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1. Introduction

Fix a prime p and let N be a normal subgroup of a finite p-solvable group G . Let b be a p-block
of N with defect group L. If b∗ is the Brauer correspondent of b in NN(L), then the main result
of [2] tells us that the Brauer correspondence gives a defect group preserving bijection of the set
Bl(NG(L)|b∗) of p-blocks of NG(L) which cover b∗ onto the set Bl(G|b) of p-blocks of G which cover b.

Now denote by IBr0(b), the set of irreducible Brauer characters in b of height zero, and for a
p-block B ∈ Bl(G|b), let

IBr
(

B
∣∣IBr0(b)

) = {
ψ ∈ IBr(B): ψ lies over some ϕ ∈ IBr0(b)

}
.

The main objective of this paper is to prove the following result.

Theorem. Let N be a normal subgroup of a p-solvable group G, and let B and b be p-blocks of G and N
respectively such that B covers b. Suppose L is a defect group of b and let b∗ be the Brauer correspondent of b
in NN (L). Then if B∗ ∈ Bl(NG(L)|b∗) is the Harris–Knörr correspondent of B in NG(L),
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∣∣IBr
(

B
∣∣IBr0(b)

)∣∣ = ∣∣IBr
(

B∗∣∣IBr0
(
b∗))∣∣.

Consequently, |IBr(B)| = |IBr(B∗)| if and only if every Brauer character in IBr(b) is of height zero.

Since the irreducible Brauer characters in b∗ are all of height zero, note that the right side of the
above equation is just |IBr(B∗)|.

The last assertion of our theorem follows from the well-known fact that each member of IBr(B)

lies over some element in IBr(b) and each member of IBr(b) lies under some element in IBr(B).
In case N = G , then Theorem is just [7, Theorem 4.1], which is the modular analogue of the

Alperin–McKay conjecture for p-solvable groups.
We should finally mention that (non-p-solvable) examples exist in which our main theorem fails.

Convincingly, let G = GL(3,2) and let B be the principal 2-block of G . Next take N = G , and so b = B .
Now B has three irreducible Brauer characters, all of height zero. On the other hand, if P is a Sylow
2-subgroup of G , then NG(P ) = P and so the principal 2-block B∗ of NG(P ) has a unique irreducible
Brauer character, namely the trivial one.

2. Proof of Theorem

In order to prove the main theorem, a series of preliminary results is needed. The proofs of some
of these results as well as the proof of the main result itself rely on the Glauberman correspondence.
This correspondence is defined whenever a solvable group L acts on some group H under the as-
sumption that (|H|, |L|) = 1. The correspondence is a naturally defined bijection χ �→ χ∗ from the set
IrrL(H) of L-invariant irreducible characters of H onto Irr(C H (L)). One of the properties of this cor-
respondence worth mentioning is invariance with respect to group automorphisms. More explicitly,
for any χ ∈ IrrL(H) and any automorphism τ of the semidirect product H L such that Lτ = L, one has
(χ∗)τ = (χτ )∗ . (For a full description of the Glauberman correspondence, the reader is kindly referred
to Chapter 13 of [3].)

From now to the end of this section, a prime p is fixed. Our first lemma involves vertices of
irreducible Brauer characters. By a vertex of an irreducible p-Brauer character ϕ of an arbitrary (finite)
group G , we mean any vertex of the simple G-module (in characteristic p) corresponding to ϕ . Let
now H be a normal p′-subgroup of the group G and let μ ∈ Irr(H). For p-subgroups Q of G , we
write n(G,μ, Q ) to denote the number of irreducible Brauer characters of G lying over μ and having
vertex Q .

Lemma 2.1. Let H be a normal p′-subgroup of a p-solvable group G and let L and Q be p-subgroups of G
such that NG(Q ) ⊆ NG(L). Write K = NG(L) ∩ H, so that K = C H (L). Suppose μ ∈ Irr(H) is G-invariant and
let ν ∈ Irr(K ) be the Glauberman correspondent of μ with respect to the action of L on H, then

n(G,μ, Q ) = n
(
NG(L), ν, Q

)
.

