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Abstract

We introduce (P, R)-partitions as a generalization of the (P, w)-partitions of Stanley. When
P is a Gaussian poset the generating function for P-partitions with largest part at most n

—gox)+n .. . .
ceP 11:1% for certain integers g(x). Although trees are not in general Gaussian

factors as []
posets, we show that if P is a tree then R can be chosen so that the generating function for
(P, R)-partitions has a similar factorization.
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1. Introduction

Throughout this article, let Z, N and P denote the set of integers, non-negative
integers and positive integers, respectively. For a set S, we denote the cardinality of S
by |S|. From now on, P is a partially ordered set (poset) and is assumed to be finite.

Let w be a labeling of P, i.e. w is a bijection from P to {1,2,...,|P|}. A (P,»)-
partition is a map ¢ from P to N satisfying the following conditions:

(1) o(x) —e(y)=0if x<yin P, i.e. P is order reversing.
(i) o(x) —p(y)=1if x<y and w(x)>w(y).
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For a (P, w)-partition ¢, the values ¢(x) (xe P) are called the parts of ¢. We denote
the set of (P,w)-partitions by .o/(P,w). When = is a linear extension, a (P,n)-
partition is simply called a P-partition. We can easily see that ¢ is a P-partition if
and only if ¢ is an order-reversing map from P to N.

We say that P has hook lengths if there exists a map / from P to P satisfying

1
E:qWLZII‘T:;HE’

where the sum is over all P-partitions and where || = > _, ¢(x). A hook length
poset is a poset which has hook lengths and we say that /(x) is the hook length of x.
A poset P is said to be Gaussian if there exists a map g from P to P such that, for any
neN,

1 — qg(x)+n

Zq\w\ — H 1_—qg<x)7

xeP

where the sum on the left-hand side is over all P-partitions with largest part at most
n. In particular, Gaussian posets are hook length posets.

Note that the order in the above definition of hook length posets is the dual of the
order in the original definition by Sagan [4].

For a partition 1 = (11,22, ..., 4,), we define P(1) = {(i,j)eP?: 1 <j</;} with an
order given by (i,j)<(#,j') if and only if i>7 and j>;'. A poset of this form is
known as a ‘shape’. Moreover, P(1) is known to be a hook length poset with /(i)
defined by h(i,j) = 4 + A, —i—j+ 1, where (4,25, ..., 4) is the conjugate of /.
A tree T is a finite connected poset with a maximum element such that every element
except the maximum element is covered by exactly one element. Any tree T is also
known to be a hook length poset with the hook length A(x) defined by Ai(x) =
{yeT:y<x}.

Recently, in [3], Proctor and Peterson proved that d-Complete posets, which
include shapes and trees, are hook length posets (see [2] for the definition of
d-Complete posets). For ke P, the shape P((k,k, ..., k)) is a Gaussian poset but we
can easily see that shapes and trees are not always Gaussian posets (see [1] for more
detailed information).

Let 2 = (41,42, ..., 4,) be a partition and let w; be the labeling of P(1) defined by
w;(i,)) = Sj_, 2 —j + 1 for (i,j) e P(7). It is well known that for any neP,

n+1+4j—i

lol _ =D l—gq
qu *qZ/] H 1—q”<iJ) ) (1)

(i) P(2)

where the sum on the left-hand side is over all (P(1), w;)-partitions with largest part
at most n (cf. [5]). However, an analogous formula for trees has hitherto not been
found. Our aim is to find such a formula for trees by introducing generalized (P, w)-
partitions.

We now introduce some definitions and notation in order to state our main result
explicitly.
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For x,ye P, we use the notation x <y if and only if x is covered by y, i.e. x<y and
no element z e P satisfies x<z<y. We put

Cov(P) = {(x,y)eP x P:x<y},

C™ (x) ={yeP:y<x}.

An edge labeling of P is a map from Cov(P) to Z and we denote the set of edge
labelings of P by EL(P). Let ReEL(P). A (P, R)-partition is a map from P to N
such that ¢(x) — @(y)=R(x,y) for all (x,y)eCov(P). We denote the set of (P, R)-
partitions by .«Z(P, R).

