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Fraenkel’s conjecture for six sequences
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Abstract

A striking conjecture of Fraenkel asserts that every decomposition of Z¿0 into m¿3 sets
{b�in+ �ic}n∈Z¿0 with �i and �i real, �i ¿ 1 and �i’s distinct for i = 1; : : : ; m satis�es

{�1; : : : ; �m}=
{
2m − 1
2k

: 06k ¡m

}
:

Fraenkel’s conjecture was proved by Morikawa if m = 3 and, under some condition, if m = 4.
Proofs in terms of balanced sequences have been given for m= 3 by the author and for m= 4
by Altman, Gaujal and Hordijk. In the present paper we use the latter approach to establish
Fraenkel’s conjecture for m=5 and for m=6. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Complementary sequences; Exact covers; Fraenkel’s conjecture; Beatty sequences;
Balanced words

1. Fraenkel’s conjecture

For real numbers �¿1 and � denote by S(�; �) the sequence {bn�+�c | n=1; 2; 3; : : :}.
A �nite set {S(�i; �i) | 16i6m} is called an (eventual) exact cover if every (su�ciently
large) positive integer occurs in exactly one S(�i; �i). If {S(�i; �i)}mi=1 is an eventual
exact cover, then

∑m
i=1 �

−1
i = 1. Hence the only case with m= 1 is when �1 = 1. We

call � the rate of S(�; �) and �−1 its density and � the rest.
Skolem [14] gave a criterion for exact covers in case m=2. He proved that if �1 is

irrational, then {S(�i; �i)}2i=1 is an eventual exact cover if and only if
1
�1
+
1
�2
= 1 and

�1
�1
+
�2
�2

∈ Z:

Fraenkel [6] proved the same result in case �1 is rational. He further gave similar, but
more complicated, necessary and su�cient conditions for {S(�i; �i)}2i=1 to be an exact
cover.
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For m= 3 there exists an exact cover with distinct rates, namely

{
S( 74 ; 0); S(

7
2 ;−1); S(7;−3)

}
:

Fraenkel [7] noticed that there is an example for every m, namely

{
S
(
2m − 1
2i−1

; 1− 2m−i
)}m

i=1
: (1)

He further made the following conjecture (cf. [5, p. 19]).

Fraenkel’s Conjecture. If {S(�i; �i)}mi=1 is an exact cover with distinct rates �1; : : : ; �m
and m¿3, then

{�1; : : : ; �m}=
{
2m − 1
2k

: 06k ¡m
}
:

Graham [8] used Kronecker’s approximation theorem and Skolem’s work to show that
if all the rates of an eventual exact cover of m¿3 sequences S(�i; �i) are distinct, then
all the rates �i are rational. It follows that each S(�i; �i) is periodic and that, when
dealing with Fraenkel’s conjecture, we need not distinguish between eventual exact
covers and exact covers.
If the rate � of a sequence S(�; �) is rational, we may assume without loss of

generality that � is a rational number with the same denominator as �. Suppose
{S(ai=ci; bi=ci)}mi=1 is an exact cover with rates ai=ci where gcd(ai; ci)=1 for i=1; : : : ; m
and m¿3. Berger et al. [4] proved that if a16a26 · · ·6am, then am−1=am and more-
over if cm−1 6= cm, then am−2 = am−1 = am.
A thorough study of exact covers {S(�i; �i)}mi=1 was made by Morikawa in a series

of �ve papers. In [9] he classi�ed all exact covers with m = 3. His results imply
Fraenkel’s conjecture for m = 3. In [10] he classi�ed all exact covers of the form
{S(c=ai; c=bi)}4i=1 with gcd(ai; c) = 1 for i=1; 2; 3; 4 and veri�ed Fraenkel’s conjecture
for this subclass.
In 1991 Simpson [13] showed that Fraenkel’s conjecture is true if mini �i6 3

2 .
Quite recently, Altman et al. [1] established Fraenkel’s conjecture in case m = 4.

Since they do so in the more general framework of balanced words, I shall deal with
their paper in the next section.