Proof. Write E = NG(Q )∩ H , so that E = C H (Q ). Now let ξ ∈ Irr(E) be the Glauberman correspondent
of μ with respect to the action of Q on H .

Since μ is invariant in G , then ν is invariant in NG(L). Furthermore, as Q ⊆ NG(Q ) ⊆ NG(L), then
Q acts on K and ν ∈ IrrQ (K ). Next we have

C K (Q ) = NG(Q ) ∩ K = NG(Q ) ∩ NG(L) ∩ H = NG(Q ) ∩ H = E.

Let ρ ∈ Irr(E) be the Glauberman correspondent of ν with respect to the action of Q on K . We claim
that ρ = ξ .

By [3, Theorem 13.1(c)], ν is the unique irreducible constituent of μK such that p � [μK , ν], and
ρ is the unique irreducible constituent of νE such that p � [νE ,ρ]. It follows that ρ is the unique
irreducible constituent of μE satisfying p � [μE ,ρ]. Since by [3, Theorem 13.1(c)] again, ξ is the unique
irreducible constituent of μE such that p � [μE , ξ ], we must have ρ = ξ , as claimed.
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By [4, Theorem 6.3], we have n(G,μ, Q ) = n(H NG(Q ),μ, Q ) and

n
(
NG(L), ν, Q

) = n
(

K NG(Q ), ν, Q
)
.

Also, a double application of Proposition 6.4 in [4] yields

n
(

H NG(Q ),μ, Q
) = n

(
NG(Q ), ξ, Q

) = n
(

K NG(Q ), ν, Q
)
.

It follows that n(G,μ, Q ) = n(NG(L), ν, Q ), as needed to be shown. �
Let B be a p-block of a p-solvable group G . If H is a normal p′-subgroup of G , then there exists

a (uniquely determined up to G-conjugacy) character μ ∈ Irr(H) such that the members of Irr(B) ∪
IBr(B) all lie over μ. Accordingly, B is said to lie over μ. We mention that in the special case where
H = O p′ (G) and μ is G-invariant, the set Irr(B) (resp. IBr(B)) equals the full set Irr(G|μ) (resp.
IBr(G|μ)) of ordinary irreducible (resp. irreducible Brauer) characters of G that lie over μ. (See, for
instance, [8, Theorem 2.8].)

Let now P be a p-subgroup of G and suppose β is a p-block of NG(P ) such that βG = B . Let
H = O p′ (G) and K = NG(P ) ∩ H , so that K = C H (P ). Next choose ν ∈ Irr(K ) over which β lies. By the
discussion in the beginning of Section 3 of [9] and Theorem 3.2 of the same paper, we can choose μ
to lie inside IrrP (H) and so that ν is its Glauberman correspondent with respect to the action of P
on H .

The following well-known result is frequently used in the sequel.

Theorem 2.2. Let H be a normal p′-subgroup of a p-solvable group G, and let μ ∈ Irr(H) with T = IG(μ),
the inertial group of μ in G.

(i) Block induction defines a bijection from the set of p-blocks of T over μ onto the set of p-blocks of G
over μ.

(ii) If β is a p-block of T over μ, then any defect group of β is also a defect group for βG .
(iii) Let β be a p-block of T over μ. Then the map θ �→ θG defines a bijection of Irr(β) onto Irr(βG ). The

corresponding statement for IBr(β) and IBr(βG) also holds.

Proof. Let b be the block of H to which μ belongs. Then Irr(b) = {μ}, so that T is the stabilizer of b
in G . All statements are then immediate from Theorem 5.5.10 in [6]. �

Let B be a block of a p-solvable group G . For p-subgroups Q of G , we denote by IBr(B|Q ) the set
of all irreducible Brauer characters belonging to B and having vertex Q .

