), we 

can find a functionally open refinement of A of order <n + 1, say { W, , . . . , W,}. 

Then M’( WI), . . . , f’( WY)) is a functionally open refinement of y of order 

Cn+l. q 

The countable sum theorem 1.13 [ 17, Theorem 7.2.11. Assume that X = U {Fj : j E N}, 
where each F, is a closed subspace of X so that dim F, c n. Zf X is normal, then 

dim X s n. 

Definition 1.14 (Filippov). Let X be a normal space. By induction we will define 

Ind, X as follows: 

(i) Ind,X=-1 iff X=0 7 
(ii) Ind, X s n iff for every closed set F c X and any open set Vc X that 

contains F there exists an open set U cX such that Fc UC V, Ind,Fr Usn-1 

and Fr U is a G,-subset of X (here Fr U = 0 n X\ u), 
(iii) Ind, X = n iff Ind, X < n and the inequality Ind, X q n - 1 does not hold, 

and 

(iv) Ind,, X = co iff the inequality Ind, X s n does not hold for any n. 

For basic properties of the dimension function Ind, see [24]. 

Recall that a space Z is said to be perfectly x-normal iff the closure of every open 

subset of Z is a zero-set of Z [9,37]. 
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Fact 1.15 [18, Proposition 11. Suppose that X is normal and each closed G,-subset 

of X is perfectly x-normal in the subspace topology. Then Ind, X = Ind X. 

A subset Y of a topological space X is z-embedded in X [9,8, lo] iff each zero-set 

of Y is the restriction to Y of a zero-set of X. 

Fact 1.16 [9, Theorem 5.11. For any space X the following conditions are equivalent: 

(i) X is perfectly x-normal, 

(ii) every open subset of X is z-embedded in X, 

(iii) each dense subset of X is z-embedded in X. 

Fact 1.17. If Y is z-embedded in X, then: 

(i) dim Ysdim X [30, Theorem 1.31, and 

(ii) Ind, Y s Indo X [12, Corollary 3.101. 

Lemma 1.18. (i) Zf for every continuous mapping f: X + Z from X to a space Z with 

a countable base one can find a space Y with a countable base and continuous mappings 

g:X+ Y, h: Y+Zsuch thatf=hogand ind YsindX, then dimX<indX. 

(ii) Suppose G is an R-factorizable group. If for every group H with a countable 

base and for every continuous homomorphism T: G + H there exist a group G* with 

a countable base and continuous homomorphisms g : G + G*, h : G* + H such that 

f = h 0 g and ind G* s ind G, then dim G s ind G. 

Proof. (i) Assume that X, Y, Z,A g and h satisfy (i). Since Y has a countable 

base, dim Y = ind Y s ind X( Fact l.ll), and now it suffices to apply (ii)+(i) of 

Fact 1.12. 

(ii) Suppose that f: G + Z is a continuous mapping of G to a space Z with a 

countable base. Choose H, cp and n in accordance with (ii) of Definition 1.7. Now, 

if G”, g and h satisfy the assumption of item (ii) of our lemma, then item (i) of it 

implies that dim G c ind G. 0 

2. Some properties of free precompact groups 

The aim of this section is to investigate a topological structure and basic properties 

of free precompact (Abelian) groups. 

Let B3,(X)=(U: U is open in F*(X) and eE U}. For U E a,(X) define 

Qr, = {(g, h) E F(X) x F(X): gh-’ E U and g-‘h E U}. 

The family { QU : U E Be(X)} constitutes a base of the two-sided uniformity 9X on 

F(X). It is clear that 9X generates the original topology of F*(X). Similarly, let 

B&X) = { U: U is open in A*(X) and 0 E U}. For U E 93”(X) define 

@,={(g, h)EA(X)xA(X): g-he U}. 
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The family { QU : U E so(X)} forms a base of the uniformity dx on A*(X), which 

generates the original topology of A*(X). 

Let C*(X) be the set of all continuous functions f: X + I. For f~ C*(X) and 

E > 0 define 

C.;F = {(x, Y) E X x X: If(x) -f(Y)1 < &) c X x X. 

The family { C.te. : fc C*(X), E > O} forms a subbase of the uniformity V*(X) on X 

(see [17, Example 8.1.191). 

Lemma 2.1. Suppose f E C*(X), B E R and O< E < 1. Then there exists a QLi E 9X 

(@“E&~) so thatQP,n(XxX)=Cfc. 

Proof. Let H = (2n: n E Z} c R and let r : R + R/H be the natural quotient mapping. 

Since rr is open, the set W = rr((-E, F)) is an open neighbourhood of zero of W/H. 

Let cp : F*(X) + W/H be the continuous homomorphic extension of rr of: X + W/H 

over F*(X). One can easily check that for U = cp-‘( W) we have GU n (X XX) = 

c-,x,. 0 

Proposition 2.2. For every space X, 9x(X = Y?*(X) and &,lx = Y*(X). 

Proof. Lemma 2.1 implies that q*(X) c 5x Ix. Let us verify the reverse inclusion. 