2. Balanced words

Let Q be a �nite set of ‘letters’, a so-called alphabet. A word on Q is de�ned as
a surjective function W : Z¿0 → Q. By a block we mean a �nite set of consecutive
positive integers. A block of N positive integers is called a block of length N or an
N -block.
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A sequence S of positive integers is called a Beatty sequence with density d if the
number of terms of S in an arbitrary N -block equals bNdc or dNde.
A word W = {W (s)}∞s=1 on Q is called a Beatty word if the inverse image of each

letter of Q forms a Beatty sequence.
A set S of positive integers is called balanced if the numbers of elements of S in

any two blocks of equal lengths di�er by at most 1.
The word W is called balanced if the inverse image of each letter is a balanced set.
Usually, a Beatty sequence on the positive integers is de�ned as a sequence {bn�c}∞n=1

or as a sequence {bn� + �c}∞n=1 with �¡ 16� + � (cf. [2,3,15,13]). It follows from
Lemma 1 that every such sequence S(�; �) is a Beatty sequence with d = �−1 as the
density and that every Beatty sequence is of the form {bn� + �c}∞n=1 or of the form
{dn�+�e}∞n=1. If � is rational, then every sequence of the latter type can be written in
the form of the former type and vice versa. If � is irrational, a sequence of the latter
type need not be of the former type; e.g. {dn�+ 2− �e}∞n=1 cannot be represented as
{bn�+ �c}∞n=1.
Obviously, a Beatty word represents an exact cover of the positive integers by Beatty

sequences, and similarly for balanced. By de�nition every Beatty sequence forms a
balanced set. Hence every Beatty word is a balanced word. A result in the opposite
direction is given in the Corollary of Lemma 2. Every balanced set has a density
d ∈ [0; 1] which is the limit of the number of elements 6x divided by x as x → ∞
(see [11, p. 5; 17, Lemma 1]). In the case of a Beatty sequence the density is equal
to the inverse of the rate. We de�ne the rate of a balanced set as the inverse of its
density.
Almost by de�nition the complement of a Beatty sequence is a Beatty sequence and

the complement of a balanced set is a balanced set. So every balanced set de�nes a
balanced word on two letters (de�ned by its characteristic function), and every balanced
word on two letters is characterised by a balanced set (take the inverse image of one
of both letters). Altman et al. [1, Lemma 2.26] used a generalisation of Graham’s
result by Hubert to show that every balanced word on m¿3 letters with distinct rates
is periodic so that all the rates are rational.
The balanced words on three letters were characterised by the author [16]: a balanced

word on the letters a; b; c originates from any balanced set S= {si}i∈Z¿0 with si ¡ si+1
for all i by putting letters a on places s2i, letters b on places s2i+1 and letters c on the
remaining places, or is a periodic word with period cycle (abacaba). (Of course, the
choice a; b; c is arbitrary.) Note that in the former case the letters a and b have the same
rates and that the exceptional case is in agreement with Fraenkel’s conjecture. Altman
et al. [1, Theorem 2:19] gave a simpli�ed proof of this result and generalised it to
balanced words on four letters. To be precise, they proved that the only balanced words
on four letters with distinct rates are the periodic words with cycle (abacabadabacaba)
and rates 15

8 ;
15
4 ;

15
2 ; 15. This established Fraenkel’s conjecture in case m = 4, without

the restriction imposed by Morikawa.
In the present paper we extend the method to establish Fraenkel’s conjecture in the

cases m= 5 and m= 6. By Lemma 1 it su�ces to prove the following assertion.
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Theorem. The only Beatty words W on m letters a1; : : : ; am with distinct rates
�1¡�2¡ · · ·¡�m and 36m66 are the periodic words with cycle (Fm) where
F1 = a1 and Fm = Fm−1amFm−1 for m= 2; 3; : : : : It follows that �j = (2m − 1)=(2m−j)
for j = 1; 2; : : : ; m.