For example, let P be a finite poset defined by

We have Cov(P) = {(d,b),(d,c),(b,a),(c,a)} and a map R from Cov(P) to Z
defined by R(d,b) =1, R(d,c) =0, R(b,a) =1 and R(c,a) := 0 is an edge labeling
of P. From now on, we express Re EL(P) by putting R(x, y) beside the edge (x,y) of
the Hasse diagram of P for all (x, y) e Cov(P). Hence, in our example, R is expressed
as follows:

Note that for a labeling w of P, there always exists Re EL(P) satisfying .«/(P, R) =
o/ (P,w), but for Re EL(P) satisfying R(Cov(P))={0, 1}, there does not always exist
a labeling @ of P such that «/(P, R) = .&/(P,w). For example, for R in the figure
above, no labeling w of P satisfies that o/ (P, R) = o/(P, w).

For neZ, we define

o (P,R,n) = {peA(P,R): ¢(x)<n for all xeP},

UlP,Rig)= > 4",
@€/ (P,Rn)

where we put |¢| =>"_._po(x).
For Re EL(P), we can easily see that there exists a unique ¢, €.Z(P, R) satisfying
lpo| <|@| for any pe.o/(P,R).
We denote the above ¢, by ¢&.

We denote the set of maximal elements of P (resp. the set of minimal elements
of P) by Max(P) (resp. Min(P)). For x,ye P, we put

C(x,y) = U {(z0,21, ...,z )P i x = zp<zy < <z, =y}

r=0
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For ReEL(P) and C = (29,21, ...,z-) € C(x,y), we put
r—1
R(zi,ziy) if r>=1,
() A 3 Rz
0 if r=0.

For ReEL(P), we define two conditions (RX) and (RN) as follows:

(RX) wr(C)=0 for all Ce Uycpyemaxp) C(X:2),
(RN) wg(C)=0 for all Ce U, cminp)yer C(x,2)

We denote the set of edge labelings of P satisfying condition (RX) (resp. condition
(RN)) by RX(P) (resp. RN(P)).

From now on, T is a tree with |T'|>2. For ReEL(T), we define a map zx from
T to Z by

(x) = 1 if xeMin(T),
R = max{zg(y) — R(y,x) +1:yeC~(x)} otherwise,

where for a finite subset A4 of Z, max A means the maximum element in 4. For xe T,
we put Ty .= {ye T :y<x}, i.e. Ty is the principal order ideal of T generated by x.
For ReEL(T), we define a condition (T) as follows:

(T) For each xe T\Min(T), if C~(x) = {y1,»2, ..., ¥r} and
R(yk,x) = zr(Vk) S R(Yics1, X) = ZR(Vics1)
for any ke{l1,2,...,r — 1}, then
Ry, %) = 2r(k) + [Ty | = R(Yks1, %) = 2R (V1) (2)
for any ke{l,2,....r — 1}.

For example, let R; and R, be edge labelings given by

R, = R, =

1

Note that for Re EL(T'), we expressed the map zg from T to Z by replacing x with
zr(x) for all xe T in the Hasse diagram of 7. We can easily check that R; and R,
satisfy condition (T). In particular, if T is a chain, any edge labeling of T satisfies
condition (T).

Finally, we can state our main result.
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Theorem 1.1. For Re RX(T)nRN(T) satisfying condition (T), we have

“pR‘ ‘T‘ _ ’H*ZR(X())Jrlfi

q° Hi: (1—-¢ )

UH(T7 R’ q) = 1 l — h(x) (3)
erT ( q )

Jor any n=max{pf(x):xe T}, where xq is the maximum element in T, and where
h(x) ={yeT:y<x}|.

Let A be a set and let B be an additive group. For maps f and g from 4 to B,
we define a map f+g¢ (resp. f —g) from 4 to B by (f +g)(x) =f(x)+ g(x)
(resp. (f — g)(x) = £(x) — g(x)) for xe 4.

This article is organized as follows: In Section 2, we define compatible edge
labelings and we show that U, (P, R+ R’; g) can be expressed in terms of U,,(P, R;q)
if R’ is a compatible edge labeling of P, ReRX(P)nRN(P), and R+ R' e RN(P).
We devote Section 3 to proving Theorem 1.1. In Section 4, productive edge labelings
and hook edge labelings are defined as edge labelings R whose generating function
U, (P, R; q) is analogous to (1). For a tree T and ReRX(T) nRN(T), we show that
R is a productive edge labeling of T if and only if R is a hook edge labeling
of T. Moreover, we give a partial result about our conjecture that, for
ReRX(T)nRN(T), R satisfies condition (T) if and only if R is a hook edge
labeling of T.

