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Abstract

Valgrind is a programmable framework for creating program supervision tools such
as bug detectors and profilers. It executes supervised programs using dynamic
binary translation, giving it total control over their every part without requiring
source code, and without the need for recompilation or relinking prior to execution.

New supervision tools can be easily created by writing skins that plug into Val-
grind’s core. As an example, we describe one skin that performs Purify-style memory
checks for C and C++ programs.

1 Introduction

Valgrind is a meta-tool: a tool for making tools. Programmers can use it to
build tools that supervise almost any aspect of a program’s execution, such
as profilers, bug detectors, and tools that deduce program properties.

1.1 Overview

Valgrind uses dynamic binary translation to provide complete control over a
program. This approach has two major advantages.

(i) Coverage: It covers all the code of a program, and all the libraries it uses,
even if the source code is not available. Only system calls are not directly
under Valgrind’s control, and even they can be indirectly observed.

(ii) Convenience: Neither a supervised program nor its libraries need to be
recompiled, relinked, or altered in any other way before being run.

Tools are written in C. The simplest tools can be defined by writing only four
functions, requiring only a few lines of code. Creating a new tool is simple
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enough that it is feasible to create domain-specific tools that work with only
one program or a small number of programs. However, Valgrind is also suited
to writing more complex, very powerful supervision tools.

1.2 History and Current Status

Valgrind was first released in early 2002 as a monolithic memory checker for
C and C++ programs, d la Purify [16]. When one of this paper’s authors
needed a cache profiler, he added it to Valgrind because it provided an ideal
infrastructure. Valgrind was then used to experiment with automatic invari-
ant detection. When further extensions were suggested, we decided, rather
than continually adding new capabilities in an ad hoc and confusing fashion,
that Valgrind should be recast as a meta-tool for program supervision. Large
chunks were re-written, separating tool-specific skins from the generic core.

Valgrind’s core contains the low-level infrastructure to support program
instrumentation. This includes the x86-t0-x86 just-in-time (JIT) compiler, a
basic C library replacement, support for signal handling, and a scheduler (for
threaded programs). It also provides some services that are useful to some but
not all skins, such as functions to read debug information, record and suppress
errors, etc. It handles most of the fiddly tasks that a supervision tool author
would rather not worry about. Each skin’s main job is to instrument all code
that passes through the core’s JIT compiler.

Valgrind is free (GPL) software. It runs on most x86 machines running
Linux, and is robust enough to run large programs, such as Mozilla and
OpenOffice. The Valgrind distribution includes the core and several skins:

e Memcheck: The original Purify-style memory checker;

* Addrcheck: A more light-weight memory checker that only checks whether
each memory access is to an addressable location;

» Cachegrind: A cache profiler that supports line-by-line source annotations
of instruction and data cache misses;

 Helgrind: A data-race detector that uses the Eraser algorithm [25];

* Nulgrind: the “null” skin that performs no instrumentation.

1.8 Contributions of This Work

We claim it is easier to write powerful supervision tools with Valgrind than
with other, similar program instrumenters. This is because it was designed
first and foremost as an instrumenter, not as a dynamic translator that later
had instrumentation bolted on. In particular, unlike other tools, Valgrind
uses a platform-independent intermediate format (called UCode) that is ex-
pressed using virtual registers. This level of abstraction allows a skin to add
instrumentation without being constrained by the original code (e.g. do I have
enough spare registers?) and without fear of changing the original code’s ef-
fects (e.g. does my instrumentation alter the machine’s condition codes?).
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Skins can even extend UCode with new instructions, which allows very fine-
grained instrumentation. Also, Valgrind provides commonly needed services
such as debug information reading, error reporting, register shadowing, etc.

In addition, Valgrind supports client requests, which allow supervised pro-
grams to pass information to a supervision tool. This opens up the possibility
of easily combining static and dynamic analysis.

1.4 Paper Organisation

This paper is structured as follows. Section 2 describes Valgrind’s core, Sec-
tion 3 describes the core/skin interface, and Section 4 describes skins, using
Memcheck as an example. Section 5 discusses performance, and Section 6
considers related work. Section 7 discusses future work and concludes.

2 The Core

Valgrind’s core provides the base execution mechanism for supervised pro-
grams. This section describes its main features.

2.1 JIT Compiler

The most important part of Valgrind’s core is the x86-to-x86 JIT compiler.
Valgrind ® works with ordinary dynamically-linked ELF executables, and does
not require them to be recompiled, relinked, or altered before they are run.
The core is packaged as a shared object (valgrind.so) and loaded alongside
the client program being supervised, using the LD_PRELOAD environment vari-
able. Importantly, valgrind.so is linked with the -z initfirst flag, which
ensures that its initialisation code is run before that of any other object in the
loaded image.

When this initialisation code is run, Valgrind gains control. The real CPU
becomes trapped in valgrind.so and the translations it generates. When the
initialisation function returns, normal start-up actions, orchestrated by the
dynamic linker 1d.so, continue as usual, but on Valgrind’s simulated CPU.
Valgrind never runs any part of the client program directly.