Lemma 2.3. Let G be a p-solvable group and let B be a p-block of G with defect group D. Suppose L is a
subgroup of D such that NG(D) ⊆ NG(L), and let B∗ be the unique p-block of NG(L) with defect group D such
that (B∗)G = B. If Q is a p-subgroup of G with NG(Q ) ⊆ NG(L), then |IBr(B|Q )| � |IBr(B∗|Q )|.

Proof. Set H = O p′ (G) and choose μ ∈ Irr(H) under B . Next let T be the inertial group of μ in G ,
and write β for the unique block of T over μ corresponding to B via Theorem 2.2(i). In view of
Theorem 2.2(ii), since B lies over all G-conjugates of μ, we may assume that D is a defect group
for β . We have now L ⊆ D ⊆ T and thus NT (D) = T ∩ NG(D) ⊆ T ∩ NG(L) = NT (L). Write β∗ for the
unique block of NT (L) with defect group D such that (β∗)T = β .

Next let K = NG(L) ∩ H . Then K = C H (L), and by [9, Lemma 3.7], we also have K = O p′(NG(L)).
Let μ∗ ∈ Irr(K ) be the Glauberman correspondent of μ with respect to the action of L on H . Then
ING (L)(μ

∗) = NG(L) ∩ T = NT (L). Next, we want to show that μ∗ lies under β∗ . So choose ν ∈ Irr(K )

under β∗ , and let ρ ∈ IrrL(H) be the Glauberman correspondent of ν with respect to the action of L
on H . Then [9, Theorem 4.6(c)] (with T , L, H, ν in place of G, D, M and α, respectively) implies that
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(β∗)T lies over ρ . But (β∗)T = β lies over μ and T stabilizes μ. It follows that ρ = μ and hence
ν = μ∗ . Thus β∗ lies over μ∗ , as wanted.

Suppose T = G (so that μ is invariant in G). Then μ∗ is invariant in NG(L). In this situation,
IBr(B) = IBr(G|μ) and IBr(B∗) = IBr(NG(L)|μ∗). Now in view of Lemma 2.1, we get |IBr(B|Q )| =
|IBr(B∗|Q )|, and the result clearly holds in this case.

Now assume T < G . Since the result is trivial if |IBr(B∗|Q )| = 0, we can assume that IBr(B∗|Q ) 
= ∅.
Since β∗ lies over μ∗ and has defect group D , Theorem 2.2 tells us that (β∗)NG (L) is defined and

has D as a defect group. Next we know that (β∗)T = β and βG = B . So by [6, Lemma 5.3.4], (β∗)G is
defined and equals B . Then again by Lemma 5.3.4 of [6], we deduce that ((β∗)NG (L))G is defined and
equals B . Now by the uniqueness of the block B∗ , we must have (β∗)NG (L) = B∗ . Theorem 2.2(iii) then
tells us that Brauer character induction gives rise to a bijection from IBr(β∗) onto IBr(B∗).

For any ψ ∈ IBr(B∗|Q ), write ψ ′ for the unique member of IBr(β∗) such that ψ = (ψ ′)NG (L) . It
is clear that ψ ′ has an NG(L)-conjugate of Q as a vertex. We may then choose a minimal subset S
of NG(L) such that for each ψ ∈ IBr(B∗|Q ), there is a unique s ∈ S such that ψ ′ has vertex Q s .

Let s ∈ S . Then NG(Q s) = (NG(Q ))s ⊆ NG(L) (as s ∈ NG(L)), and hence NT (Q s) ⊆ NT (L). Now by
induction we have

∣∣IBr
(
β
∣∣Q s)∣∣ �

∣∣IBr
(
β∗∣∣Q s)∣∣. (1)

Next by our choice of the set S , it is clear that

∣∣∣∣
⋃

s∈S

IBr
(
β∗∣∣Q s)

∣∣∣∣ = ∣∣IBr
(

B∗∣∣Q
)∣∣,

and that the sets IBr(β∗|Q s), s ∈ S , are mutually disjoint. Therefore

∣∣IBr
(

B∗∣∣Q
)∣∣ =

∑

s∈S

∣∣IBr
(
β∗∣∣Q s)∣∣. (2)