Section 3 contains some fundamental properties of Beatty sequences, balanced se-
quences and balanced words. Lemma 3 states that if a word is balanced on letters with
distinct rates and the letter a has rate 63, then the word remains balanced if all the
a’s are omitted. This is an extension of a result of Altman et al. [1, Lemma 2:27], who
proved the result when a has rate 62. Lemma 4, already contained in [17], states that
if the rates of the letters of a balanced word are distinct, then the integer parts of the
rates are distinct. The Theorem is proved in Section 4 in case all rates are at least 3
and in Section 5 in the remaining case.
For more information on covers and Fraenkel’s conjecture I refer to [12] which

contains a survey of the theory of covers up to 1981. Paper [19] consists of a less
complete, but more up-to-date survey of the literature on exact covers, a direct proof
for Fraenkel’s conjecture in case m= 5 and proofs of some related results.

3. Some basic principles

In this section we derive some fundamental properties which are used in the proofs
of the theorem. We denote by |V | and cx(V ) the number of letters of the �nite subword
V of W and the number of times that the letter x occurs in V , respectively. We further
denote by ra the rate of the letter a (in a given word W ). Observe that ra is the average
distance between consecutive a’s, where the distance between consecutive letters is 1.

Lemma 1. Every sequence of the form {bn� + �c}∞n=1 with �¿1 and �¡ 16� + �
or of the form {dn� + �e}∞n=1 with �¿1 and �60¡� + � is a Beatty sequence.
Conversely; every Beatty sequence is of one of these forms.

Proof. The number of terms of the sequence {bn�+ �c}∞n=1 in an N -block of positive
integers (x; x+N ] equals b(x+N−�)=�c−b(x−�)=�c and this di�erence equals N=�+�
with |�|¡ 1 and therefore bN=�c or dN=�e. The proof that the sequence {dn�+�e}∞n=1
in a Beatty sequence is similar.
Conversely, every Beatty sequence is a balanced sequence. The balanced sequences

have been classi�ed by Morse and Hedlund [11, pp. 8–19] and consist of three classes:
periodic, rational and skew. The skew sequences are not Beatty. The periodic and
irrational sequences are of the form {bn� + �c}∞n=1 or {dn� + �e}∞n=1 with � rational
in the periodic case and � irrational in the irrational case. (cf. [18, Theorem 2]).

Lemma 2. Let S={si}i∈Z¿0 be an in�nite balanced set of rate r. Let k be a positive
integer. If kr 6∈ Z; then si+k − si equals bkrc or dkre for all i. If kr ∈ Z; then either
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si+k − si ∈ {kr; kr + 1} for all i or si+k − si ∈ {kr − 1; kr} for all i and it can occur
for only �nitely many i that si+k − si − kr is non-zero.

Proof. See [11, p. 17] or [19, Lemma 2].

We call a word W an eventually Beatty (balanced) word if W (s) for s greater than
some s0 coincides with a Beatty (balanced) word. It is obvious that every eventually
Beatty word is an eventually balanced word. As an immediate consequence of Lemma
2 we have the converse result.

Corollary. Every eventually balanced word is an eventually Beatty word.

It is not true that every balanced word is a Beatty word. For example, a(ab)∞

is balanced, but not Beatty. Note that the rate of a sequence is determined by its
asymptotic behaviour. In the proof of the Theorem we shall use that if {si}∞i=1 is an
eventually balanced set of rate r, then brc6si+1 − si6dre for i greater than some i0.

Lemma 3. Let W be a Beatty word on a �nite alphabet {a; b; : : :}. Suppose the rate
of a in W is at most 3. Then the word W ′ obtained from W by omitting all a’s is
balanced.

A similar result if a has rate at most 2 is due to Altman et al. [1, Lemma 2:27].

Proof. Suppose W is a Beatty word. Choose two subwords V ′
1 ; V

′
2 of length n in W

′.
Let V1 and V2 be subwords of W such that the �rst and last letters are not a’s and that
the words reduce to V ′

1 ; V
′
2, respectively, if the a’s are omitted. Let k:=|V1| − n and

l:=|V2|−n denote the number of appearances of the letter a in V1 and V2, respectively.
We may assume l¿k.
Case 1: l = k. Since the number of occurrences of any letter in V1 and V2 di�ers

by at most 1, the same is true for V ′
1 and V

′
2. Hence W

′ is balanced with respect to
V ′
1 and V

′
2.