2.1.1 Basics
To avoid the notorious complexity of x86 code, Valgrind uses UCode, a RISC-
like two-address intermediate language. The translation performed by the JIT
compiler is thus not x86-to-x86, but rather x86-to-UCode-to-x86.4

Each register for the simulated CPU is stored in memory, in a block called
the baseBlock, which is permanently pointed to by register %ebp for easy

3 We will use the terms “Valgrind”, “Valgrind’s core” and “the core” interchangeably.
4 One might also think that UCode makes Valgrind easy to port to other architectures.
See Section 7.1 for a caveat about this.
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movl $0xFFFF,%ebx 0: MOVL $0xFFFF, tO
1: PUTL t0, %EBX
2: INCEIPo $5

andl %ebx, j%eax 3: GETL %EAX, t2
4: GETL %EBX, t4
5: ANDL t4, t2 (-wOSZACP)
6: PUTL t2, %EAX
7: INCEIPo $2

ret 8: GETL %ESP, t6
9: LDL (t6), t8
10: ADDL $0x4, t6
11: PUTL t6, %ESP

12: JMPo-r t8

Fig. 1. x86 code to UCode

access. Their contents are loaded from the baseBlock into memory when
needed, and if the values change, the baseBlock values must be updated
again by the end of the basic block. But they need not be updated in the
middle of a basic block. ®

The condition codes register is also stored in the baseBlock. If instruction
X affects the condition codes, and then a later instruction Y clobbers those
changes, the condition code update for X can be skipped.

2.1.2  Translating Basic Blocks

A basic block ends upon any control transfer instruction, e.g. a jump, call,
return. If control transfers to the middle of an already translated basic block,
its second half will be translated again and stored separately; in practice this
is uncommon. One basic block is translated at a time, in the following steps.

(i) Disassembly: Each x86 instruction is independently disassembled into
one or more UCode instructions, expressed in terms of virtual registers.
The code produced fully updates the simulated register set in memory
for every x86 instruction. The translation is straightforward but tedious
due to the complexity of the x86 instruction set.

Figure 1 gives an example, using AT&T assembler syntax. The simu-
lated registers are called %EAX, %EBX, etc. Virtual registers are named t0,
t2, etc. PUT and GET move values in and out of the simulated registers.
INCEIP instructions mark where the UCode for each x86 instruction ends;
the argument gives the length of the original x86 instruction.

(ii) Optimisation: Removes redundant UCode introduced by the simplistic
disassembler. In particular, many of the simulated registers can be kept

5 This means Valgrind cannot simulate precise exceptions. In our experience, this is not a
serious limitation.
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10:
11:

MOVL $0xFFFF, Y%eax movl $0xFFFF, Yeax
PUTL Y%eax, %EBX movl  %eax, 0xC(%ebp)
INCEIPo $5 movb  $0x18, 0x24(%ebp)
GETL %EAX, %ebx movl 0x0 (%ebp), %hebx
ANDL %eax, %ebx (-wOSZACP) andl  Y%eax, %ebx
PUTL %ebx, %EAX movl  %ebx, 0x0(%ebp)
INCEIPo $2 movb  $0x1A, 0x24(%ebp)
GETL #ESP, Yecx movl  0x10(%ebp), %ecx
LDL (%hecx), hedx movl (%ecx), Y%hedx
ADDL $0x4, Jecx pushfl; popl 32(%ebp)
addl  $0x4, Y%ecx
PUTL %hecx, %ESP movl  Yecx, 0x10(%ebp)
JMPo-r  Yedx movl  %edx, %eax
ret

Fig. 2. UCode to x86 code

in a real register until their last use in the basic block. For the example
in Figure 1, this phase deletes the GET at instruction #4, and renames
t4 as t0 in instruction #5.

Instrumentation: Added by the skin. For clarity, our example adds no
instrumentation.

Register allocation: Assigns each virtual register to the six real, freely
usable general-purpose registers: %eax, %ebx, etc. Spill code is generated
as needed. The linear-scan register allocator [29] does a fairly good job;
importantly it passes over the basic block only twice, minimising compi-
lation times. The left side of Figure 2 shows the results of allocation.

Code generation: Each UCode instruction is translated independently.
Most turn into a small number of x86 instructions, but some call assembly
code or C helper functions. The right side of Figure 2 continues our
example. INCEIP updates the simulated program counter, %EIP; if the
update only modifies the least-significant byte of the program counter,
we use a movb instead of an addition to update it. The generated code
for instruction #9 stores the final condition codes in the baseBlock.

2.1.3 Connecting Basic Blocks

Translated basic blocks are stored in a table that can hold about 160,000

translations. Translations are evicted when necessary using a FIFO policy.
At the end of each basic block, one of three things can happen.

(1)

(ii)

Jumps to addresses known at compile-time are translated into direct
jumps to the relevant translation (giving chains of directly connected
basic blocks). Even in the worst case, around 70% of jumps are chained.

If a basic block does not end with a chained jump, the translation jumps
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back to an assembly code dispatch loop, carrying the original code address
of the next block to run. The dispatcher searches for its translation in
a small direct-mapped translation cache, which has a hit rate of around
98%. If that fails, a full search of the old-to-new code address table is
conducted. If the translation is found, it is executed immediately.

(iii) If no translation is found, control falls out of the dispatcher back to
Valgrind’s main event scheduler, and a new translation is made.

Furthermore, Valgrind must periodically check whether there are any out-
standing signals to be delivered, and whether a thread switch is due. To
support this, all blocks begin with a preamble (not shown in Figures 1 and 2)
which decrements a counter and falls out to the scheduler when the counter
hits zero. If a translation does certain other tasks, such as make a system call
or handle a client request, control also returns to the scheduler.

Although no part of the client program is executed directly on the real
CPU, Valgrind does all its work (such as translation) on the real CPU.

2.1.4 System Clalls

System calls are performed on the real CPU. For system calls to work correctly,
Valgrind must make it look like the client is running normally, but not lose
control of program execution. The steps the core takes are as follows.