Next we claim that the sets IBr(β|Q s), s ∈ S , are mutually disjoint. So let s, s′ ∈ S and suppose
that IBr(β|Q s) ∩ IBr(β|Q s′ ) 
= ∅. Then Q s′ = (Q s)t for some t ∈ T , and hence st(s′)−1 ∈ NG(Q ). Since
NG(Q ) ⊆ NG(L), and s, s′ ∈ NG(L), we get t ∈ NG(L). Thus t ∈ NT (L) (as t ∈ T ). Then by the choice
of S , we must have s = s′ . This clearly proves our claim.

Let now ϕ ∈ ⋃
s∈S IBr(β|Q s). Then ϕG ∈ IBr(B) by Theorem 2.2(iii), and Q is clearly a vertex

for ϕG . It follows (using Theorem 2.2(iii) once again) that

∣∣IBr(B|Q )
∣∣ �

∑

s∈S

∣∣IBr
(
β
∣∣Q s)∣∣.

Now in view of (1) and (2), we conclude that |IBr(B|Q )| � |IBr(B∗|Q )|, which clearly ends the proof
of the lemma. �
Lemma 2.4. Let N � G, where G is p-solvable and let B and b be p-blocks of G and N respectively such that
B covers b. Let L be a defect group of b and write b∗ for the Brauer correspondent of b in NN (L). Suppose
b lies over a G-invariant character μ ∈ Irr(O p′ (N)). If Q is a p-subgroup of G such that Q ∩ N = L and
B∗ ∈ Bl(NG(L)|b∗) is the Harris–Knörr correspondent of B in NG(L), then |IBr(B|Q )| = |IBr(B∗|Q )|.

Proof. Let H = O p′ (N) and K = NG(L) ∩ H(= NN (L) ∩ H). Then K = C H (L), and we let μ∗ ∈ Irr(K )

be the Glauberman correspondent of μ with respect to the action of L on H . Since μ is N-invariant,
then μ∗ is NN (L)-invariant. Moreover, as b lies over μ, the block b∗ lies over μ∗ (see the discussion
preceding Theorem 2.2). Also by [9, Lemma 3.7], note that K = O p′(NN (L)). Then Irr(b) = Irr(N|μ)

and Irr(b∗) = Irr(NN (L)|μ∗).
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As Q ∩ N = L, we have NG(Q ) ⊆ NG(L). Lemma 2.1 then says that

n(G,μ, Q ) = n
(
NG(L),μ∗, Q

)
.

Now let B1(= B), . . . , Bm be all the (distinct) blocks of G covering b, and for each i, let B∗
i ∈

Bl(NG(L)|b∗) be the Harris–Knörr correspondent of Bi in NG(L). Then B∗
1, . . . , B∗

m are all the (dis-
tinct) blocks of NG(L) that cover b∗ . Since Irr(b) = Irr(N|μ), we have Bl(G|b) = Bl(G|μ), the set of
all blocks of G lying over μ. Similarly, Bl(NG(L)|b∗) = Bl(NG(L)|μ∗), as Irr(b∗) = Irr(NN (L)|μ∗). Then⋃m

i=1 IBr(Bi |Q ) (resp.
⋃m

i=1 IBr(B∗
i |Q )) is the set of irreducible Brauer characters of G (resp. NG(L))

lying over μ (resp. μ∗) and having vertex Q . It follows that

m∑

i=1

∣∣IBr(Bi|Q )
∣∣ =

m∑

i=1

∣∣IBr
(

B∗
i

∣∣Q
)∣∣. (∗)

For each i, choose a defect group Di for B∗
i . Then Bi has defect group Di , and as L � NG(L),

L ⊆ Di by [6, Theorem 5.2.8]. Next since B∗
i covers b∗and Di ⊆ NG(L), then using [5, Proposition 4.2]

yields L = Di ∩ NN(L) = Di ∩ N . Hence NG(Di) ⊆ NG(L). Now Lemma 2.3 tells us that |IBr(Bi |Q )| �
|IBr(B∗

i |Q )|, for each i. Taking into account (∗), we are forced to have |IBr(Bi |Q )| = |IBr(B∗
i |Q )| for

each i, and in particular |IBr(B|Q )| = |IBr(B∗|Q )|, as needed to be proved. �
Let B be a block of a p-solvable group G and suppose B covers a block b of a normal subgroup N .