Since F*(X) is a precompact group, the uniformity %x is totally bounded. The 

uniform space (X, %x Ix j is totally bounded as a subspace of the totally bounded 

uniform space (F(X), sx). Furthermore, sx induces the original topology of 

F*(X), and X is a subspace of F*(X), so the uniformity sxlx induces the original 

topology of X. Now inclusion %x1X c g*(X) follows from the fact that q*(X) is 

the finest uniformity among all totally bounded uniformities on X generating the 

original topology of X [36]. q 

Theorem 2.3. For every space X, the group F*(X) is a subgroup of F*(PX), and 

A*(X) is a subgroup ofA*( 

Proof. In view of Proposition 1.6, it suffices to show that B3, = 

{F(X)n U: UE BPx}. First of all note that (G/-,flx)~ Zx provided that (Gf-,f)~ 

%&, so {F(X) n U: U E 933px}c B3,. On the other hand, assume that (G,,~)E 2,. 

Since Gr is a compact space and f: X + G, is continuous, there exists the continuous 

mapping g :/3X + G,- extending f: If s: F*(X) + C3, and g’: F*(PX) + CT, are con- 

tinuous homomorphisms extending f and g respectively, then g),.,,, =_? Since 

(G,, g) E 5’?,, , this yields 533X = {F(X) n U: U E sBx}. Cl 

It is worth comparing Theorem 2.3 with the following result of Nummela [32] 

and Pestov [33]: The free (Abelian) topological group G(X) of a space X is a 

subgroup of the free (Abelian) topological group G(/3X) of its tech-Stone compac- 

tification /?X iff X is pseudocompact (for the definition of G(X) see [27,19]). 
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Lemma 2.4. For every space X and for every n E P@, the sef F,(X) is closed in F*(X), 

and the set A,,(X) is closed in A*(X). 

Proof. Fix an n EN+. By the above theorem, F*(X) is a subgroup of F*(/?X). Since 

F,,(X) = Fn(pX) n F(X), to prove our lemma it suffices to check that Fn(pX) is 

closed in F*(PX). Since /?X is compact, from Lemma 1.3 it follows that F,,(pX) 

is a compact subspace of F*(PX). Since F*(PX) is Hausdorff, F,,(pX) is closed 

in F*(PX). 0 

The following proposition is the precompact analogue of the well-known result 

of Arhangel’skii obtained by him for free topological groups ([3,4]; see also [5,5.1]). 

Proposition 2.5. For every n E NW consider the set Z, c 2” with the subspace topology 

inherited from 2” and the set B,,(X) c F*(X) with the subspace topology inherited 

from F*(X) (see Section 1). Then B,,Ir,, : Z,, + B,(X) is a homeomorphism. The similar 

statement holds also .for A”(X). 

Proof. Taking into account Theorem 2.3, we conclude that it suffices to prove our 

proposition only for a compact space X. In this case let 9 be the topology of the 

free topological group of X [27,19]. Since 9 induces the original topology on X, 

(E(X), 91 F,,C x ,) is a compact space (Lemma 1.3). The topology 5% of the topologi- 

cal group F*(X) is Hausdorff and Sz c .Y, so Y/IIb,,Cx) = YgIF,,CxI, and therefore 

qn,,tx,= C&3,,CX.P Now it remains to apply Arhangel’skii’s result cited above 

according to which O,,lr,, : Z,, + (B,(X), .Y H,,,X ,) is a homeomorphism. 0 

Lemma 2.6. For every space X and for any i E N’ there exists a decomposition 

Z, = IJ {L+: E E (-1, 1)‘) of the subspace Z, of the space 2’ such that each Li,* is 

closed in Z, and homeomorphic to a subspace of X’. 

Proof. Without loss of generality we can assume that X f 0. For F = (e, , . . , Ei) E 

(-1, l}i define 

and note that L,,, do the job. q 

Proposition 2.7. Suppose that X is a space with a countable base. Then F*(X) = 

U {K, : n E N}, where each K, is closed in F*(X) and homeomorphic to a subspace 

of Xk” for some k, E N’. The analogous result holds also for A*(X). 

Proof. Fix an i E N+. Since F*(X) has a countable network (Fact 1.9), the set Fi_, , 

being closed in F*(X) (Lemma 2.4), is a G,-subset of F*(X). Let F(X)\Fi_, = 

U {CD,,: jEN(+}, where each cD,,~ is closed in F*(X). Since F,(X) is also closed in 
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F*(X) (Lemma 2.4), P,,, = @i,jn F;(X) is closed in F*(X) for any j EN+. Observe 

that Bi(X)=U{P,,,j:jEN+}. Let Z,=lJ{&: E E (-1, l}‘} be the decomposition 

constructed in Lemma 2.6. Since 13,]=, : 2, -+ B,(X) is a homeomorphism (Proposition 

2.5), for each E ~(-1, l}i the set ei(Li,,) is closed in B,(X) and homeomorphic to 

a subspace of Xi. Therefore, for jE N+ and c E (-1, l}j the set Qi,j,F = 0,(L,,,) n Pi,, 

is closed in F*(X) and homeomorphic to a subspace of X’. Thus F*(X) = 

U {Qi,j,, : i,j E N+, E E (-1, l}i} u {e} is the desired decomposition. Cl 

Proposition 2.8. Assume that X is a space, G is aprecompact (Abelian) group, f: X + G 

is a quotient mapping and f(X) = G. Then the homomorphism 7: F*(X) + G 

(f: A*(X) + G) extending f is open. 

Proof. Define 9 to be the quotient topology on G with respect to J: Then 9 is finer 

than the original topology of G. Since X is a subspace of F*(X), the mapping 

j: X + G remains continuous if one replaces the original topology of G by Y. But 

since f is quotient and f(X) = G, we conclude that .Y coincides with the original 

topology of G. Therefore, f is quotient and hence open, being a homomorphism of 

topological groups. 0 

Proposition 2.9. Every space X is C*-embedded in F*(X) (in A*(X)). In particular, 

dim X s dim F*(X) (dim X s dim A*(X)). 