(i) Save Valgrind’s stack pointer;
(ii) Copy the simulated registers, except the program counter, into the real
registers;
(iii) Do the system call;

(iv) Copy the simulated registers back out to memory, except the program
counter;

(v) Restore Valgrind’s stack pointer.

Note that by copying the client’s stack pointer, the system call is run on the
client’s stack, as it should be.

2.1.5 Floating Point, MMX and SSE Instructions

We take some liberties to simplify handling of x86 floating point (FP) in-
structions. FP instructions are classified into one of three categories: those
which update the FPU state but do not read or write memory, those which
also read memory, and those which also write memory. To run a simulated
FP instruction on the real CPU, the simulated FPU state is loaded into the
real CPU, the instruction is executed, and the real FPU state is then copied
back to the simulated state (stored in baseBlock). Effort is made to avoid
redundant state copying. FPU instructions that read or write memory or oth-
erwise refer to the integer registers have their addressing modes adjusted to
match the real integer registers assigned by register allocation, but are oth-
erwise executed unmodified on the real CPU. This arrangement sidesteps the
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need to simulate the FPU’s internal state, whilst still making FPU load/store
addresses and data widths available to skins. A similar approach is used for
handling MMX, SSE and SSE2 instructions.

2.1.6 Client Requests

Valgrind’s core has a trapdoor mechanism that allows a client program to
pass signals and queries, or client requests, to a skin. This is done by inserting
into the client program a short sequence of instructions that are effectively
a no-op (six highly improbable, value-preserving rotations of register jeax).
When Valgrind spots this sequence of instructions during x86 disassembly, the
resulting translation causes control to drop into its code for handling client
requests. Arguments can be passed to client requests, and they can return a
value to the client.

Client requests can be embedded in any program written in any language
in which assembly code or C code can be embedded; a macro makes this easy.
The client just needs to be recompiled with the client requests inserted; it
does not need to be linked with any extra libraries. And because the magic
sequence is a no-op, a client program can be run normally without any change
to its behaviour, except perhaps a marginal slow-down.

2.1.7 Self-modifying Code

Valgrind does not directly support self-modifying code.® However, there is
indirect support, via the VALGRIND_DISCARD_TRANSLATIONS client request,
which tells it to discard any translations of x86 code in a certain address range.
Thus, with some effort, Valgrind can work with programs that dynamically
generate or modify code.

6

2.1.8 Termination

Eventually the client program calls the exit () system call, indicating that it
wishes to quit. Valgrind halts the simulated CPU, performs its final actions
(such as printing out final results from the active skin), and calls exit () itself,
passing to the kernel the exit code that the client gave it.

2.1.9 Ensuring Correctness

The correctness of Valgrind’s JIT compiler is paramount. The code is littered
with assertions, and the core periodically sanity checks various critical pieces of
state. These measures have found many bugs during Valgrind’s development,
and contributed immensely to its stability.

One important design decision was to ensure Valgrind could stop simulated
CPU and revert back to the real CPU part way through a program’s execution.
Bugs in the JIT compiler can be pin-pointed using a binary search on the
reversion point. This decision did constrain Valgrind’s design in two minor

6 It did once, but it was too complicated and not useful enough to be worthwhile.
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ways. Firstly, the layout of memory seen by the client must be identical
regardless of whether it is running on the real or simulated CPU; this precluded
data-address swizzling. Secondly, Valgrind cannot run on the same stack as
the client; instead it uses its own stack which it switches to at start-up.

2.2 C Library

Valgrind does not rely on the GNU standard C library (glibc) at all, or any
other shared objects or libraries. This decision was made to avoid the possi-
bility of subtle bugs caused by running C library code both on the simulated
CPU (for the client program) and the real CPU (for the core and skins).”
Also, glibc has different definitions for some types (e.g. sigset_t) to the
Linux kernel, and Valgrind uses the kernel’s definitions. The only header files
that Valgrind includes are kernel header files.

Because of this, Valgrind’s core provides a reimplementation of some stan-
dard C library functions, such as printf (), mmap(), open(), sigaction(),
etc. Each one is prepended with a unique (we hope!) prefix, to avoid name
clashes, since Valgrind’s text and data segments share the same namespace as
the client program.

2.3  Signals

Unix signal handling presents special problems for all user-process emulators:
when an application sets a signal handler, it is giving the kernel a callback
(code) address in the application’s space, which should be used to deliver the
signal. We cannot allow this to happen, since the handler will run on the real
CPU and not the simulated one. Even worse, if the handler does not return
but instead does a longjmp, Valgrind will permanently lose control.

Instead, Valgrind intercepts the sigaction() and sigprocmask() system
calls, which are used to register signal handlers. Valgrind notes the address of
the signal handler specified, and instead requests the kernel delivers that signal
to its own handler. When a signal arrives, Valgrind notes that the signal is now
pending for the client, but does not deliver the signal immediately, unless it
indicates an exception which is non-resumable according to POSIX semantics
(segmentation fault, bus error, or floating point exception).

Every few thousand basic blocks, any pending signals are delivered to the
client. Signal delivery frames are built on the client’s stack, and the handler
code is then run on the simulated CPU. If a signal frame is observed to return,
Valgrind removes the frame from the client’s stack and resumes executing the
client wherever it was before the frame was pushed.

Interactions with signal masks, with signals interrupting system calls, and
with threads, make the signal simulation machinery complex and fragile. Nev-
ertheless it works well enough to run almost all applications, and in particular

7 At least one astonishingly obscure bug was caused by an accidental glibc dependency.
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POSIX signal semantics work well.