Let ψ ∈ IBr(B) with vertex Q . If ψ lies over ϕ ∈ IBr(b), then |Q ∩ N| is the order of any vertex of ϕ ,
as implied by Corollary 3 in [10]. It follows by [1, Theorem 2.1] that ψ ∈ IBr(B|IBr0(b)) if and only if
|Q ∩ N| = pd(b) , where d(b) is the defect of b.

Now the following special case of Theorem is an essential step toward the proof of that result.

Proposition 2.5. Let N � G where G is p-solvable and let B and b be p-blocks of G and N respectively such
that B covers b. Let L be a defect group of b and let b∗ be the Brauer correspondent of b in NN (L). Suppose
b lies over a G-invariant character μ ∈ Irr(O p′ (N)). If B∗ ∈ Bl(NG(L)|b∗) is the Harris–Knörr correspondent
of B in NG(L), then

∣∣IBr
(

B
∣∣IBr0(b)

)∣∣ = ∣∣IBr
(

B∗)∣∣.

Proof. Fix a defect group D for B∗ , and let

Γ = {
Q � G: Q ∩ N = L and Q ⊆ D g for some g ∈ NG(L)

}
.

Note that Γ 
= ∅ as L ∈ Γ . Also, NG(L) clearly acts on Γ by conjugation. Now choose Ω =
{Q 1, . . . , Q m}, a complete set of representatives for the orbits of this action such that Q i ⊆ D for
every i.

Let ξ ∈ IBr(B∗). Then ξ has vertex P ⊆ D . Since L � NG(L), we have D ∩ NN (L) = L from
[5, Proposition 4.2] and L ⊆ P . It follows that P ∩ N = P ∩ NN (L) = L. So P ∈ Γ , and hence ξ has
vertex Q i for some i. Consequently IBr(B∗) = ⋃m

i=1 IBr(B∗|Q i), and it follows by the choice of the
set Ω that

∣∣IBr
(

B∗)∣∣ =
m∑

i=1

∣∣IBr
(

B∗∣∣Q i
)∣∣. (∗)

Next let ψ ∈ IBr(B|IBr0(b)). As B has defect group D , we may choose a vertex R for ψ with R ⊆ D .
Also, since every element in IBr0(b) has vertex L (by [6, Theorem 5.1.9(ii)]), Corollary 3 in [10] implies
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that R ∩ N = Lx for some x ∈ G . Furthermore, as D ⊆ NG(L), we have D ∩ N = D ∩ NN (L) = L. It follows
that R ∩ N = L. Hence R ∈ Γ and so ψ has vertex Q i for some i. Consequently

IBr
(

B
∣∣IBr0(b)

) ⊆
m⋃

i=1

IBr(B|Q i).

Conversely, suppose ω ∈ IBr(B|Q i) for some i. As Q i ∩ N = L, we have ω ∈ IBr(B|IBr0(b)) (see the
comments preceding the proposition). Thus

IBr
(

B
∣∣IBr0(b)

) =
m⋃

i=1

IBr(B|Q i).

Next, we want to show that the sets IBr(B|Q i) are mutually disjoint. So let i, j ∈ {1, . . . ,m} with
i 
= j, and suppose, on the contrary, that

IBr(B|Q i) ∩ IBr(B|Q j) 
= ∅.