Proof. Let f :X + I be a continuous function. Fix a homeomorphic imbedding 

j: I+ S’ and a retraction r: S’+j(I) of S’ onto j(Z). If cp: F*(X)+ S’ is the 

continuous homomorphism extending j 0 f: X -+ S’, then f = jj’lJ( ,) 0 r 0 cp : F*(X) + 

I is the continuous extension off over F*(X). Thus, X is C*-embedded in F*(X). 

The last conclusion of our proposition follows from [17, Exercise 7.2.A]. 

3. Some dimension theory results for topological groups close to being compact 

We start with the factorization theorem. 

Theorem 3.1. Suppose that G is an R-factorizable group (see Definition 1.7), H is a 

topological group, rr : G + H is a continuous homomorphism and ind G = 0. Then there 

exist a topological group G* and continuous homomorphisms g : G + G”, h : G” + H 

so that rr = h 0 g, ind G* = 0 and w( G*) s w(H). 

Proof. Let w(H) = 7. By induction we will define, for every n E N, a group G, and 

continuous homomorphisms g, : G + G,, h, : G, + G,_, as follows: 

(i) G,,=H andg,=r, 
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(ii) w( G,) 4 r for every n E N, 

(iii) g, = he+, 0 g,+, for every n EN, 

(iv) for any n E N and for every U, an open neighbourhood of the neutral element 

of G,, there exists a W, a clopen neighbourhood of the neutral element of G,,,,, 

so that WC h;:,(U). 

Define G,, and g, in accordance with (i), and suppose that Gi, g, and h, have 

already been defined for every i s n so that (i)-(iv) hold. Now we will define 

G n+, 2 gn+l and h,,+,. 
By the inductive hypothesis, w( G,) s r, so let { Uz: a < T} be a base of open 

neighbourhoods of the neutral element of G,. Fix an CY < T. Since ind G = 0, there 

exists a Vz, a clopen neighbourhood of the neutral element of G, so that Vz c 

g,‘( Uz). Define fz+, : G + IF8 by f,:+,(x) = 0 if x E Vz and f:+,(x) = 1 otherwise. 

Since V:: is clopen, .ff+, is continuous. Since G is R-factorizable, we can find a 

group GZ+, with a countable base, a continuous homomorphism gz+, : G + Gz,, 

and a continuous mapping cp::,, : G::,, + R such that f::+, = ‘pz+, 0 g:,, . Define 

g ?I+, = AM:+, : a < ~I&,,, G,+, = s,,+,(G), and let h,+, : G,+, + G, pE+, : G+, + 

G::,, (ct < T) be the natural projections. Then (ii) and (iii) hold trivially. Further- 

more, for every a < 7 the set 

is a clopen neighbourhood of the neutral element of G,,,, , and 

g,:,c WI = g,,i,((cp’,‘+, UP::+,)-‘) = ccp::,, o p::,, o g,+,)-‘(o) 

=(cp::+,“d+l )-‘(o) = K+,)-‘(o) = v: c g;‘(cx 

so Wz c g,,+](gii( U::)) = h,:,( C/E), which yields (iv). 

Now define g = A{g, : n E kJ}, G* = g(G), and let h : G* + H be the natural projec- 

tion (here we use (i)). Then r = h 0 g, and w(G*) s 7 by (ii). On the other hand, 

(iii) implies that G* is a subgroup of the group 6, the limit of the inverse sequence 

1 G,, , CT:, : n, m E N, m s n}, where CT: = h,, + , 0 h,,,+? 0 . . .o h,_, 0 h, if m < n, and a: 

is the identity mapping of G,, for every n E N. For n E kd let c,, : C?-+ G, be the limit 

projection. Then CT, = h,, + , 0 CT,,+, for every n EN. Now choose a V, an open neigh- 

bourhood of the neutral element of G. Then there exist an n EN and a U, an open 

neighbourhood of the neutral element of G,,, such that a,‘(U) c V [ 17, Proposition 

2.5.51. Use (iv) and choose a W, a clopen neighbourhood of the neutral element of 

G n+l, so that WC h,,:,(U). Hence 6’ ,,+,( W) is the clopen neighbourhood of the 

neutral element of G, and 

=u,‘(U)c v. 

Therefore, ind G” s ind G = 0. 0 
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Corollary 3.2. The conclusion of Theorem 3.1 remains valid if one replaces “G is 

R-factorizable” by “G is precompact” in its assumption. 

Proof. Use Fact 1.8 and Theorem 3.1. 0 

Theorem 3.3. ind G = 0 is equivalent to dim G = 0 for each R-factorizable topological 

group G. 

Proof. For “ind G = 0 implies dim G = 0” use Theorem 3.1 and Lemma l.l8(ii). On 

the other hand, the reverse implication holds for any Tychonoff space. 0 

Corollary 3.4. If G is a precompact topological group, then ind G = 0 is equivalent to 

dim G = 0. 

Proof. Combine Fact 1.8 and Theorem 3.3. 0 

Now we turn to subspace theorems. 

Theorem 3.5. Suppose that H is a subgroup of a topological group G. If H is 

precompact, then dim H c dim G. 

Proof. We advise the reader to consult Fig. 1 while reading the proof. 