2.4 Pthreads Implementation

How should threads be handled in this framework? Valgrind could run instru-
mented code in separate threads, one per child thread in the client program.
This sounds simple, but it would be complex and slow. All Valgrind’s internal
data structures would need to be suitably threaded and locked. This might be
viable. However, skins would also have to lock skin-specific data structures.
For Memcheck (and several other skins), this would mean locking shadow
memory (see Section 4.1) for every load/store done by the client, which would
be too slow. The reason is that originally-atomic loads and stores can be-
come non-atomic in instrumented code. Under Memcheck, each load or store
translates into a load or store of shadow memory, followed a few instructions
later by the original load/store. It was unclear how to guarantee, efficiently,
that when multiple threads accessed the same memory location, updates to
shadow memory would complete in the same order as the original updates.

To sidestep these problems, Valgrind only supports the POSIX (p)threads
model, providing its own binary-compatible replacement for the standard
libpthread pthread library. This, combined with Valgrind’s core, provides a
user-space threads package. All threads are run on a single kernel thread, and
all thread switching and scheduling is entirely under Valgrind’s control. The
standard abstractions are provided—mutexes, condition variables, etc.

This scheme works well enough to run most threaded programs, including
large applications such as Mozilla, OpenOffice and MySQL. It also makes
important thread-related events, such as thread creation and termination, and
mutex locking/unlocking, visible to the core, and hence indirectly to skins.®

Unfortunately, the reimplementation of libpthread greatly complicates
Valgrind’s core, particularly when dealing with signals and ensuring that sys-
tem calls such as read() block only the calling thread and not the whole of
Valgrind. Furthermore, the system libpthread interacts closely with glibc
and renders our version very susceptible to changes in the C library. We are
considering a compromise scheme, in which the system libpthread is used,
but Valgrind still schedules the resulting threads itself; if thread switches only
occur between basic blocks, there is no problem with shadow memory accesses.
This might be feasible because Valgrind can easily intercept the clone() sys-
tem call with which the standard library starts a new thread. However, it is
unclear whether this scheme will work, and whether it will simplify matters.

2.5  Limaitations

Valgrind does not yet support the new Native POSIX Thread Library (NPTL)
for Linux, although we are working on this. A workaround is to use the

8 These are critical for the data-race detection skin, Helgrind.
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LD_ASSUME_KERNEL variable, so that the old LinuxThreads library is used
instead. Also, statically linked programs cannot be run under Valgrind, due
to its (ab)use of the dynamic linker to gain control at program start-up.

3 Core/Skin Interface

Valgrind’s core leaves certain critical functions undefined, which a skin must
supply. Most notably, skins define how program code should be instrumented.
Each skin defines a separate program supervision tool. Writing a new tool
just requires writing a new skin. The core takes care of the rest.

3.1 FExecution Spaces

To understand skins, one must understand the three spaces in which a client
program’s code executes (from the skin’s point of view), and the different
levels of control that a skin has over these spaces.

(i) User space: Covers all code that is JIT compiled. The skin sees all such
code and can instrument it any way it likes, providing it with (more or
less) total control. This includes all the main program code, and almost
all of the C library (including the dynamic linker) and other libraries.

(ii) Core space: Covers the small proportion of the program’s execution that
takes place entirely within Valgrind’s core. It includes signal handling,
and pthread operations and scheduling. A skin cannot instrument these
operations, as it never sees their code. However, the core provides hooks
so a skin can be notified when certain interesting events happen, such
as a signal being delivered memory, a pthread mutex being locked, etc.
These hooks are described in more detail in Section 3.3, with examples
in Section 4.4.

(iii) Kernel space: Covers execution in the operating system kernel. System
call internals cannot be directly observed by either the skin or the core,
but the core built-in knowledge about what each system call does with
its arguments, and it provides a hook allowing skins to wrap system calls,
so they can be aware of their execution. All other kernel activity (e.g.
process scheduling) is opaque to Valgrind and irrelevant to its execution.

Skins only see code executed in user space. This is the vast majority of code,
but note that any profiling information recorded will not be exhaustive.

3.2 How Skins Work

Skins must define four functions that are called by Valgrind’s core, and it
is important that programmers can write and distribute skins that can be
plugged into Valgrind’s core in a modular and binary-compatible way.

To achieve this, each skin is packaged into a separate shared object which
is loaded ahead of valgrind.so, again using the LD_PRELOAD variable. The
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functions that must be defined by the skin are declared as weak symbols in
the core; definitions of them in the skin override the core’s definition. The
core versions of these function abort immediately if ever called.

One copy of the core shared object valgrind.so is shared by all the skins
on a system. Valgrind is installed so that selecting a skin simply requires using
the ——skin option of the Valgrind start-up script.

3.8  Required Functions

A skin must define at least four functions, for initialisation, instrumentation,
and finalization, described in the following sections.

3.3.1 Initialisation

The functions vgSkin_pre_clo_init() and vgSkin_post_clo_init() are
called before and after command-line processing occurs.?® Most importantly,
there are three structures in which a skin can set fields.

(1) Details: This structure contains the skin’s name, copyright notice, version
number, etc. These details are used when constructing the skin’s start-up
message, and must be filled in by a skin, or the core aborts execution.