Case 2: l¿k + 1. Note that V1 has n + k letters among which exactly k letters
a. Let V̂ 2 be the word obtained from V2 by truncating the �rst letter and the last
l − k − 1 letters. Then V̂ 2 has also n + k letters, but the number of a’s in V̂ 2 is at
least l− (l− k − 2) = k + 2. This contradicts that W is balanced.
Case 3: l= k + 1. Suppose there is a b ∈ Q such that |cb(V ′

1)− cb(V ′
2)|¿ 1. Then

b 6= a and |cb(V1)− cb(V2)|¿ 1. Since V1 and V2 are subwords of the balanced word
W and |V2|= |V1|+1, we obtain that cb(V2) = cb(V1) + 2 and that V2 = bVb for some
subword V of W . By a similar reasoning we further deduce that W contains bV1b
as a subword. Hence between the last a preceding bV1b and the �rst a succeeding it
there are at least |V1|+ 2= n+ k + 2 letters. On the other hand, between the �rst and
the last a in V2 there are at most |V | − 2 = n + k − 3 letters. Since W is a Beatty
word, V1 contains k letters a and V2 contains k + 1 letters a, we �nd that on the one
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hand (k +1)ra ¿n+ k +2 and on the other hand kra ¡n+ k − 1. On combining both
inequalities, we get ra ¿ 3. This contradiction shows that |cb(V ′

1)− cb(V ′
2)|61 for all

b ∈ Q. Hence W ′ is balanced.

Remark. If in Lemma 3 the rates of the letters in W are distinct, then the rates of
the letters in W ′ are distinct and we have in fact for the rate r′b of b 6= a in W ′ that
r′b = rb(1 − r−1a ). This follows from the observations that the ratios of rates of letters
6= a are the same in W and W ′ and that the sum over all letters of the inverses of the
rates equals 1.

Lemma 4. Let W be an eventually balanced word on a �nite alphabet {a; b; : : :}. Let
k and l be integers such that bkrac= blrbc. Then kra = lrb.

Proof. Suppose kra ¡ lrb. Then the situation occurs in�nitely often that there are two
a’s with exactly k − 1 letters a and fewer than l letters b in between. By Lemma 2
there are in�nitely often at least bkrac−1 letters between the two a’s. Then there are at
least bkrac+1 letters between the last b preceding the �rst a and the �rst b succeeding
the last a. Thus dlrbe¿bkrac+ 2 = blrbc+ 2 which is a contradiction.

Corollary. If brac = brbc; then ra = rb. If the rates of an eventually balanced word
are distinct, then each letter is characterised by the integer part of its rate.

Remark. In the proof of the Theorem we shall often denote a letter by the integer
part of its rate. By the corollary this characterises the letter uniquely.

4. Fraenkel’s conjecture if all rates exceed 3

In this section we assume that W is a Beatty word on a �nite alphabet Q such that
the rates of the letters are distinct and at least 3. We shall show that Q contains at
least 7 di�erent letters. By the Corollary of Lemma 4 the letters are characterised by
the integer parts of their rates. We shall denote a letter by the integer part of its rate
if we know the value and it is less than 10, and otherwise by some other symbol. An
∗ will denote some unknown letter which may be equal to one of the already used
letters. By rx we denote the rate of x. Recall that the distance between two consecutive
x’s in W is brxc or drxe. Thus if a letter is denoted by 3, then the distance between
consecutive 3’s is 3 or 4. Sometimes we make an assumption by using symmetry. Then
it may occur that the letters in the argument are written in the inverse order. Since the
arguments concern �nite blocks, it does not e�ect their validity.

