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In this note, a Massera type criterion for the existence of periodic solutions for
linear functional differential equations with advance and delay is established.
Because of the presence of an advanced argument, the definition of the fundamen-
tal solution operator seems unknown. Hence a method different from the usual
one is employed. Applications to periodic problems for nonlinear equations are
also given. Q 1996 Academic Press, Inc.

1. INTRODUCTION

w xIn 1950, Massera 1 proved the following interesting result.

THEOREM A. Consider the linear differential equation

xX s a t x q b t , 1Ž . Ž . Ž .

where a: R ª Rn=n, b: R ª Rn are continuous and v-periodic for some
Ž .v ) 0. Then 1 admits an v-periodic solution if and only if it has a positï ely

bounded solution.

Here by a positively bounded solution we mean that for some M ) 0,
< Ž . <x t F M, as t G 0.
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w xIn 1973, Chow 2 extended the above mentioned result to linear
functional differential equations with finite delay.

In this note, we shall generalize the criteria of Massera and Chow to
functional differential equations with advance and delay of the form

xX s A t , x q B t , 2Ž . Ž . Ž .t

n n Ž .where A: R = C ª R , B: R ª R are continuous with respect to t, f
and t, respectively, and v-periodic in the time variable t for some v ) 0;

Ž .and A t, f is linear and homogeneous in the space variable f g C; the
space

w x n q � 4C s C yD , D , R , D , D g R j `Ž .Ž .1 2 1 2

5 5 qpossesses the usual norm ? for D , D g R and suitable C -norm1 2 g
Ž . w x nlisted below for details , otherwise; given t g R, x : yD , D ª R ist 1 2

Ž . Ž . w xdefined by x u s x t q u , u g D , D .t 1 2
Ž .For Eq. 1 , the usual proof of Theorem A is strongly based on the

variation of constants formula

t y1x t s V t x q V t V s b s ds, 3Ž . Ž . Ž . Ž . Ž . Ž .H0
0

Ž . Ž . Žwhere V t is the fundamental solution matrix satisfying V 0 s I the
.identical matrix .

For a delay-functional differential equation, a similar formula holds.
However, in the presence of the advanced argument D ) 0, to our2
knowledge, there is no similar formula. Hence, to present a similar result
for the advanced-delay equations, we must utilize a different method,
depending on Tychonoff’s fixed point theorem.

For the study of periodic solutions of equations with advance and delay,
to our knowledge, there have been few works; a recent one can be found

w x w xin 3 . For some recent related works, also refer to papers 4]11 .
This paper is organized as follows. In Section 2, we state and prove our

Ž .main result, which shows that for Eq. 2 , the existence of periodic
solutions is equivalent to that of positively bounded solutions. As applica-
tions, in Section 3, we discuss the periodic problems for nonlinear equa-
tions, with the use of Fan’s fixed point theorem concerning set-valued
maps.

2. MAIN RESULT

First, let us give details of the norms or C -norm employed in this paper.g
w .Let g : R ª 1, ` be a continuous function such that it is nonincreasing on

y q Ž . Ž .R and nondecreasing on R ; moreover, g 0 s 1, g "` s `.
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w xAs in 12 , we may define a norm space C asg

n < < < <w xC s f g C yr , r , R : sup f s rg s ' f - ` ,Ž . Ž .Ž . gg 1 2½ 5
w xsg yr , r1 2

< <with the norm ? . Writeg

n < < < < yw xyC s f g C yr , 0 , R : sup f s rg s ' f - ` .Ž . Ž .Ž . gg 1½ 5
w xsg yr , 01

For simplicity, we shall assume that D s D s ` in the sequel.1 2
Throughout this paper, we assume:

Ž . n nH1 A: R = C ª R , B: R ª R are continuous with respect tog
Ž .t, f and t, respectively, and v-periodic in t for some v ) 0;

Ž . Ž .H2 A t, f is linear and homogeneous with respect to f, and there
exists M ) 0 such that

< < < <A t , f F M f , for t g R , f g C .Ž . g g

q n Ž .Let us recall that a map x: R ª R is said to be a solution of 2 with
the initial value

y
yx s f , for f g C , 4Ž . Ž .0 g

Ž . Ž . q Ž . y < yif x t satisfies Eq. 2 on R and 4 , where f s f . When a solutionR
Ž . Ž . Ž . Ž .x t of 2 defined on R satisfies x t q v s x t , for t g R, we call it an

Ž .v-periodic solution of 2 .
We are in a position to state our main result.

Ž .THEOREM B. Equation 2 admits an v-periodic solution if and only if it
admits a positï ely bounded solution with a bounded initial ¨alue.