(ii) Needs: This structure contains several boolean fields. If a need is set
(they default to false), it indicates that the skin wishes to use a service
provided by the core. Most services require the skin to define some extra
functions. For example, to record and report errors, a skin can set the
skin_errors need, and then must define several functions for comparing
errors, printing errors, etc. This is much easier than doing error handling
from scratch. See Section 4.2 for examples of needs.

(iii) Trackable Events: This structure can be used by a skin to indicate which
core space events it is interested in. To declare its interest, the skin sets
the relevant pointer in the structure to point to a function, which will
be called when that event happens. For example, if the skin sets the
post_mutex_lock function pointer, the assigned function will be called
each time a mutex is locked.

The main difficulty with trackable events is predicting which are in-
teresting to skins. We have added all the hooks that are necessary for
the skins distributed with Valgrind (quite a number), plus a few more
obviously useful ones, and we are prepared to add new hooks for skin-
writers as they need them. New events can be added to the core in a
binary-compatible way that does not break old skins.

As well as initialising these structures, a skin must register any C functions
to be called from instrumented code, and do any other initialisation it needs.

9 Both are needed; vgSkin_pre_clo_init() so a skin can declare that it wants to process
command line options, and vgSkin_post_clo_init() so it can do any initialisation that
relies on the command line options given.
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3.3.2  Instrumentation
The function vgSkin_instrument () is called to instrument UCode. The easi-
est way to do this is to insert calls to C functions, using the UCode instruction
CCALL, at interesting program points. C calls are efficient—the code generator
preserves only live caller-save registers across calls, and we allow called func-
tions to utilise gee’s regparms attribute so that their arguments are passed in
registers instead of on the stack. If we are lucky with liveness, and arguments
are in the right registers already, a C call requires just a single call instruc-
tion. A more complicated way to add instrumentation, albeit one that might
result in better performance if a skin does fine-grained instrumentation, is to
extend UCode with new instructions. Memcheck does this (see Section 4.2.5).
Because UCode is instrumented one basic block at a time, basic block-
level instrumentation is easy. Instrumentation at the x86-instruction level
is also possible, thanks to the INCEIP instruction which groups together all
UCode instructions from a single x86 instruction. However, function-level
instrumentation is surprisingly difficult. How do we know if a basic block is
the first in a function? There is no tell-tale instruction sequence at a function’s
start, and we cannot rely on spotting a call instruction, because functions
in dynamically linked shared objects are called using a jmp. Instead we use
symbol information. If a basic block shares an address with a function, it
must be that function’s first basic block. This does not work for programs
and libraries that have had their symbols stripped, but it is the best we can
do.

3.3.83  Finalization
The function vgSkin_fini() lets the skin do any final processing, such as
presenting the final results, writing a log file, etc.

3.4 Skin Output

By default, skin output goes to stderr. Core command line options can be
used to redirect it to a given file descriptor, file, or network socket. A skin
can also write directly to file using Valgrind’s C library file functions.

3.5 Replacing Library Functions

Just as a skin can overwrite functions defined in the core, it can overwrite
functions defined in libraries. Section 4.3 gives examples. In particular, the
core provides some support to make it easier to replace malloc(), free() and
friends, since knowing about heap operations is important for many skins.

4 Memcheck: An Example Skin

This section describes Memcheck, the memory checker skin that is distributed
with Valgrind. Although it describes some of the skin’s mechanics, this section
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is intended to show how skins work, and what they can achieve, rather than
be a detailed description of Memcheck itself.

4.1  Qverview

Memcheck is a Purify-style memory checker designed primarily for C and
C++ programs. When a program is run under Memcheck, all used memory
is tracked, and all memory accesses are checked. It can detect these errors:

* Use of uninitialised memory;

* Accessing memory after it has been freed;

* Accessing memory past the end of heap blocks;

» Accessing inappropriate areas on the stack;

* Memory leaks, where pointers to heap blocks are lost;

* Passing of uninitialised and/or unaddressable memory to system calls;

» Mismatched use of malloc() /new/new[] vs. free()/delete/delete[];

* Overlapping source and destination areas for memcpy (), strcpy(), etc.

The skin shadows each byte of memory used in the original program with nine
status bits. Shadows are added in 64KB segments as new memory is used.
One of the shadow bits, the A (addressability) bit, indicates whether the byte
is currently addressable by the program. The relevant A bit(s) are checked
for every memory access, so as to detect invalid references to memory on a
per-byte granularity.

The other eight V' (validity) bits indicate which bits in the byte have de-
fined values, according to some loose understanding of C’s semantics. The
V bits are used to detect if any of the following operations depend on unini-
tialised values: conditional tests and moves, system calls, and memory address
computations. The V bits are not checked simply when a value is read, be-
cause partially defined words are often copied around, due to the common
practice of padding structures to ensure fields are word-aligned.

This per-bit validity checking is expensive in space and time, but it can
detect the use of single uninitialised bits, and does not report spurious errors
on bit-field operations. A faster alternative is to use Addrcheck, which is based
on Memcheck, but only uses A bits, and thus reports fewer errors.

4.2 Services Used

Memcheck is a good example skin because it uses most of the services provided
by the core. The more interesting ones follow.

4.2.1 Error Recording

As mentioned above, to use the error recording service a skin must provide
definitions of several functions for comparing and printing errors, reading files
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containing suppressions (descriptions of errors which the user does not want
to see), etc. The core reports each error only once, to prevent the user from
being flooded with duplicate error reports.

4.2.2  Debug Information

Valgrind’s core provides functions that take an instruction address and search
the program’s debug information to find the name of executable or shared
object it came from, and also its origin source file name, function name and
line number. The debug information (if present) is used to identify the exact
line at which memory errors occur.