Lemma 5. If each of the letters 3; 4 and 5 occur in W; then r3¿ 15
4 ; r4¿

9
2 ; r5¿

17
3

and all other letters have rates at least 10.
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Proof. Suppose the letters 3; 4 and 5 occur in W . Since r5¿r4¿r3, the patterns
4 3 ∗ ∗ 3 4 and 5 4 ∗ ∗ ∗ 4 5 occur. In the latter pattern the middle ∗ has to be 3,
since 3 can have only jumps 3 and 4. Thus we have the pattern 3 5 4 ◦ 3 ◦ 4 5 3
where ◦ denotes letters di�erent from 3; 4 and 5. The two consecutive jumps of length
4 of the letter 3 imply r3¿ 7

2 . It follows that the former pattern has to be extended
as follows: 3 ∗ ∗ 4 3 ∗ ∗ 3 4 ∗ ∗ 3. One of the middle ∗’s has to be 5. Because of
symmetry we may assume that we have 5 3 ◦ ◦ 4 3 5 ◦ 3 4 ◦ 5 3. The letter before
the �rst 5 has to be 4 and we obtain r4¿ 9

2 . Thus we have the patterns

4 5 3 ◦ ◦ 4 3 5 ◦ 3 4 ◦ 5 3 and 4 ◦ ◦ 3 5 4 ◦ 3 ◦ 4 5 3 ◦ ◦ 4:
The latter pattern can only be extended as

5 3 4 ◦ ◦ 3 5 4 ◦ 3 ◦ 4 5 3 ◦ ◦ 4 3 5
and we obtain r3¿ 15

4 and r5¿
17
3 . Applying this information to the other pattern, we

�nd that the patterns have a common extension

5 3 4 ◦ ◦ 3 5 4 a 3 b 4 5 3 c ◦ 4 3 5 ◦ 3 4 ◦ 5 3
where a; b and c are letters with rates at least 6. If some letter 6; 7; 8 or 9 occurs, it
has to be a; b or c, It is easy to check that a 6= 6; 7; 8; 9, that b 6= 6; 7; 8; 9 and that
c 6= 7; 8; 9. The only remaining possibility is c = 6, but then a = 6, which has been
excluded.

Remark. Since three consecutive places are blocked for 1’s and 2’s, it follows
from the proof that the letters 1 and 2 do not occur. The same remark applies to
Lemmas 6, 7 and 9.

Corollary. If 3; 4 and 5 occur in W; then |Q|¿7.

Proof. Suppose |Q|66. Then according to Lemma 5 the sum of the densities of the
letters is less than

4
15 +

2
9 +

3
17 +

3
10¡ 1

which is a contradiction.

Lemma 6. If 3; 4; 6 and 7 occur in W; then |Q|¿7.

Proof. Suppose 3; 4; 6 and 7 occur. Then 5 does not occur in W by the Corollary of
Lemma 5. Since r7¿r6, the following pattern is in W : 7 6 ∗ ∗ ∗ ∗ ∗ 6 7. If there
are two 4’s between the two 6’s, then we have 7 6 4 ∗ ∗ ∗ 4 6 7 and the 3’s cannot
be placed. Thus, there is only one 4 in between and we have 4 7 6 ◦ ◦ 4 ◦ ◦ 6 7 4
where ◦ denotes a letter di�erent from 4; 6; 7. The only possible extension is

a 3 4 7 6 3 b 4 c 3 6 7 4 3 d;

where a; b; c; d are letters with rates at least 8. If |Q|66, then a = c 6= b = d and a
and b are at most 8. This is impossible by Lemma 4.
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Lemma 7. If 3; 4 and 6 occur in W; then |Q|¿7.

Proof. Suppose 3; 4 and 6 occur and |Q|66. Then 5 and 7 do not occur in W by
Lemmas 5 and 6. Because of symmetry we may assume that at least one of the
following patterns is in W :
case (a) a 4 3 6 b 3 4 c
case (b) 6 4 3 a b 3 4 6;
where a; b; c are distinct and at least 8.
Case (a). We have Q = {3; 4; 6; a; b; c}. Denoting by (x|y) that only xy and yx are

possible, the pattern (a) can only be extended as

(4|6)(3|c) a 4 3 6 b 3 4 c ∗ : (2)

Hence 86c69 and ∗ is 3 or a. If ∗= a, then a= 8; c = 9 and we obtain
(4|6)(3|9) 8 4 3 6 b 3 4 9 8 3 6 4 (3|b) ∗ ∗ ∗ ∗:

Here the four ∗’s have to comprise 3; 4; 6; 8 and 9, which is impossible. If ∗ = 3 in
(2), then r3¡ 7