2. Compatible edge labelings

For x,ye P, we put

C(P) = U C(x,).

xeMin(P),ye Max(P)
For ReRX(P), if R satisfies
wr(Cy) = wgr(Cy) for all Cy, C,e C(P),

we say that R is a compatible edge labeling of P and we denote the set of compatible
edge labelings of P by CEL(P). In particular, for Re CEL(P), we can define

mpg = wgr(C) for CeC(P).

Also, for ReEL(P), if R(x,y)>0 for all (x,y)eCov(P), we say that R is a non-
negative edge labeling of P and we denote the set of non-negative edge labelings of P
by NEL(P). Note that NEL(P) = RX(P)nRN(P).

Example 2.1. Let
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For edge labelings R;, R, and Rj defined by

we have R; e CEL(P) A\NEL(P), R, e NEL(P)\CEL(P), Ry e CEL(P)\RN(P).

By the definitions of compatible edge labelings and non-negative edge labelings,
we can easily obtain the following and the proof is therefore omitted.

Lemma 2.2. For ReEL(P), there exists R'e NEL(P)nCEL(P) such that R+
R eNEL(P).

Moreover, we have the following.

Lemma 2.3. For ReRX(P) and R' e CEL(P), we have

() @ (x) = wr/(C) for all xe P and Ce Unemax(p) C(x;u),
(i) oR + of = p& K.
By noting that

PR (x) = max{ wr(C): Ce U C(x,u)
(P)

ueMax

for ReRX(P) and xe P, this lemma is easily obtained and the proof is therefore
omitted.
For the generating function of (P, R)-partitions, we have the following.

Proposition 2.4. Let ReRX(P)nRN(P) and R'eCEL(P). If R+ R'eRN(P), for
any neZz,

Un(P,R+ R';q) = 4% | Uy, (P, R; q). (4)

Proof. By Lemma 2.3, we have pf*® (x) = gR(x) + mp for any xeMin(P). We can

easily see that for ReRN(P) and g e./(P, R),

max{¢(x):xeP} = max{p(x): xeMin(P)}. (5)
Therefore, we can obtain that U,_,, (P, R;¢) = 0 if and only if U,(P,R + R';q) = 0.
Hence, we show (4) in the case that the both sides of (4) are not equal to 0. By

Lemma 2.3(i) and our assumptions, we can define the map f from .o/(P, R,n — mp/)
to .o/(P,R+ R',n) by f(¢) = @ + ¢ . Also we can see that f is a bijection such that
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|f(@)| = |p| + |&| for any pe.o/(P, R,n — mp). Therefore, we obtain
UuP,R+R:q)= > ¢/
@e./(P,Rn—mp)

=% 1U, o, (P, R q)

and this completes the proof of the proposition. [

3. Proof of main result
For the map zg, the following lemma holds.

Lemma 3.1. Let ReEL(T).

(1) If ReRN(T), we have zr(x)<|Ty| for all xeT.
(i) For R eCEL(T), xeT and Cy€ U, cnin(ry C(u,X), we have

Zrar (%) = 22(x) — wr (Cy). (6)

Proof. (i) If xeMin(T), since zg(x) = 1, we have zg(x) = |Tx|. We show (i) in the
case xe T\Min(7T). By the definition of the map zg, there exists a chain C =
(wo, w1, «oo; W) € Uyemin(r) C (1, x) such that zg(wiy1) = zr(wi) — R(wi, wiy1) + 1 for
all ie{0,1,...,r — 1}. Hence, we have zg(x) = r — wg(C) + 1. Thus, by condition
(RN), we have zg(x) <|Ty| and (i) holds. (ii) If xe Min(T), since wg/(Cy) = 0, we can
easily obtain (6). For xe T\Min(T), we suppose that (6) holds for all ye T\\{x} and
we show (6) for x. By our induction hypothesis and the fact that wg(C,) —
wr/(Cy) = R'(y,x) for any ye C~(x), we can obtain (6). [

For condition (T), we have the following.

Lemma 3.2. Let ReEL(T) satisfy condition (T) and let R e CEL(T). Then R+ R’
and R — R’ satisfy condition (T).