4.2.3  Shadow Registers

Just as each memory location is shadowed with eight V bits and one A bit,
each (32-bit) register is shadowed with 32 V bits—the A bit is not necessary
as registers are always addressable. The skin must define one function that
defines the initial value of the shadow registers. During execution, Memcheck
handles register V bits similarly to memory V bits.

4.2.4  Client Requests

Skins can define their own client requests. If a request is not recognised by
the core, it can be passed to the skin which can interpret it as it likes. Each
client request has a unique number; a two-letter code identifies which skin it
belongs to. Unrecognised client requests are ignored, so that client requests
for more than one skin can be embedded in a client program.

4.2.5 FEztended UCode
Extending UCode’s instruction set does not make a skin any more powerful—
the same effect can be achieved by using calls to C functions—but it can
help performance, by effectively inlining instrumentation. Memcheck adds a
lot of fine-grained instrumentation, typically 1-3 x86 instructions per UCode
instruction. Calling a C function for each one would slow it down greatly.
To extend UCode, a skin must define a function that, for each new in-
struction, indicates its register use (for register allocation), and another that
generates its code. The core provides functions to assist code generation.
Memcheck defines ten new UCode instructions, each of which mirrors a nor-
mal UCode instruction, but works with the V bits of the relevant value instead
of the value itself.

4.3 Replacement Library Functions

Memcheck replaces the standard C and C++ memory management functions
(malloc(), free(), etc.) with its own definitions. These replacements run
on the simulated CPU, but use a client request to transfer control to the real
CPU, so that the core’s low-level memory management routines can be used.
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There are four reasons to use replacements. First, to track when heap
memory is allocated, moved, and deallocated, in order to maintain the correct
A and V bits. Second, to flank allocated blocks with redzones—unused areas
at their edges—which can help with detection of block overruns and underruns.
Third, to record additional information for each heap block, allowing detection
of errors such as bad deallocations (e.g. trying to deallocate a non-heap block),
and mismatched use of malloc() /new/new[] vs. free() /delete/deletel].
Also included is an ezecution contert, a snapshot of the program counter and
the top few return addresses on the stack from the time of allocation. This
is vital for writing informative error messages about heap blocks. Finally,
Memcheck postpones heap block deallocation by storing freed blocks in a list
for a short time, which allows it to catch erroneous accesses to freed blocks.

Memcheck also replaces some C string functions: strlen(), strcpy(),
memcpy (), etc. This is because their x86 glibc implementation uses highly
optimised assembly code which is not handled well by Memcheck, causing it
to emit many spurious errors. Simpler versions do not cause these problems.
Also, these replacement versions can check that the source and destination
memory blocks do not overlap in memcpy (), strcpy(), etc. These functions
are run on the simulated CPU.

4.4 FEvents Tracked

Memcheck registers functions so that it is notified when the system calls that
affect memory permissions occur: mmap(), brk(), mprotect(), mremap(),
munmap(). Also, A and V bits are checked before all system calls that read
memory (e.g. write()), and V bits are updated after all those that write
memory (e.g. read()). Such notification can be done because each system
call’s behaviour is clearly defined, and known by the core.

The core also provides hooks for notifying skins when the stack grows and
shrinks. Skins could do this, since stack pointer (%esp) manipulations are
entirely visible from the UCode. But it is fiddly and must be well optimised—
%esp is changed very frequently—so the core does it. Common cases (when
%esp is changed by 4, 8, 12, 16 or 32 bytes) are optimised with unrolled loops.

4.5 Other Initialisation

In addition to initialising the details, needs and tracked events structures,
Memcheck also registers twelve C functions that it calls from instrumented
code (e.g. when an error is detected), and initialises the A and V shadow bits
for all bytes of memory accessible at program start-up.

4.6 Instrumentation

Each UCode instruction is instrumented individually, with instrumentation
added immediately before it. UCode instructions that move values around
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Program | Time (s) | Nulgrind Memcheck Addrcheck Cachegrind
bzip2 10.7 2.4 13.6 9.1 31.0
crafty 3.5 7.2 44.6 26.5 107.4
gap 0.9 5.4 28.7 144 46.6
gce 1.5 8.5 36.2 23.6 73.2
gzip 1.8 4.4 20.8 14.5 50.3
mcf 0.3 2.1 11.6 5.9 18.5
parser 3.3 3.7 17.4 12.5 34.8
twolf 0.2 5.2 29.2 18.5 53.3
vortex 6.5 7.5 47.9 32.7 88.4
ammp 18.9 1.8 24.8 21.1 47.1
art 26.1 5.9 14.1 11.5 19.4
equake 2.1 5.5 32.7 28.0 49.9
mesa 2.7 4.7 41.9 31.6 64.5
| median | 5.2 28.7 18.5 49.9
Table 1

Slowdown factor of four skins

(e.g. LOAD) are instrumented with the corresponding extended UCode instruc-
tion that does the same for the shadow V bits (e.g. LOADV). In other places A
and V bit tests are inserted, and for arithmetic operations instrumentation is
inserted to compute the V bits of the result from the V bits of the operands.

This first pass can be quite naive about adding instrumentation, as any
excess instrumentation is removed by a subsequent optimisation pass that
performs constant-propagation and constant-folding of operations on V bits.

4.7  Finalization

Memcheck finishes by printing some basic memory statistics (number of bytes
allocated, freed, etc.), summarising any found errors, and running its leak
checker if the —-1eak-check=yes option was specified.