Let 2 be a space with a countable base and f: H + Z a continuous mapping. Use 

Fact 1.8 and fix a group H* with a countable base, a continuous homomorphism 

v : H + H* and a continuous mapping cp : H” + Z such that f = cp 0 TT. Let G, fi and 

I?* be two-sided uniformity completions of groups G, H and H* respectively. 

Clearly, fi is a subgroup of 6. Let 6 : fi + fi* be the continuous homomorphism 

E 

Fig. 1. 
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extending T [20]. Since H* has a countable base, fi* has a countable base too 

(Fact 1.1). So let $, : I?*+R, for every HEN, be a continuous function such that 

is a homeomorphic imbedding. Since H is precompact, k is compact, and so for 

every i E N there exists a continuous function ,y, : 6 + R such that x,(,q = $; 0 7; [46]. 

From (i)=+(ii) of Fact 1.12 it follows that for 

there exist a space P with a countable base and continuous mappings 5: G+ P, 

7 : P+ RN such that xIG = r] 0 5 and dim P c dim G. One can easily see that x(,q = 

l/V0 ;;, so 

(We used here the fact that (cr is a homeomorphic imbedding.) Hence, if we set 

Y= 5(H), g = 5ltf, 

h = cp O 6 'ld,i,(H^, o 771 Y, 

then h would be defined correctly. Now observe that g : H + Y and h : Y + Z are 

continuous mappings, f = h 0 g and dim Y s dim P c dim G, because Y c P and 

P has a countable base (Fact 1.11). Now (ii)+(i) of Fact 1.12 yields dim H < 

dim G. 0 

Corollary 3.6. If H is a subgroup of a precompact group G, then dim H s dim G. 

For definition of Lindeliif Z-spaces see [29]. Recall that each o-compact space 

is a Lindelof Z-space. For definition of the dimension function Ind, see Definition 

1.14. 

Theorem 3.7. Suppose that G is a topological group the space of which is a Lindeliif 

I-space (in particular, a cr-compact space), and X is its dense subspace. 

(i) If U is an open subset of X, then dim I/i dim X and Ind, U < Ind, X. 

(ii) If D is a dense subspace of X, then dim D s dim X and Ind, D s Ind, X. 

Proof. From Fact 1.10 it follows that the space G is perfectly x-normal, and so is 

X as a dense subspace of a perfectly x-normal space. Now the result follows from 

Facts 1.16 and 1.17. 0 
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Corollary 3.8. If B is either an open or dense subset of a precompact group G, then 

dim B s dim G and Ind,, B s Ind,, G. 

Corollary 3.9. If D is a dense subspace of a Lindeliif E-group G (in particular, of a 

u-compact group G), then dim D s dim G and Ind,, D G Ind, G = Ind G. 

Proof. From Fact 1.10 one can easily deduce that each closed G,-subset of G is 

perfectly x-normal in the subspace topology, so Ind, G = Ind G by Fact 1.15. The 

rest follows from Theorem 3.7. 0 

Corollary 3.10. Zf H is a subgroup of a Lindelof z-group G, then dim H c dim G and 

Indo H < Ind,, G = Ind G. 

Proof. Since fi, the closure of H in G, is a closed subspace of the normal space 

G, dim fi c dim G and Ind, l? 4 Ind, G. Being a closed subgroup of the Lindeliif 

E-group G, fi is a Lindelof I-group. Now the result follows from Corollary 3.9. 0 

Corollary 3.11. Zf H is a subgroup of a u-compact group G, then dim H < dim G and 

Indo H s Ind, G = Ind G. 

Theorem 3.12. If H is a subgroup of a locally compact group G, then dim H s dim G 

and Indo H < Ind,) G = Ind G. 

Proof. Let U be an open neighbourhood of the neutral element of G having compact 

closure u. Then G*, the smallest subgroup of G containing 7.?, is a clopen o-compact 

subgroup of G, and so G can be covered by disjoint clopen copies of G*. Hence 

dim G* = dim G and Ind, G* = Ind,, G. Since Ind, G” = Ind G* (see Corollary 

3.11), we conclude that Ind G = Ind G* = Ind, G” = Ind, G. Now from Corollary 

3.11 it follows that dim H* s dim G* and Ind, H* s Ind, G*, where H* = H n G*. 

Since H* is a clopen subgroup of H, H can be covered by disjoint clopen copies 

of H”, and therefore dim H = dim H” and Ind, H = Ind,, H”. q 

Corollary 3.13. Zf H is a subgroup of a locally pseudocompact group G, then dim H s 

dim G and Ind,, H s Ind, G. 

Proof. The two-sided uniformity completion G of G is a locally compact group. 

Moreover, dim d = dim G and Ind 6 = Ind,, G [51]. Now apply Theorem 3.12. 0 

Theorem 3.14. Assume that G is a Lindeliif E-group (in particular, a u-compact group) 

and B is a G,-subset of G. Then dim B s dim G and Ind,, B < Ind, G = Ind G. Zf we 

additionally suppose that B is normal in the subspace topology, then Ind B c Ind G. 
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Proof. We need here the following result of Chigogidze [12, Theorem 6.111: If the 

closure of each G,-subset of X is a zero-set of X, then dim B s dim X and Ind, B s 

Ind, Xprovided that B is a G,-subset of X. For the reader’s convenience we give its 

proof here. Really, let B be a G,-subset of X and F a zero-set of B. Then F is a 

G,-subset of X and therefore, F is a zero-set of X. Since F n B = F, we conclude 

that B is z-embedded in X. Now the reference to Fact 1.17 finishes the proof. 