This result is easy to prove using Lemma 3.1(ii) and the proof is therefore omitted.

For ReEL(T) and xeT with Cov(Ty)#0, we denote the restriction of R to
Cov(Ty) by R,, i.e. R, eEL(Ty).

For a,b,neZ, we put

= 1=
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|
m g 0<h<a,
= a .
0 otherwise.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We can easily see that (3) is equivalent to

g7
T

for any ne Z. Hence, we prove (7). First, we show (7) in the case Re NEL(T'). Note
that if n<0, by Lemma 3.1(i), (7) is easily obtained. We show the theorem by
induction on |T|. In the case |T| = 2, by direct calculation, (7) holds. We suppose
that (7) holds when |7T|<j — 1 and we show the equality in the case |T'| = (j=3).
Since R satisfies condition (T), we may assume that C~(xg) = {y1, )2, ..., ¥} satisfy
(2). By noting that, for pe.«/(T, R, n), if ¢(x¢) = a then a + R(yx, xo) < ¢(x)<n for
all xeT,,, U,(T, R;q) can be thus written as follows:

Un(TvR;q) = ‘T‘ (7)

n+ ZR(Xo)]

U.(T,R;q)

- Z 7 H ljn_a_R(yk;XO)(TVkﬂR}?k; Q)Q‘Tj’k‘(‘“'R(yk’xo))
az0 1<k<rye¢Min(T)

< 1 > 4
I1<k<ryreMin(T) i=a+R(yk,Xo)
If y; ¢ Min(T'), by our induction hypothesis, we have
Un—a—R(yk,xo) (Tyka Ryk; Q)
g
= q(p() [Tka'
Moo, ()]

On the other hand, if y, e Min(T'), we can calculate

i g = g Tl RO 7, 11 1 — @ — R(yi Xo) + 2r(Ve) .
i=a+R(yk,Xo) er Ty, [/’Z(X)] |T}’k|

n—a— R(yr,xo) + zr(Vx)
|T}’k|

Therefore, we can obtain
qlw(’f\

e oy [P 5

=

Un(T, Ry q) = g

(T[]

‘ Tyk

y ﬁ[naR(yk’X0)+ZR(yk)
k=1
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By (2), we can calculate that

ﬁ[n—a—R@k,xo)“R(yk) 1T

|T:Vk|

k=1

_ [’1 —a— R(y1,x0) + zr(y1)

71 7] - 1.

Note that if n—a— R(yk,x0) +zr(vk)<|Ty,|, we can easily obtain n—a—

R(y1,x0) +zr(»1)<|T| — 1. Hence, by the well-known formula that

mk n—k
Zq [ml

k=0

n+1
m

for meP and neZ, we have

g7
[Leer [(x)]

By (2) and the definition of zg, we can easily see that zg(xo) = zr(y1) — R(y1, x0) + 1
and we get (7) in the case Re NEL(T'). Next, we show the theorem in general. By
Lemma 2.2, there exists R'e CEL(T)nNEL(T) such that R+ R'eNEL(T). By
Lemma 3.2, R+ R’ also satisfies condition (T). Hence, by our above result, Lemma
2.3(ii), Proposition 2.4 and Lemma 3.1, we can obtain (7). O

n— R(y1,x) +zr(01) + 1

Un(T>R;q): |T|

Remark 3.3. Let Re RX(T) nRN(T) satisfy condition (T). By (7), we have
(AL

Uit (T, Ry q) = g7 =200
ITl-2x(x0) ( 0= [Lierlh(x)]

4. Productive edge labelings

For ReEL(P), if there exist maps cg and /&g from P to Z such that

qn+(rR(x)

) = glogl -
Un(P7 R7 q) - q 0 H 1 _ th(x)
xeP

for any n>max{p{(x): xe P}, we say that R is a productive edge labeling of P and
we denote the set of productive edge labelings of P by PEL(P). In particular, for
RePEL(P), if P is a hook length poset and {ir(x):xeP} = {h(x):xeP} as
multisets, where /(x) is the hook length of x, we say that R is a hook edge labeling of
P and we denote the set of hook edge labelings of P by HEL(P).