5 Performance

This section discusses Valgrind’s performance. All experiments were per-
formed on an 1400 MHz AMD Athlon with 1GB of RAM, running Red
Hat Linux 7.1, kernel version 2.4.19. The test programs are a subset of the
SPEC2000 suite. All were tested with the “test” (smallest) inputs.

Table 1 shows the time performance of four skins. Column 1 gives the
benchmark name, column 2 gives its normal running time in seconds, and
columns 3-6 give the slowdown factor for each skin. Programs above the line
are integer programs, those below are floating point programs.

Table 2 shows the post-instrumentation code expansion for the four skins.
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Program | Size (KB) | Nulgrind Memcheck Addrcheck Cachegrind
bzip2 34 5.2 12.1 6.8 9.1
crafty 156 4.5 10.9 5.9 8.2
gap 140 5.6 12.7 7.3 9.7
gee 564 5.9 13.1 7.6 9.9
gzip 30 2.5 12.6 7.2 9.4
mcf 30 5.7 13.5 7.7 9.9
parser 97 6.0 13.6 7.8 10.1
twolf 114 5.2 12.2 7.0 9.3
vortex 234 5.8 13.2 8.1 10.1
ammp 68 4.7 11.7 7.1 9.5
art 24 5.5 13.0 7.5 9.8
equake 44 5.0 12.2 7.1 9.2
mesa 69 4.8 11.2 6.7 8.9
median 2.5 12.6 7.2 9.5
Table 2

Code expansion of four skins

Column 1 gives the benchmark name, column 2 gives its normal code size in
kilobytes, and columns 3-6 give the code expansion factor for each skin. In
addition to the space used by instrumented code, the core uses some extra
memory, and each skin also introduces its own space overhead: Memcheck
uses an extra 9 bits per byte of addressable memory, Addrcheck uses an extra
1 bit per byte, and Cachegrind uses 32-80 bytes per x86 memory-accessing
instruction translated. Note that the slowdown and code expansion factors for
each skin in do not correlate, because instrumentation speed varies greatly. In
particular, Cachegrind’s instrumentation includes many calls to C functions
that update the simulated cache state, so its code expansion factor is relatively
low, but its slowdown factor is high.

The time and space figures are quite high. In several ways—the use of
UCode being the most obvious—Valgrind sacrifices performance in favour of
making instrumentation easier, more flexible and more powerful. In practice,
performance is quite acceptable. As an extreme example, we have used Ad-
drcheck to check all processes running in a KDE-3.0.3 desktop session. Using a
1.7 GHz P4 with 512 MB of memory, performance was hardly stellar, but still
quite usable. Judging from extensive user feedback, performance is a minor
issue; stability and correctness are much more important.

6 Related Work

We first consider program checkers. Static checkers work directly on source
code, not executing a program. Their main advantage is that their analyses
are typically conservative and thus sound, so conclusions found are guaranteed
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to always hold. By contrast, dynamic checkers instrument a program (before
or at run-time) and then observe execution. They only consider executed
paths, and so cannot be sound. However, they work with real values, and do
not have to predict all possible outcomes, so their conclusions can be much
stronger. The two approaches are complementary. We then consider tools for
instrumenting programs.

6.1 Static Checkers

The most basic static analysis tools are very familiar: type checkers, gcc’s
-Wall option, Lint [18] and its successors (e.g. [10]), and so on.

Engler et al’s tool xgce [8,12] uses an intriguing approach. It performs
syntax-based analysis of C programs, working from analysis specifications
written in a state-based pattern language called Metal. Each specification
is small (e.g. 100 lines of code) and finds a specific kind of bug, such as null
pointer dereferences. Although not released publicly, the system has been
used to find hundreds of bugs, of more than ten different kinds, in the Linux
and BSD kernels. Programmability is a great strength of this approach; for
example, the authors improved analyses by adding domain-specific knowledge
about the behaviour of certain functions in the Linux kernel. Valgrind shares
a similar levels of programmability, and xgce/Metal’s success with domain-
specific checks shows that domain-specific Valgrind skins might be useful too.

6.2 Dynamic Checkers

Many C and C++ memory checkers exist. Purify [16] is a well known com-
mercial system. It performs a similar level of memory checking as Memcheck;
its checking is slightly coarser but also faster.

Other dynamic memory checkers typically provide custom checked wrap-
pers for malloc() and free() that use a combination of pattern fills and
boundary blocks to detect uninitialised memory references and array/block
overflows. Some wrap library and system calls to check their parameters.
Some also provide some kind of garbage collector to detect memory leaks at
program termination. An extensive but not exhaustive list is maintained by
Benjamin Zorn [32]. These tools typically do not intercept every load and
store and so are relatively limited in the errors they can detect.

Similar tools find potential data races in threaded programs. Eraser [25]
uses a lockset refinement algorithm that looks for shared memory that is not
consistently protected by one or more locks when accessed. Improved algo-
rithms, used by Helgrind, have been proposed and implemented [15].