The first part of our theorem follows from Fact 1.10 and Chigogidze’s result cited 

above (the inequalities), and from Corollary 3.10 (the equality Indo G = Ind G). 

The second part follows from Facts 1.10 and 1.15. 0 

Theorem 3.15. Suppose that {G, : a E A} is a family consisting of precompact groups 

and dim G,, = 0 for every LY E A. Then dim n {G, : a E A} = 0. 

Proof. Since ind G,, = 0 for every (Y E A, ind n {G, : a E A} = 0. The product 

n {G,, : a E A} is a precompact group, and now the result follows from Corollary 

3.4. 0 

Remark 3.16. Theorem 3.15 is the particular case of the following results recently 

obtained by the author [42,43]: 

(i) if G,, . . . , Gk are precompact groups, then dim G, X. . . x Gk c 

dim G,+. . .+dim Gk, 

(ii) if { G, : a E A} is a family consisting of precompact groups, and dim n {G, : (Y E 

B} c n for every jinite B c A, then dim n {G, : a E A} c n. 

4. Zero-dimensionality of free precompact groups 

The main result of this section is the following: 

Theorem 4.1. For every space X the following conditions are equivalent: 

(i) dim X = 0, 

(ii) dim F*(X) = 0, 

(iii) dim A*(X) = 0, 

(iv) ind F*(X) = 0, and 

(v) ind A*(X) = 0. 

Before turning to the proof of this theorem let us deduce some corollaries from it. 

Corollary 4.2. Let X be the complete metric space with ind X = 0 and dim X # 0 

constructed by Roy [35]. Then ind F*(X) # 0 and ind A*(X) # 0. Therefore, ind X = 

0 does not imply neither ind F*(X) = 0 nor ind A*(X) = 0 even for the metric space X. 

In connection with this corollary see also Theorem 4.5 and Corollaries 4.6 and 

4.7 below. 
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In somewhat the same time and independently from each other TkaEenko [51] 

and the author made the following easy observation: If rr : G + H is Q continuous 

homomorphism of a pseudocompact group G onto a (pseudocompact) group H, then 

dim H s dim G. Indeed, let 7; : d + f? be the continuous homomorphism extending 

n, where 6 and fi are the two-sided uniformity completions of G and H respectively 

[20]. Since G and H are pseudocompact, d = PG and fi = PH ([14]; see also [13, 

Theorem 6.51). So dim G = dim G and dim k = dim H. Being a continuous mapping 

defined on a compact space, 7j. is quotient. Now observe that dim fi s dim G because 

the dimension of a quotient group of a compact group does not exceed the dimension 

of the initial group [58]. 

It turns out however that if we pass from pseudocompact groups to precompact 

ones, the situation changes entirely (recall that pseudocompact groups are precom- 

pact, see [14], or [13, Lemma 6.31). 

Corollary 4.3. Everyprecompact (Abelian) group G is a quotient group of a precompact 

(Abelian) group H so that dim H =0 and w(H) = w(G). 

Proof. Let 5: D+ G be a mapping of the discrete space D onto G and g: pD+ PG 

be its continuous extension over PD. Define X = i-‘(G) and f= iI, : X + G. Then 

f is perfect, and hence quotient. Now Proposition 2.8 implies that the continuous 

homomorphic extension 7: F*(X) + G off over F*(X) is open. Since D c X c PD, 

dim X = dim PD = 0, and so ind F*(X) = 0 by Theorem 4.1. Using Corollary 3.2 

we can find a group H and continuous homomorphisms w : F*(X) + H, TI: H--z G 

such that i= rr 0 w, H = w(F*(X)), w(H) c w(G) and ind H = 0. The group H is 

precompact (Fact 1.4), so dim H = 0 by Corollary 3.4. Now it remains to note that 

rr is open, since f is open [17, Proposition 2.1.31, and hence w(G)< w(H). 0 

Recall that 9% denotes the topology of the free precompact (Abelian) group 

F*(X) (A*(X)) of a topological space X (see Definition 1.5). 

Proof of Theorem 4.1. (i)*(iv). Denote by Y the topology of the free topological 

group of PX [27,19]. Obviously, S& c 9. Since dim /3X = dim X = 0, from Graev’s 

theorem’ [ 191 it follows that ind( F(/?X), Y) = 0 (see also [48] for another proof of 

Graev’s theorem). Fix an n E KJ+. Since PX is a compact subspace of (F(PX), T), 

from Lemma 1.3 it follows that (F,,(pX), Y[F,,Cpxj) is compact, and hence 

dim(F,(PX), sl,,,,,,,)~-ind(F,(PX), T_(F,,(& 

s ind( F(PX), LT) = 0 (1) 

(in the first inequality of (1) we used [17, Theorem 7.2.71). Furthermore, since 

.Y&c 5 and Sg, is Hausdorff, SIF,,(pxj= F&IF,,,Bxj. Therefore, (1) yields 

’ Graev’s theorem states that the free (Abelian) topological group of a zero-dimensional compact 

space is ind-zero-dimensional. 
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dim(F,(PX), %CIF,JPX) )=O. Since (F,(pX), .Y$Jb,,cp,Y,) is compact for every 

n EN, (F(PX), Sg,) is a-compact (and hence normal). Now Theorem 1.13 implies 

that dim(F(PX), S,*,) = 0, i.e., dim F*(PX) = 0. In particular, ind F*(PX) = 0. 