Remark. When D s D s 0, Theorem B is just Theorem A; when1 2
D g Rq and D s 0, Theorem B is the well known result of Chow.1 2

Proof of Theorem B. The necessity is obvious. It suffices to prove the
Ž . Ž .sufficiency. Let x t be a positively bounded solution of 2 satisfying the

Ž .y
yinitial value x s f, for some bounded f g C . Write K s0 g 0

< Ž . <ysup f s . Hence there exists K ) 0 such thatR 1

< <x t F K , for t G 0. 5Ž . Ž .1

Set

x t s x t q k y 1 v , t g R , k s 1, 2, . . . .Ž . Ž .Ž .k
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Ž . Ž .From 5 and the boundedness of f we see that x g C for k s 1, 2, . . .k t g
and t G 0. Indeed, for each k, and t G 0,

< < < <x s sup x t q k y 1 v q s rg sŽ . Ž . Ž .Ž .gk t
sgR

< <F max sup x t q k y 1 v q s rg s ,Ž . Ž .Ž .½
Ž Ž . xsg y` , yty ky1 v

< <sup x t q k y 1 v q s rg sŽ . Ž .Ž . 5
w Ž . .sg yty ky1 v , `

< <F max sup x s rg s y t y k y 1 v ,Ž . Ž .Ž .½
yR

< <sup x s rg s y t y k y 1 vŽ . Ž .Ž . 5
qR

< < � 4F max sup f s rg s , K F max K , K F K q K . 6Ž . Ž . Ž .½ 51 0 1 0 1
yR

Ž . Ž .By the periodicity of 2 , we have that for each t g R, as t q k y 1 v G 0,
Ž . Ž . Ž .x t satisfies Eq. 2 , and consequently from H2 we have that therek

exists M ) 0 such that

< X < < < 5 5x t F M x q B , 7Ž . Ž . Ž .g `k k t

5 5 < Ž . < Ž . Ž .where B s sup B t . Therefore from 6 and 7 it follows that for` R
Ž .each k, as t q k y 1 v G 0,

< X < 5 5x t F M K q K q B .Ž . Ž . `k 0 1

Ž . Ž . Ž .This shows that x t k s 1, 2, . . . are equicontinuous. It follows from 6k
Ž . Ž .that for t G 0, x k s 1, 2, . . . are bounded in C . We claim thatk 0 g

�Ž . 4x is precompact in C . For simplicity of notation, without loss ofk 0 k g
�Ž . 4generality, write any subsequence of x by itself. Utilizing thek 0 k

� Ž .4Arzela]Ascoli theorem yields that x t has a uniformly convergentk k
w xsubsequence on ym, m for every positive integer m. By a diagonal

Ž n. Ž .process, we may assume for some x# g C R, R that x t is uniformlyk
Ž . w xconvergent to x# t on every ym, m . Then

< <x# t F K q K ,Ž . 0 1

for t g R, and hence
< <x# F K q K .Ž . g0 0 1

Given e ) 0, there exists a positive integer m such that0

K q K e- 1
-

g s 2Ž .
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< <whenever s G m . Also, there exists a positive integer k such that0 0

< <x t y x# t - e ,Ž . Ž .k

w xfor t g ym , m , whenever k G k . Thus0 0 0

< <x y x#Ž . Ž . g0k 0

< <x s y x# sŽ . Ž .kF max sup ,½ g sŽ .Ž x w .sg y` , ym j m , `0 0

< <x s y x# sŽ . Ž .k
sup 5g sŽ .w xsg ym , m0 0

2 K q K 2 K q KŽ . Ž .0 1 0 1F max , ,½ g ym g mŽ . Ž .0 0

< <sup x s y x# s - e .Ž . Ž .k 5w xsg ym , m0 0

This shows that

< <x y x# ª 0 k ª ` , 8Ž . Ž . Ž . Ž .g0k 0

and thereby, the claim holds.
Set

S s Co x ,� 4Ž .k 0

< <where Co denotes the closed convex hull of the set with respect to ? .g
Ž . Ž .Then S is compact. Since for each k, x ' x g S, we havek v kq1 0

y g S, for y g S.v

Define an operator T : S ª C byg

Ty s y .v

Clearly, T : S ª S. Let y ª y in S. Thenk

5 5 5 5y , y - K q K .` `k 0 1

Ž .Similar to the argument of 8 , we have

< <Ty y Ty ª 0 k ª ` ,Ž .gk

wand hence T is continuous on S. By Tychonoff’s fixed point theorem 13, p.



NOTE722

x90, Theorem 10.1 , T has a fixed point x in S, i.e.,0

Tx s x ,0 0

which implies

x t s x t q v , t g R .Ž . Ž .0 0

Ž .Hence, x t is v-periodic.0
Ž . Ž .Now let us show that x t is an v-periodic solution of 2 .0
Ž . Ž .From the periodicity of 2 it follows that for each k, as t q k y 1 v G

Ž . Ž . Ž . Ž .0, x t satisfies 2 , and hence it is still one solution of 2 . Note that 2 isk
w x Xlinear. Therefore, for each l g 0, 1 and positive integers k, k , the

function

y t ' l x t q 1 y l x X tŽ . Ž . Ž . Ž .k k

Ž .satisfies 2 , whenever

t q k y 1 v G 0, t q kX y 1 v G 0.Ž . Ž .