Using this terminology, a Gaussian poset P is a poset whose edge labeling R
defined by R(x,y) =0 for all (x,y)eCov(P) is a hook edge labeling of P with
cgr = hg. Therefore, HEL(P)#0 for a Gaussian poset P.
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Example 4.1. (i) For a shape A = (44, 42, ..., 4,), we define R, e EL(P(4)) by
0 ifi=7¢,

U Tor (). (0.7 e Cov(P(2).
J=J

Ri((0,)), (1)) = {

We can easily see that g e.o/(P(1), R;) if and only if ¢ € .o/ (P(A),w;). Therefore, it
follows from (1) that R;e HEL(P(1)).
(ii) We define Re EL(P((2,2))) as follows:

0 1
R = .
0 0

By direct calculation, we can obtain

l]n(P7 R’q) — qz(l - qn)(l — qu—l)(l — q’1+2)(21 _ qn+3)
(1=¢")(1-¢*)(1-q)

for any n>1. Hence, Re PEL(P((2,2)))\HEL(P((2,2))).

Using the following proposition, we can make new productive edge labelings from
known productive edge labelings.

Proposition 4.2. For RePEL(P)nRX(P)nRN(P) and R eCEL(P), if R+
R’ eRN(P), we have
N 1_ n+(R —mpr
UP,R+R:q) = ¢ "I [ —5——— "
xeP

for any n=max{p&® (x):xeP}. In particular, R + R' e PEL(P).

By Lemma 2.3(ii), Proposition 2.4 and (5), this proposition is easily obtained and
the proof is therefore omitted.

Note that the proposition obtained by replacing PEL(P) with HEL(P) in
Proposition 4.2 is also valid.

For example, for 1 = (3,2), let R; be an edge labeling defined in Example 4.1(i)
and let R, R, be edge labelings as given in Example 2.1. We can see that R; + R} =
R, and we can easily check that R;eRX(P(1))nRN(P(1)), R eCEL(P(4)) and
R,eRN(P(1)). Also, by Example 4.1, R, e HEL(P(4)). Therefore, by Proposition
4.2, R,eHEL(P(1)).

For trees, we have the following.

Theorem 4.3. For a tree T, we have

HEL(T) ARX(T) ARN(T) = PEL(T) nRX(T) nRN(T).

For the proof of this theorem we need two lemmas.
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Lemma 4.4. For ReRX(T)nRN(T), we have
glool

DR ) ®

¢pe/(T,R

Proof. We can easily prove that (8) holds when ReNEL(T). By Lemma 2.2, there
exists R'eCEL(T) such that R+ R'eNEL(T). Hence, by Lemma 2.3(ii) and
Proposition 2.4, (8) holds. [

Lemma 4.5. Suppose ay,ay, ...,a:,by,bs, ..., b, €P satisfy
[a1][az] -+ [ar] = [b1][ba] - [Br].
Then

{ar,az, ...,a,} = {b1,bs, ..., b, } as multisets.

We can prove the result by induction on r and by considering the lowest degree
non-constant term. Therefore the proof is omitted.

Proof of Theorem 4.3. For RePEL(T), we obtain

| — grrer(®) o]
lol _ 1 lo&| q _ q
Z g = lim ¢ H 1= g™ Loy (1— gy

¢@e/(T,R) xeT

Hence, by Lemmas 4.4 and 4.5, we have {hg(x): xe T} = {h(x) : xe T} as multisets.
Thus, Theorem 4.3 holds. [

For a tree T, by Theorem 1.1, Re RX(T)nRN(T) satisfying (T) is a hook edge
labeling of 7. Let T be a tree with the maximum element xy and C~(xg) =
{yi,y2, ..., }. For ke{1,2,...,r}, let R be an edge labeling of T}, and let R be an
edge labeling of 7 satisfying that R, = Ry for ke{l,2,....r} and R(yx,xo) —
2R, (k) + 1Ty | = R(Vis1,X0) — ZRe,, Wr1) for ke{1,2, ...,r — 1}. Then, if every Ry
satisfies condition (T), we can easily see that R also satisfies condition (T). Therefore,
for a tree T, by proceeding inductively on |T'|, we can make an edge labeling of T
satisfy condition (T). Hence, by Lemmas 2.2, 3.2 and Theorem 1.1, HEL(T) #0 for
an arbitrary tree 7. We conjecture the following.

Conjecture 4.6. For Re RX(T)nRN(T), the following are equivalent:
(1) R satisfies condition (T).
(i) ReHEL(T).