Therefore, ind F*(X) < ind F”(j3X) = 0 by Theorem 2.3. 

(i)*(v) is analogous to (i)*(iv). 

(ii)+(i) and (iii)=+(i) follow from Proposition 2.9. 

(ii)a(iv) and (iii)e(v) follow from Corollary 3.4. q 

The rest of this section is devoted to strengthening the author’s results from [40] 

concerning the “ind X = 0 implies ind F(X) = 0” problem. 

If X is a topological space and % is a uniformity on the set X generating the 

original topology of X, then we will say that oi% is zero-dimensional provided that 

for every U E % there exists a Q, a clopen subset of XX X, such that A, = 

{(x, x): x E X} c Q c U. For definitions of C*(X), (e*(X), @(, and CfF used below 

see Section 2. 

Lemma 4.4. Assume that (X, .T) is a topological space, F is a group topology on F(X) 

(on A(X)) satisfying 9% c 9, .?_lx = F and ind(F(X), 3) = 0 (ind(A(X), $) =O). 

Then the uniformity %‘*(X) is zero-dimensional. 

Proof. Fixf,, . . . ,J;? E C*(X) and an E > 0. Without loss of generality we can assume 

that F < 1. By Lemma 2.1, one can choose U, E J “5 so that e E U, and Cc,, = @“, n 

(XXX), i=l,..., n. Set CJ=n{Ui:i=l,...,n}. Since eEUE.TgC? and 

ind( F(X), .?) = 0, there is a $-clopen set V with e E Vc U. Mappings (g, h)++g-‘h 

and (g, h)Hgh ’ being $-continuous, @” is a clopen subset of (F(X), .?) x 

(F(X), 5) satisfying Ax c @“. Now A,cQ=~,n(XxX)cC,,,,~.‘.nC,,~,,, 

and Q is clopen in XXX. 0 

In [40] the following spaces were constructed: 

(i) a normal space X, such that ind X, = 0 but the uniformity %*(X,) is not 

zero-dimensional (in fact, X, is the famous Dowker space [ 161; see also [ 17, Example 

6.2.20]), and 

(ii) apseudocompact spaceX, so that ind X2 = 0 but %*(X1) is not zero-dimensional. 

Now Lemma 4.4 yields: 

Theorem 4.5. Let i = 1,2 and X, be as above. Suppose that Fx, is a group topology 

on F(X,) (on A(X,)) inducing the original topology of X, and satisfying S*,, c Yx,. 

Then ind(F(X,), TX,) # 0 (ind(A(X,), Yx,) # 0). 

Corollary 4.6. There exists a pseudocompact space X so that ind X =0 but 

ind F*(X) # 0 and ind A*(X) # 0. 

Note that if X is compact (even Lindeliif) and ind X = 0, then dim X = 0 [ 17, 

Theorem 7.2.71, and thus ind F*(X) = ind A*(X) = 0 by Theorem 4.1. 
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Corollary 4.7 [40]. 7’here exist a normal space X and a pseudocompact space Y such 

that ind X = ind Y = 0, while ind G(X) # 0 and ind G( Y) # 0, where G(Z) denotes 

either the free topological group or the free Abelian topological group of a space Z 

[27, 191. 

5. Closed imbeddings into precompact groups preserving zero-dimensionality 

Theorem 5.1. Assume that (X, 9) is a space with ind(X, y) = 0. Then there exists a 

(Hausdorfs) group topology 3 on the free group F(X) of X satisfying the following 

properties: 

(i) FIX = 3, 

(ii) (F(X), $1) is a precompact group, 

(iii) w(F(X), g)= w(X, y), 
* 

(iv) dim( F( X), y) = 0, 

(v) the set X is ?-closed, 

(vi) for every n E N the set F,(X) is g-closed, 

(vii) for every neN the mapping O,j,:(Z,,, T,,)*(B,(X), .?lB,,(xj) is a homeo- 

morphism (here T,, is the subspace topology on Z,, induced by the topology of the 

Cartesian product ((X, 3)0(X, T)-‘@{e})“). 

An analogous result also holds for the .free Abelian group A(X) of X. 

Proof. Let w(X, 9) = T. First of all let us consider the special case dim(X, 3) = 0. 

Fix an n E iV+. By Proposition 2.5, the mapping 

&lz,, : (Z, Fn) + (&(W, ~%3,,wl 

is a homeomorphism, so, since w(Z,,, yn) = w(X, y) = T, we can choose a y,, c S*, 

such that 1 y,,l = T, and {U n B,(X): U E m} forms a base of the topology y$lB,,(x., . 

Set 

8 = I__J {m : n E tV+} u {F(X)\F,(X): n E N’} u {F(X)\X}. (2) 

Then 181 s T and %?c S*, . Fact 1.9 yields nw(F(X), T/I*,)s w(X, 3) = T. Hence we 

can apply Fact 1.2 to find a (Hausdorff) group topology 9 on F(X) so that 

z?cccT* x (3) 

and w(F(X), 5’)~ 7. Since dim(X, 3) =O, ind(F(X), S”,) =0 (Theorem 4.1). 

From (3) it follows that the identity homomorphism i : (F(X), y^*,) + (F(X), S’) 

is continuous. Now we can use Corollary 3.2 to choose a (Hausdorff) group topology 

9 on F(X) such that 

~I’c$-c~-* x 3 (4) 

w(X, 9) G w(X, S’) s 7 and ind(F(X), 3) = 0. We claim that k? is as required. 