Then Q i = (Q j)
y for some y ∈ G . Now L = Q i ∩ N = (Q j ∩ N)y = L y , and so y ∈ NG(L), contradicting

our choice of the set Ω .
We now have |IBr(B|IBr0(b))| = ∑m

i=1 |IBr(B|Q i)|. By Lemma 2.4, for each i, we have |IBr(B|Q i)| =
|IBr(B∗|Q i)|. Then, in view of (∗), it follows that

∣∣IBr
(

B
∣∣IBr0(b)

)∣∣ = ∣∣IBr
(

B∗)∣∣.

This completes the proof of the proposition. �
The above proposition takes care of a special case of the main theorem. Now to prove the theorem

in its full generality, we need a couple of more preliminary results. Our first result, which should be
well known, is a quite general fact about the Clifford correspondence needed for the proof of the
second result.

Lemma 2.6. Let M � G where G is an arbitrary finite group and let N be a subgroup of G containing M. Let
μ ∈ Irr(M) with inertial group G0 in G and suppose χ ∈ Irr(G|μ) and θ ∈ Irr(N|μ). Then if χ0 ∈ Irr(G0|μ)

(resp. θ0 ∈ Irr(G0 ∩ N|μ)) is the Clifford correspondent of χ (resp. θ ), we have [χN , θ] = [(χ0)G0∩N , θ0].

Proof. Write χN = ∑m
i=1 aiθi +α, where Irr(N|μ) = {θ1, . . . , θm}, every ai is a nonnegative integer and

α is a character of N such that [αM ,μ] = 0. Next for each i ∈ {1, . . . ,m}, let θ̂i ∈ Irr(G0 ∩ N|μ) be the
Clifford correspondent of θi . Since Irr(G0 ∩ N|μ) = {θ̂1, . . . , θ̂m}, we may write (χ0)G0∩N = ∑m

i=1 bi θ̂i ,
where every bi is a nonnegative integer. Now to prove the lemma, it suffices to show that ai = bi for
each i.

Since [χM ,μ] = [(χ0)M ,μ], we have χG0 = χ0 + ζ , where ζ is a character of G0 such that
[ζM ,μ] = 0. Similarly, as [(θi)M ,μ] = [(θ̂i)M ,μ], we have (θi)G0∩N = θ̂i + γi , where γi is some charac-
ter of G0 ∩ N with [(γi)M ,μ] = 0. It follows that

χG0∩N = (χN)G0∩N =
m∑

i=1

ai(θi)G0∩N + αG0∩N =
m∑

i=1

ai θ̂i + δ,

where δ is a character of G0 ∩ N satisfying [δM ,μ] = 0. On the other hand, we have
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χG0∩N = (χG0)G0∩N = (χ0)G0∩N + ζG0∩N =
m∑

i=1

bi θ̂i + ζG0∩N .

Since [ζM ,μ] = 0, we get ai = bi for every i ∈ {1, . . . ,m}. �
The next lemma will help us settle the case of the main theorem in which b is assumed to be

stable.

Lemma 2.7. Let N � G where G is p-solvable, and let b be a G-stable p-block of N. Fix a character μ ∈
Irr(O p′ (N)) that lies under b, and let b0 be the p-block of the inertial group N0 of μ in N corresponding to b
via Theorem 2.2(i). Then if G0 is the stabilizer of (N0,b0) in G, the following hold.

(i) G0 = IG(μ), the inertial group of μ in G.
(ii) Block induction defines a bijection of Bl(G0|b0) onto Bl(G|b). Furthermore, every defect group of B0 ∈

Bl(G0|b0) is also a defect group for (B0)
G .

(iii) If B0 ∈ Bl(G0|b0), then the map ϕ �→ ϕG defines a bijection of IBr(B0) onto IBr((B0)
G), and restricts to a

bijection from IBr(B0|IBr0(b0)) onto IBr((B0)
G |IBr0(b)).