2 and we have

∗ b 3 (4|6)(3|c) a 4 3 6 b 3 4 c 3 ∗ :
Hence 9¡rb¡ 11. Since the leftmost ∗ can only be 4, we get

4 b 3 6 4 (3|c) a 4 3 6 b 3 4 c 3 ∗
and r4¡ 9

2 . This yields

4 b 3 6 4 (3|c) a 4 3 6 b 3 4 c 3 6 4 (3|a) b
whence 10¡ra¡ 13 and b= 9. We obtain

∗ 3 4 9 3 6 4 (3|c) a 4 3 6 9 3 4 c 3 6 4 (3|a) 9
and ∗ can only be c = 8. Note that the three ∗’s in

8 3 4 9 3 6 4 3 8 a 4 3 6 9 3 4 8 3 6 4 (3|a) 9 ∗ ∗ ∗
have to comprise a 3; 4; 6 and 8. This is impossible.
Case (b). We assume a¡b. The pattern has to be extended as

3 4 (3|c) 6 4 3 a b 3 4 6 (3|c) 4
where c 6= 3; 4; 6; a; b. Hence Q= {3; 4; 6; a; b; c} and r4¡ 14

3 . The left (3|c) should be
c 3 and we obtain r3¡ 10

3 and 96rc ¡ 12. The only possible extension is

(3|4) 6 ∗ 3 4 c 3 6 4 3 a b 3 4 6 (3|c) 4 (3|∗);
where ∗ is a or b. Since b¿a¿8, the right ∗ should be a. Then the left ∗ has to be
a too and we �nd a= 8 . Now the only possible further extension is

∗ ∗ ∗ ∗ ∗ b (3|4) 6 8 3 4 c 3 6 4 3 8 b 3 4 6 (3|c) 4 (3|8):
The �ve ∗’s have to contain two 3’s and one 4, one 6, one 8 and one c. This is a
contradiction.
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Lemma 8. If 3 and 4 occur in W; then |Q|¿7.

Proof. Assume 3 and 4 occur and |Q|66. In view of Lemmas 5 and 7 we may assume
that 5 and 6 are not in Q. Then the pattern

a 4 3 b c 3 4 d

occurs in W , where a; b; c; d are distinct unless a= d= 7. We may assume b¡c.
Case (a). a= d= 7. Then c¿b¿8. Hence we have

(3|e) 7 4 3 b c 3 4 7 (3|e);
where e 6= 3; 4; 7; b; c and Q = {3; 4; 7; b; c; e}. The only possible extension is

∗ ∗ (b|c) 3 4 (3|e) 7 4 3 b c 3 4 7 (3|e):
The two ∗’s should contain both 3 and 4 and 7 which is impossible.
Case (b). Q = {3; 4; a; b; c; d} and the only possible extension is
(3|d) a 4 3 b c 3 4 d (3|a) ∗ ∗ ∗ ∗:

Hence 76a69 and 76d69. Since 76b¡c, we have rc¿10. Note that the four
∗’s cannot be a; c or d and contain at most one 3, one 4 and one b. This does not
su�ce.

Lemma 9. If 3; 5 and 6 occur in W; then |Q|¿7.

Proof. Suppose 3; 5 and 6 occur and |Q|66. By Lemma 7 we have 4 6∈ Q. Since
r5¡r6, the pattern

6 5 3 a b 3 5 6

occurs in W . The only possible extension is

∗ (3|c) 6 5 3 a b 3 5 6 (3|c);
where c 6= 3; 5; 6; a; b. We may assume a¡b, whence a¿7; b¿8, but now there is
no letter available for ∗.

Lemma 10. If 3 and 5 occur in W; then |Q|¿7.

Proof. Suppose 3 and 5 occur and |Q|66. Then we may assume 4; 6 6∈ Q in view of
Lemmas 8 and 9, so that the other letters are at least 7. Since letter 5 has sometimes
jumps 5, we may assume that in W one of the following patterns occurs:

(a) a 5 3 b c 3 5 d,
(b) 5 a 3 b c 5 3 d.