Let us verify (i)-(vii) for 3. From our choice of y, and (2)-(4) it follows that 

9c *lx c F^*,(, = 9, so (i) holds. Since .?-c S*, by (4), precompactness of 3% 
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implies precompactness of $ (Fact 1.4), and hence (ii) holds. Item (iii) follows 

from our construction. As for (iv), note that ind( F(X), 3) = 0, and 9 is precompact, 

hence dim( F(X), .?) = 0 by Corollary 3.4. Items (v), (vi) follow from (2)-(4). To 

verify (vii) observe that (2)-(4) and our choice of y,, imply that $_IB,,(xI = ysIR,,,XI, 

and now the result follows from Proposition 2.5. 

Now let us consider the general case, i.e., ind(X, 9) = 0. In this case there exists 

a homeomorphic imbedding j : (X, y) + D’ of (X, y) into the Cantor cube D’. Let 

yc^o be the topology of D’. Then dim( D’, y,J = 0, and so our special case considered 

above guarantees the existence of the group topology .?(-,, on F(D’) satisfying the 

properties (i)-(vii), in which the subscript 0 should be added to F and ?. Observe 

that the homomorphic extension 3: F(X) + F( D’) of j is the isomorphism between 

groups F(X) and y(F(X)). D fi e ne $={(J-‘(UnJ(F(X))): UE?~}. Then the 

properties (i)-(iii), (v)-(vii) for .? follow from the corresponding properties for F0 

andformulasX=j-‘(D’nJ(F(X)))and F,,(X)=J-‘(F,(D’)ny(F(X))), n~f@. 

Moreover, 

ind(F(X), $)=ind(y(F(X)), ~~licF,X),)~ind(F(D’), $,,)=O. 

Now dim(F(X), ?) =0 follows from precompactness of ? and Corollary 3.4. 

(Another way is to use Corollary 3.6, which yields 

dim(F(X), ?)=dim(J(F(X)), ~“I;(F(X)))~dim(F(D’), ?J=O.) 0 

Corollary 5.2. Every space X with ind X = 0 can be imbedded as a closed subspace 

into a precompact Abelian group G so that dim G = 0 and w(G) = w(X). 

Our next result was obtained by the author in [39], but its proof in [39] contained 

some misleading typographical errors, so we give the proof here. 

Theorem 5.3. Each space X with ind X = 0 can be imbedded as a closed subspace into 

a pseudocompact Abelian group G such that dim G = 0 and w(G) = K, . w(X). 

Proof. Define r = w(X). Let H be the Cantor cube D’ regarded as the topological 

group. Define 

Z={z={z,,: (Y EW,}E H’“I: I{a E w,: z, #O}ISK,}. 

Being the E-product of compact spaces, 2 is countably compact. Let j: H + H”I 

be the diagonal mapping sending each h E H to the elementj(h) E H”l all coordinates 

of which coincide with h. Then j is a homeomorphic imbedding. Since ind X =O, 

we can fix a homeomorphic imbedding i : X --z H. The subspace Y =j(i(X)) of H”I 

is homeomorphic to X. Let G be the smallest subgroup of H”I generated by Y u 2. 

Since G contains dense countably compact subspace 2, G is pseudocompact. Note 

that Ycj( H) = j( H), where the bar denotes the closure in H”I. Moreover, if g E G, 

then g = j( i(x)) + z for some x E X and z E 2. This yields that some coordinate of 

g coincides with i(x), because z E Z. Thus, we conclude that Yn G = Y, i.e., Y is 

closed in G. 0 
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Remark 5.4. Since pseudocompact groups are precompact, Theorem 5.3 is a 

strengthening of Corollary 5.2 in case w(X) > KO. The last restriction is essential. 

In fact, in the equality w(G) = KI + w(X) of Theorem 5.3 the cardinal K, cannot be 

dropped, because a pseudocompact space with a countable base is compact, and 

hence a noncompact space X with a countable base cannot be imbedded as a closed 

subspace into a pseudocompact group G with a countable base. 

It is easy to see that every precompact group is a closed subgroup of a pseudocom- 

pact group2.Comparing this fact with Theorem 5.3 leads to the following question: 

Is every zero-dimensional precompact group a (closed) subgroup of a zero- 

dimensional pseudocompact group? 

Example 5.5. Suppose that G is a countable dense subgroup of S’. Then G isprecompact, 

dim G = 0, but dim H > 0 whenever H is a (locally) pseudocompact group containing 

G as a subgroup. Indeed, let G and fi be the two-sided uniformity completions of 

G and H respectively. Note that G is a subgroup of fi and G = S’, so dim fi 2 

dim G = 1 by Corollary 3.13. Since H is locally pseudocompact, dim H = dim fi 

1511. 

Remark 5.6. Theorem 5.1 improves Sipachova’s result from [44], which states that 

for every space (X, F) with ind(X, 9) = 0 there exists a group topology .? on F(X) 

satisfying ind( F(X), .?) = 0 and the properties (i), (iii), (v), (vi) of Theorem 5.1. 

6. Open problems and concluding remarks 

We start with the following 

Question 6.1 (Arhangel’skii [6]). Assume that dim X = 0. Is then dim G(X) = O? 

(Here G(X) denotes either the free topological group or the free Abelian topological 

group of X.) 

TkaEenko [47] showed that if dim X = 0, then the free Abelian topological group 

of X is ind-zero-dimensional, and Sipachova [45] obtained the analogous result for 

the free topological group of X. 