Ž . Ž . Ž .Consequently, y t is a solution of 2 . From the continuity of A t, f
< < Ž .relative to ? for f and the construction of S, it follows that every y tg

Ž . Ž .lying in S satisfies 2 for t G 0 and hence is a solution of 2 . This proves
the desired conclusion and completes the proof.

3. APPLICATIONS FOR NONLINEAR EQUATIONS

In this section, we shall use Theorem B to prove the existence of
periodic solutions for nonlinear equations.

Consider the functional differential equation

xX t s a t , x , x q b t , x , 9Ž . Ž . Ž . Ž .t t t

where a: R = C = C ª Rn, b: R = C ª Rn are continuous with respectg g g

Ž . Ž .to t, f, w and t, f , respectively, are v-periodic in t for some v ) 0,
Ž .and take bounded sets to bounded ones; moreover a t, f, w is linear and

homogeneous with respect to w.
� n 4Set C s x: R ª R is continuous and v-periodic with the usualv

< <supremum norm ? .`

The main result of this section is the following.

THEOREM C. Assume that there exists a constant r ) 0 such that for each
< <y g C with y F r, the linear equation`v

xX t s a t , y , x q b t , y 10Ž . Ž . Ž . Ž .t t t
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Ž .has a positï ely bounded solution x t with a bounded initial ¨alue f such
that for some t ) 0,x

< <x t F r , for t G t . 11Ž . Ž .x

Ž . Ž . < <Then 9 admits an v-periodic solution x t with x F r.`0 0

Ž .Proof. Obviously, Eq. 10 is a linear periodic system. By Theorem B
Ž . Ž . Ž . < <and 11 , 10 admits an v-periodic solution x t with x F r.`1 1

< <Given y g C , with y F r, set`v

< <K y s u : u t is an v-periodic solution of 10 with u F r .� 4Ž . Ž . Ž . `

Then the above argument implies that

K y / BŽ .

Ž . Ž .Since 10 is linear, K y is a closed convex set in C . From thev

Ž .Arzela]Ascoli theorem it easy to see that K y is compact.
Ž . Ž .Since a t, f, w and b t, f take bounded sets to bounded ones, there

exists L ) 0 such that

< < < < 5 5w xa t , f , w q b t , f F L, for t g 0, v , f , w g C with f F rŽ . Ž . `g

5 5and w F r . 12Ž .`

Set

< < < < < <D s y g C : y F r , y t y y t F L q 1 t y t ,� Ž . Ž . Ž .`v 1 2 1 2

w xfor t , t g 0, v .41 2

Then by the Arzela]Ascoli theorem, D is compact and convex. Define an
operator T : D ª 2Cv by

T y s K y , for y g D.Ž . Ž .

Ž . Ž . DFrom 12 and the definition of K y it follows that T : D ª 2 . By a well
Ž w x.known result see, for example, 14, Lemma 2.3 , T is upper semicontinu-

ous on D. Note that D is compact. Therefore T : D ª 2 D is completely
w xcontinuous. According to Fan’s fixed point theorem 15 , T has a fixed

point x in D, that is,0

x g T x ,Ž .0 0

Ž . Ž .which show that x t is the desired v-periodic solution of 9 . This proves0
the theorem.

Finally, let us consider a simple example.
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Consider the equation

xX t s a t x t q a t x t y r q a t x t q r q e t , 13Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .1 2 1 3 2

Ž .where a i s 1, 2 : R ª R, e: R ª R are continuous and v-periodic; r , ri 1 2
are positive constants.

We have the following result.

COROLLARY 1. Assume the following condition holds:

< < < <a t q a t q a t F yl - 0, for t g R . 14Ž . Ž . Ž . Ž .1 2 3

Ž .Then 13 admits a unique v-periodic solution.

< <Proof. Let r s e rl q 1. Then we claim that for each y g C with` v

< < Ž .y F r, the solution x t of the problem

xX t s a t x t q a t y t y r q a t y t q r q e t ,Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .1 2 1 3 2

< <x 0 s x , x F r 15Ž . Ž .0 0

satisfies
< <x t F r , for t G 0,Ž .

w .and hence is positively bounded. If this fails, then there are t g 0, ` and0
d ) 0 such that

< < < <x t s r , x t ) r , for t g t , t q d . 16Ž . Ž . Ž . Ž .0 0 0

Ž . Ž . Ž .For definiteness, we assume x t ) 0. Set u t ' r. Then from 14 and0
Ž .15 , we derive

xX t y uX t s a t x t q a t y t y rŽ . Ž . Ž . Ž . Ž . Ž .0 0 1 0 0 2 0 0 1

s a t y t q r q c tŽ . Ž . Ž .s 0 0 2 0

< < < < < <s a t r q a t r q a t r q eŽ . Ž . Ž . `1 0 2 0 s 0

< <e `
< < < <s yrl q e s y q 1 l q e s yl - 0,.` `ž /l

which implies that there is h ) 0 such that

x t - u t s r , for t g t , t q h ,Ž . Ž . Ž .0 0

a contradiction. This proves the claim. Therefore the existence conclusion
follows from Theorem C. The uniqueness is clear. This completes the
proof.
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