RTC (runtime type checker) [19] performs run-time type checking of C and
C++ programs, instrumenting via source annotation, and finds a similar set
of run-time storage errors to Purify. Hobbes [4] is similar, but uses binary
interpretation and thus can work on any program.
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6.3 Program Instrumenters

Several tools, such as ATOM [28], statically instrument program binaries;
others instrument parse trees. However, we will concentrate on instrumenters
that use dynamic binary translation, which are more similar to Valgrind.
Shade [6] was an early dynamic translator. It supported insertion of ba-
sic trace instrumentation, and could run programs written for some archi-
tectures on some others, e.g. SPARC V8 programs on MIPS or SPARC V9.
DynamoRIO [2], provides an API for adding instrumentation and editing pro-
grams not dissimilar to Valgrind’s. The main difference is that the instrumen-
tation occurs directly on x86 code, which restricts some of the tasks that can
be done, since register allocation, condition codes, etc., must be respected. It
is aimed primarily at code optimisation, but has been used to write a tool that
protects against some security attacks, by checking that all jumps in a pro-
gram look safe. DELI [7] is related to DynamoRIO (they are both descendants
of Dynamo [1]). As well as code translation, caching and linking services, it
provides hardware virtualization, and integrates emulated and native code ex-
ecution. DynlInst [3] allows a separate “mutator” process to insert and remove
snippets of code from a running program [17]. It forms the core of the Paradyn
parallel profiling tool [21]. Strata [26,27] runs on SPARC, MIPS, and x86. It
has been used to implement a guard against stack-smashing attacks, and a
system call monitor. Sind [23] is an instrumenter for SPARC/Solaris. The
paper describing it suggests its use for security tools preventing stack-smash
and buffer overflow attacks, although it is unclear whether these have been
implemented. Walkabout [5] is a framework for experimenting with dynamic
binary translation, designed from the ground up to be highly retargetable and
machine-independent. It supports basic instrumentation such as basic block
counting. DIOTA [20] also supports simple instrumentation, at the level of
instructions and functions. It uses an unusual execution technique to support
self-modifying code and programs that heavily mix code and data.

6.4 Tools Built With Valgrind

Calltree, by Josef Weidendorfer, extends Cachegrind to collect call tree infor-
mation, and comes with a graphical viewer called KCachegrind [30]. VGprof
[11], by Jeremy Fitzhardinge, is a gprof-style profiler with some extra features:
exact (rather than sample-based) profiling information, histograms over mul-
tiple address spaces, and client requests to dump profiling information and
zero counters, useful for timing specific sections of code.

Timothy Harris used Valgrind for a prototype implementation of a “vir-
tualized debugger” [14] designed for debugging threaded and distributed pro-
grams that are difficult to debug using traditional techniques. His debugger
sat “beneath” the debugged process, rather than alongside it, giving greater
control over aspects such as scheduling.

Redux [22] creates dynamic dataflow graphs of the entire history of a pro-
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gram’s computation; the sub-trace for each value shows how it was computed.

7 Future Work and Conclusion

This paper has described how program supervision tools can be created by
plugging skins into Valgrind’s core, and as an example described Memcheck,
a powerful Purify-like C and C++4 memory checker. It also presented some
performance results for Valgrind used with four different skins.

7.1 Improving Valgrind

Thinking long-term, there are three main challenges in making a supervision
tool like Valgrind truly generic.

(i) Valgrind should support architectures other than x86. Although UCode
is mostly platform-independent, it has several x86-specific characteris-
tics (particularly the treatment of registers, condition codes, and floating
point instructions) that make it unsuitable in its current form for other
architectures. We do not plan to support cross-architecture translation;
we think the advantages gained would not be worth the significant extra
engineering effort that would be required.

(ii) Valgrind should operate in multiple environments (operating systems and
libraries). Currently, the most fragile, intrusive and generally unsatis-
factory parts of Valgrind are environment-specific, dealing with signals,
system calls and threads. Ideally, these would be cleanly separated from
the core via a well-specified interface, in order to port Valgrind to other
operating systems, such as BSD, or even Windows. This is the greatest
of the three challenges, we have only vague ideas on how to do this best.

(iii) The base execution mechanism should be cleanly separated from the code
for the individual tools. Valgrind’s core/skin split has largely achieved
this.

Finally, we wish Valgrind did not rely on the underhand LD_PRELOAD technique
to gain control of programs, if only so it could run (and check) itself.

7.2 Future Tools

Many tools could be built using Valgrind, the most obvious being profilers. For
example, a branch prediction simulator/profiler similar to Cachegrind could
be useful. Although we do not wish to criticise profilers—they are very useful
tools—we hope that Valgrind can be used for creating more innovative and
powerful tools for understanding programs, and improving their correctness, in
“deep” ways that programmers cannot achieve without automated assistance.

As one example, we believe there is great potential for tools that track
additional state for each value used by the program. Existing examples in-
clude Memcheck’s A and V bits, RT'C’s and Hobbes’ dynamic types, Helgrind
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and Eraser’s states [25], the invariants tracked by Daikon [9] and DIDUCE
[13], and Redux’s computation histories. Each of these tools fit our notion of
being “deep”, and those not already implemented as Valgrind skins could be
easily. Such tools are not code-centric like profilers, which consider program
fragments such as instructions and basic blocks. Instead they are instance-
centric, where the instances in this case are words of memory. Other interest-
ing instances might include memory blocks, stack frames, threads, mutexes,
sockets, and so on.

We also hope that the judicious use of client requests will lead to novel
tools, where static analysis information embedded in programs by compilers
enable combined static/dynamic analysis. At the very least, this could reduce
the amount of instrumentation for some skins (as in [31]).

7.8  Conclusion

Valgrind, particularly the Memcheck skin, is in wide use. KDE 3.0 was ex-
tensively tested with Valgrind prior to its release, and we have received bug
reports from hundreds of Valgrind users. As for the future, we hope Valgrind
will be used in creating new tools that will benefit many people. Valgrind is
available at http://developer.kde.org/ sewardj.
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