In Theorem 1.1, we proved that if (i) holds, then (ii) is valid. We have the following
result about the converse direction.
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Theorem 4.7. Let ReRX(T)nRN(T). If R,eHEL(T,) for any xe T\Min(T), R
satisfies condition (T).

Note that for ReHEL(T) nRX(T)nRN(T) and xe T\Min(T), R, is not always
a hook edge labeling of 7. For example, let
d

We can easily see that R satisfies condition (T) and ReHEL(T)nRX(T)n
RN(T)\NEL(T). But R, is not a hook edge labeling of T..

Proof of Theorem 4.7. First, we prove the theorem in the case ReNEL(T) by
induction on |T|. In the case |T| = 2, we can easily see that R satisfies condition (T).
We suppose that this theorem holds when |T|<j — | and we show the theorem in the
case |T| =j (j=3). For any xe T\({xo} uMin(T)), by our induction hypothesis,
R,eNEL(T,) and R, satisfies condition (T). It follows from (7) that for any neZ,

g7 | 7]
Hye Ty [h(y)}

Let C~(x) = {y1,¥2, ...,y } satisfy

R(yk,x0) = zr(Vk) + | Ty | S R(ks1, X0) — ZR(Vks1) + [Ty | 9)

n+ zgr(x)
74|

Un(Txa R,; q) =

for all ke{l,2,...,r — 1}. We can obtain that for any neZ,

ot TROPOEOAn]
UlT, R q) =7 q "
! er T\{xo} [h(x)] a=0
| n—a— R(yk,xo) + zr(Vk)
<11 17,11 (10)
k=1 ‘TJ’/\»|

Since ReHEL(T), there exists a map cg from T to Z such that

_ gnter(x)
L) = ot TT Lo
Un(T,Raq)_q(pO H 1—qh(x> (11)
xeT
for any n>max{of(x): xeT}. Let s = R(yr,x0) — zr(yr) + | T,|- By (9) and (10), we
can see that Uy(T, R; ¢) #0 and we have s>max{¢f(x): xe T}. Hence, by (10) and
(11), we can obtain

r

TTis+ e = 171 T s — R(yx, x0) + zr(yx) IT,,

xeT k=1 ‘ T)’k

I
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Therefore, using Lemma 4.5 and the equality [|7| + 1] = [|T|] + ¢/”!, we have

H [s+ cr(x) +1] = ([|T|]+qlT|)1L[ s+ 1= R(yk,xo0) + zr(Vk)

(5[0

xeT k=1 |Tyk|
(12)
On the other hand, by (10) and (11), we can obtain
7| s+ 1= R0k, x0) + zr(vk)
II s+er+10=071T] 7| (T[]t
xeT k=1
R(yk, x0) + zr(Vk)
+ [171] qu (T 11! (13)
Vi
Comparing (12) and (13) we have
W] s+ 1 = Rk, x0) + zr(ve)]
k=1
= (TN I] Is+ 1 = R(yx, x0) + z() — | Ty, |]- (14)

k=1
Let af = s+ 1 — R(yk, x0) + zr(vk) — | Ty, | for ke{1,2,...,r}. By (9), we have
azary=---=a = 1. (15)
By (14) and Lemma 4.5, we have
{ai +1|T),|,a2 + |Ty,|, ...,a, + |T),|} = {|T],a1,az, ...,a,1}

as multisets. Hence, by (15), for any ke{l,2,...,r — 1}, we can obtain that a; =
ary1 + |Ty,,,| and we have (2). Therefore, we have proved the theorem in the case
ReNEL(T ). Next we prove the theorem in general. By Lemma 2.2, there exists

R eCEL(T)nNEL(T) such that R+ R'eNEL(T). We can easily see that
R eCEL(Ty)nNEL(Ty) and (R+ R),eNEL(Ty) for any xe T\Min(7T). Hence,
by Proposition 4.2, we can obtain that (R—i—R’)erEL( )N NEL(7T,) for any
xe T\Min(T). It follows from our above result that R 4+ R’ satisfies condition (T).
Thus, by Lemma 3.2, we can see that R also satisfies condition (T). This completes
the proof of the theorem. [

Note that by the proof of Theorem 4.7, if the following can be proved, then
our conjecture is true. If ReNEL(T)nHEL(T), then R,eHEL(T,) for any
xe T\Min(T).
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