If a= d in case (a), then we have a= 7; b¿8 and as only possible extension

7 5 3 b c 3 5 7 (3|e) ∗
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with e 6= 3; 5; 7; b; c. Hence no letter is available for (∗). We may therefore assume
that 3; 5; a; b; c; d are distinct and Q = {3; 5; a; b; c; d}.
In case (a) we may assume 76b¡c and the only possible extension is

∗ (3|d) a 5 3 b c 3 5 d (3|a)
and no letter is available for ∗ which is a contradiction.
In case (b) a; b; c; d are distinct. The only possible extension is

c (3|d) 5 a 3 b c 5 3 d a:
Hence a= c = 7. This contradicts the corollary of Lemma 4.

Proposition. If W is a Beatty word on an alphabet Q so that the rates of the letters
are distinct and all at least 3; then |Q|¿7.

Proof. Suppose |Q|66. If 3 6∈ Q, then, by Lemma 4, Corollary,

1 =
∑
q∈Q

r−1q 6
1
4
+
1
5
+
1
6
+
1
7
+
1
8
+
1
9
¡ 1:

For an exact cover the sum of the densities of the sequences has to be equal to 1.
Thus 3 ∈ Q. By Lemmas 8 and 10 we may assume that 4 and 5 are not in Q. Hence,
by Lemma 4, Corollary,

1 =
∑
q∈Q

r−1q 6
1
3
+
1
6
+
1
7
+
1
8
+
1
9
+
1
10
¡ 1:

5. Fraenkel’s conjecture with at most six letters

In this section we prove the Theorem by induction on m.

Proof of the Theorem. For the case m = 3 see [16]; [1; Theorem 2:19] or [19]. Use
that every Beatty word is balanced.
Induction step. Suppose 3¡m66, the statement of the Theorem is true for

m − 1 and we are given a Beatty word W on m letters a1; : : : ; am with distinct
rates �1¡�2¡ · · ·¡�m, respectively. Then, by the Proposition, we have �1¡ 3. By
Lemma 3 the word W ′, obtained from W by omitting all a1’s, is balanced. By Lemma
2, Corollary, W ′ is an eventually Beatty sequence. Denoting the rate of aj in W ′ by
�′j, we have �i=�j = �

′
i =�

′
j for 1¡i¡j6m so that �′2¡�′3¡ · · ·¡�′m. By the induc-

tion hypothesis applied to some suitable tail of W ′, we obtain that W ′ is eventually a
periodic word with cycle (F ′

m−1) where F
′
1 = a2 and F

′
j = F

′
j−1aj+1F

′
j−1 for 26j¡m.

Moreover �′j = (2
m−1 − 1)=2m−j for j= 2; : : : ; m. Since �′2¡ 2, the pattern a2a2 occurs

in W ′. Then the pattern a2ak1a2 appears in W for some k.
If k=0, then a2a2 appears in W , whence �2¡ 2 and by Lemma 4, Corollary, �1¡ 1.

This is impossible.
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If k = 1, then a2a1a2 appears in W . Hence �2¡ 3 and �1¡ 2. So every pair of
consecutive letters contains an a1. Then a3 is surrounded by a1’s, in contradiction with
�2¡ 3.
We conclude that k¿2 and �2¿3. Since a1 is balanced in W , every subword of k

letters contains at least k−1 letters a1 and therefore a3 is surrounded by ak−11 ’s. Since
a2 is balanced in W and a2ak1a2 and a

k−1
1 a3ak−11 occur, we obtain k +2¿�2¿2k − 1.

Thus k = 2 and a2a1a1a2 appears in W . It follows that �1¡ 2 and 36�2¡ 4. Then
in between two consecutive a2’s in W there are two or three letters, the �rst and last
of which are equal to a1. We conclude that in a block of two a2’s in W ′ exactly
two a1’s are inserted in W and between any other pair of consecutive letters in W ′

exactly one a1. This means that W is eventually equal to the mth Fraenkel word (Fm).
Hence �j=(2m− 1)=2m−j for j=1; 2; : : : ; m. Hence, by Lemma 1 the inverse image of
each letter is of the form {bn�+ �c}∞n=1 or {dn�+ �e}∞n=1 with � rational. Since these
sequences are periodic, W itself is a periodic word with period cycle (Fm).
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