Proof. (i) First assume x ∈ G0. Then (b0)
x = b0 and so b0 lies over μx . Since μ is N0-stable, it follows

that μx = μ. Therefore x ∈ IG(μ). Next assume y ∈ IG(μ). As N � G , we have (N0)
y = IN (μy) =

IN (μ) = N0. We deduce then that (b0)
y is a block of N0 lying over μ. Let now θ ∈ Irr(b0). Then

θ y ∈ Irr((b0)
y) and (θ y)N = (θ N )y ∈ Irr(by) (as θ N ∈ Irr(b) by Theorem 2.2(iii)). But by = b as b is

G-stable. Now in view of Theorem 2.2, we are forced to have (b0)
y = b0. Thus y ∈ G0, and the proof

of (i) is complete.
(ii) Since G0 = IG(μ) by (i), Theorem 2.2(i) tells us that the correspondence B0 �→ (B0)

G defines a
bijection from the set of blocks of G0 over μ onto the set of blocks of G over μ. Therefore, to prove
the first assertion, it is enough to show that B0 ∈ Bl(G0|b0) if and only if (B0)

G ∈ Bl(G|b) (note that
since b0 and b lie over μ, every block in Bl(G0|b0) or in Bl(G|b) must lie over μ).

Let γ ∈ Irr(G0|μ) and δ ∈ Irr(N0|μ). Then Lemma 2.6 implies that γ lies over δ if and only if
χ = γ G ∈ Irr(G|μ) lies over ζ = δN ∈ Irr(N|μ). In particular, by Theorem 2.2(iii), γ ∈ Irr(B0) and
δ ∈ Irr(b0) if and only if χ ∈ Irr((B0)

G) and ζ ∈ Irr(b), and it follows that B0 covers b0 if and only if
(B0)

G covers b, as needed to be shown.
The remaining assertion on defect groups is immediate from Theorem 2.2(ii).
(iii) Let B0 ∈ Bl(G0|b0). Since B0 lies over μ, the correspondence ϕ �→ ϕG defines a bijection

from IBr(B0) onto IBr((B0)
G) by Theorem 2.2(iii). Next to prove the remaining assertion, it suffices

to show that ϕ ∈ IBr(B0) lies over some height-zero irreducible Brauer character of b0 if and only
if ϕG lies over some height-zero irreducible Brauer character of b. Now since ϕ ∈ IBr(B0) and ϕG

have a common vertex Q (⊆ G0), the blocks b0 and b have equal defects (from Theorem 2.2(ii)), and
Q ∩ N = (Q ∩ G0)∩ N = Q ∩ N0, we have the result (by the comments preceding Proposition 2.5). �

We also need the following easy lemma.

Lemma 2.8. Let N � G where G is p-solvable and let B and b be p-blocks of G and N respectively such that B
covers b. If B ′ is the Fong–Reynolds correspondent of B in the inertial group T of b in G, then

∣∣IBr
(

B ′∣∣IBr0(b)
)∣∣ = ∣∣IBr

(
B
∣∣IBr0(b)

)∣∣.

Proof. By [6, Theorem 5.5.10(ii)], the map ϕ �→ ϕG defines a bijection from IBr(B ′) onto IBr(B).
Since ϕ ∈ IBr(B ′) and ϕG both lie over some ω ∈ IBr(b), the above map restricts to a bijection from
IBr(B ′|IBr0(b)) onto IBr(B|IBr0(b)). The result then immediately follows. �

Finally, we are ready to prove our main result.
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Proof of Theorem. Step 1. Suppose b is G-stable. Our objective here is to prove the theorem in this
case. We will proceed by induction on |G|.

Let H = O p′ (N) and K = NG(L) ∩ H(= NN (L) ∩ H). Then K = C H (L). Choose a character ν ∈ Irr(K )

lying under b∗ , and let μ ∈ IrrL(H) be the character that corresponds to ν under the Glauberman
correspondence with respect to the action of L on H . Then b lies over μ (by the discussion preceding
Theorem 2.2). Next set G0 = IG(μ) and N0 = IN (μ).