One can easily see that a topological group G is precompact iff for every U, an 

open neighbourhood of the neutral element of G, there exists a jnite set FU = G 

with G = FU. U={xu: XE F,, u E U}. Recall that a topological group G is said to 

be &-bounded [21] iff the set FL, as above can be chosen to be at most countable. 

Therefore, precompact groups are &,-bounded. Guran [21] showed that G is an 

&-bounded group if and only if there exists a family {G,, : a E A} consisting of 

topological groups with a countable base so that G is isomorphic (algebraically 

and topologically) to a subgroup of n {G, : a E A} (see [55] for a nice proof of this 

’ This observation seems to be due to M.I. Ursul and W.W. Comfort 
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result), and that the class of &,-bounded groups forms a variety (see [28] for the 

basic theory of varieties of topological groups). Let &,,(X) (A,,,(X)) be the free 

&,-bounded (Abelian) topological group of a space X, i.e., the free object in the 

variety of &,-bounded (Abelian) groups. Now Theorem 4.1 leads to the following: 

Question 6.2. Does dim X = 0 imply dim F++,(X) = 0 and dim A.,,(X) = O? 

The proof of the main result of [48] can be easily modified to obtain: 

Theorem 6.3. If dim X = 0, then ind &,(X) = 0 and ind A,,,(X) = 0. 

Therefore, the answer to Question 6.2 will be “yes” if our next question should 

be settled positively. 

Question 6.4. Is ind G = 0 equivalent to dim G = 0 for every &bounded group G? 

Note that Theorem 3.3 cannot be applied to settle this question, because Tkarenko 

constructed an &,-bounded topological group which is not R-factorizable. 

In [41] the author found an example of a precompact Abelian group G with 

dim G = 1 and ind G = CO, so Corollary 3.4 cannot be improved to “dim G = ind G 

for every precompact group G”. Nevertheless, the following question is open. 

Question 6.5. Does dim G s ind G for every precompact (and more generally, 

R-factorizable or &bounded) group G? 

Theorem 3.1 and Corollary 3.2 lead to the following: 

Question 6.6. Assume that G is a precompact (R-factorizable, &,-bounded) topologi- 

cal group, r : G + H is a continuous homomorphism from G to a topological group 

H. Are there a topological group G” and continuous homomorphisms g: G+ G”, 

h:G*+Hsuchthatn=hog,w(G*)Sw(G)andindG*SindG? 

From Fact 1.8 and Lemma l.l8(ii) it follows that “yes” to Question 6.6 for 

precompact (R-factorizable) groups implies “yes” to Question 6.5 for precompact 

(R-factorizable) groups. 

Our Theorems 3.5, 3.12, Corollaries 3.6, 3.10, 3.11 and 3.13 are related to the 

following question, which was claimed to be an old one by Zambakhidze. 

Question 6.7. Is dim H c dim G whenever H is a subgroup of a topological 

group G? 

The next question is motivated by Theorem 0.1. 

Question 6.8. Can every space X with dim X <cc be imbedded as a (closed) 

subspace into a topological group G with dim G <a? Is it true that every space X 

with dim X s n can be imbedded as a (closed) subspace into a topological group 
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G so that dim G G 2n + l? What would be the answer if one additionally assumes 

that X is compact? 

By Nobeling-Pontrjagin’s theorem [31,34], if X has a countable base and dim Xc 

n, then X can be imbedded into the group RZn+‘, so the half of Question 6.8 is 

settled positively for spaces having a countable base. Nevertheless, the other half 

of it, i.e., whether every space X with a countable base so that dim X s n can be 

imbedded as a closed subspace into a topological group G with dim G < 2n + 1, 

seems to be unsolved. 

Now assume that the answer to Question 6.8 is “yes”. Vopenka [56] constructed, 

for every integer n 3 1, a compact space Y, so that dim Y,, = 1 and ind Y,, 2 n. Let 

X be the one-point compactification of O{ Y, : n E N’}. Then dim X = 1 by Theorem 

1.13, and ind X = ~0. For this X use the positive answer to Question 6.8, and let G 

be a topological group containing X as a subspace so that dim G <co. Let H be 

the smallest subgroup of G that contains X. Then H is (T-compact, and the same 

argument as in the proof of Theorem 0.1 shows that dim H d dim G < 00. On the 

other hand, ind H 2 ind X = ~0. Therefore, H is a u-compact group satisfying 

dim H # ind H, and so the positive answer to Question 6.8 yields the negative answer 

to Question 3.6 of [41]. 

Note added in proof 

(i) For any Abelian group G let G# denote the group G endowed with the 

smallest topology which makes every homomorphism r: G + S’ continuous. E.K. 

van Douwen in his paper entitled “The maximal totally bounded group topology on 

G and the biggest minimal G-space, for Abelian group G” (Topology Appl. 34 (1990) 

69-91) showed that ind G’ = 0 for every Abelian group G (the same result was also 

announced in: W.W. Comfort and F.J. Trigos, The maximal totally bounded group 

topology, Abstracts Amer. Math. Sot. 9 (1988) 420-421 (Abstract #UT-22-195)) 

and asked whether always dim G# = 0 (Question 4.10). Since G# is precompact, 

the positive answer to this question follows from Corollary 3.4 of our paper. 

(ii) Some additional open questions related to this paper can be found in: D.B. 

Shakhmatov, A survey of current researches and open problems in the dimension theory 

of topological groups, Questions Answers in Gen. Topology 8 (1990) 101-128. 
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