If G0 = G , then we have the result by Proposition 2.5. We can assume therefore that G0 < G . We
have NN0(L) = N0 ∩ NN (L) = INN (L)(ν) (see the comments in the beginning of Section 2). Let now b0
be the block of N0 over μ that corresponds to b via Theorem 2.2(i). Similarly, let b∗

0 be the block
of NN0 (L) over ν corresponding to b∗ (via the same theorem). Then Theorem 4.6 in [9] says that
(b∗

0)
N0 = b0. Next, since b∗

0 and b∗ have a common defect group by Theorem 2.2(ii) and L is a defect
group for b∗ , the block b∗

0 must have L as a defect group. Then by [6, Theorem 5.3.8], L is a defect
group of b0.

Notice that NG0(L) = G0 ∩ NG(L) = ING (L)(ν). Also, in view of [9, Lemma 3.7], we have
O p′ (NN (L)) = H ∩ NN (L) = K .

Next we claim that b∗ is NG(L)-stable. So let g ∈ NG(L). Then (b∗)g is a block of NN (L) (as NN (L)�
NG(L)). Moreover, ((b∗)g)N = ((b∗)N )g = bg = b, as b is G-stable. Since b∗ is the unique block of
NN (L) such that (b∗)N = b, we are forced to have (b∗)g = b∗ . This proves our claim.

Let now B∗
0 be the block in Bl(NG0(L)|b∗

0) corresponding to B∗ via Lemma 2.7(ii). Then (B∗
0)

G0

is defined. We claim that (B∗
0)

G0 equals the block B0 of G0 covering b0 that corresponds to B via
Lemma 2.7(ii).

As b∗
0 lies over ν , then so does B∗

0. Therefore B∗
0 is the block of NG0(L) over ν that corresponds

to B∗ through Theorem 2.2(i). Similarly, since b0 lies over μ, then so does B0. Hence B0 is the
block of G0 over μ corresponding to B through Theorem 2.2(i). Now by Theorem 4.6 of [9], we have
(B∗

0)
G0 = B0, as we claimed.

Since G0 < G , the inductive hypothesis guarantees that |IBr(B0|IBr0(b0))| = |IBr(B∗
0)|. Also,

Lemma 2.7(iii) implies that |IBr(B|IBr0(b))| = |IBr(B0|IBr0(b0))| and |IBr(B∗)| = |IBr(B∗
0)|. It follows

that |IBr(B|IBr0(b))| = |IBr(B∗)|. This proves the theorem in this case.
Step 2. We will prove the theorem here for any b (not necessarily G-stable).
Let T be the inertial group of b in G and let B ′ be the Fong–Reynolds correspondent of B in T .

First we show that NT (L) = ING (L)(b∗), the inertial group of b∗ in NG(L).
Suppose x ∈ NT (L). Then (b∗)x is a block of NN(L) and ((b∗)x)N = ((b∗)N )x = bx = b. Therefore

(b∗)x = b∗ (as b∗ is the unique block of NN(L) with (b∗)N = b), and hence x ∈ ING (L)(b∗). Next assume
y ∈ ING (L)(b∗). Then by = ((b∗)y)N = (b∗)N = b, and so y ∈ T ∩ NG(L) = NT (L). We have thus shown
that NT (L) = ING (L)(b∗), as needed.

Now let β be the Fong–Reynolds correspondent of B∗ in NT (L). Since βNG (L) = B∗ and (B∗)G = B ,
Lemma 5.3.4 in [6] tells us that βG is defined and equals B . Also, as βT is defined, then by using the
same lemma, we get that (βT )G is defined and equals B . Next the Harris–Knörr theorem implies that
βT covers b (as β covers b∗). It follows that βT must be the Fong–Reynolds correspondent B ′ of B
in T .

By Step 1, we have |IBr(B ′|IBr0(b))| = |IBr(β)|. Next, [6, Theorem 5.5.10(ii)] implies that |IBr(B∗)| =
|IBr(β)| and by Lemma 2.8,

∣∣IBr
(

B
∣∣IBr0(b)

)∣∣ = ∣∣IBr
(

B ′∣∣IBr0(b)
)∣∣.

It follows that |IBr(B|IBr0(b))| = |IBr(B∗)|. The proof of the theorem is now complete. �
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