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UCP3 in muscle wasting, a role in modulating lipotoxicity?
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Abstract UCP3 has been postulated to function in the defense
against lipid-induced oxidative muscle damage (lipotoxicity).
We explored this hypothesis during cachexia in rats (zymosan-
induced sepsis), a condition characterized by increased oxidative
stress and supply of fatty acids to the muscle. Muscle UCP3 pro-
tein content was increased 2, 6 and 11 days after zymosan injec-
tion. Plasma FFA levels were increased at day 2, but dropped
below control levels on days 6 and 11. Muscular levels of the lipid
peroxidation byproduct 4-hydroxy-2-nonenal (4-HNE) were in-
creased at days 6 and 11 in zymosan-treated rats, supporting a
role for UCP3 in modulating lipotoxicity during cachexia.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The catabolic state present in multiple models of cachexia re-

sults in a profound and massive loss of muscle mass, and re-

duced cellular energy charge (for review see, e.g. [1]). Upon

its discovery in 1997 and based on its homology with the bona

fide uncoupling protein UCP1, UCP3 has been implicated in

the regulation of energy expenditure and has thus been studied

as a putative contributor to muscle wasting under cachectic

conditions. Increased gene and protein expression of UCP3

has been reported in several cachectic diseases, including can-

cer [2–4], sepsis [5], burn injury [6], and rheumatoid arthritis

[7,8], which would be consistent with a role of UCP3 in facil-

itating, or contributing to, the muscle wasting observed. In

contrast, studies in pancreatic cancer [9] and COPD patients

[10,11] reported unchanged or even decreased UCP3 levels.

Busquets et al. [12] showed that the upregulation of UCP3

upon cachexia was only partly explained by increased plasma

FFA levels, as treatment of cachectic rats with the lipolysis

blocker nicotinic acid blunted the upregulation of UCP3 in so-

leus muscle but not in gastrocnemius. Recently, the same

group showed that the UCP3 response upon cachexia may

be considered an antioxidative response [13]. These findings

are consistent with more recent hypotheses regarding the phys-

iological function of UCP3, implicating a role for UCP3 in
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modulating lipotoxicity [14,15] through the efflux of mitochon-

drial matrix bound fatty acids and derived lipid peroxidation

products [15–17]. The matrix is the major site of mitochondrial

reactive oxygen species (ROS) production, and matrix bound

fatty acids are especially prone to lipid peroxidation. Thus,

highly reactive lipid peroxides can be formed, which in turn

may damage mtDNA and important electron transport pro-

tein complexes in the matrix in a process termed lipotoxicity.

As mitochondrial DNA repair mechanisms are limited

[18,19] and electron transport complexes are vital to mitochon-

drial life, it is important to have a defense mechanism against

lipid-induced oxidative damage. In this respect, increased

UCP3 content under conditions of elevated fatty acids, and

activation of UCP3 by the lipid peroxidation byproduct 4-

HNE [20] could be considered such defence mechanisms. In-

creased oxidative stress in combination with increased UCP3

protein levels have indeed been found in experimental cancer

cachexia [13,21].

Interestingly, the cachectic state is often accompanied by in-

creased rates of adipose tissue lipolysis [22], reduced mitochon-

drial volume and aberrations in mitochondrial protein

synthesis rate [23], a combination typically requiring increased

levels of UCP3 [17].

We hypothesize that a cachexia-related increased UCP3 pro-

tein content serves to modulate lipotoxicity. To investigate

this, we examined UCP3 protein content in a cachectic rat

model (zymosan-induced sepsis), known to induce hypophagia

[24], decrease fat oxidative capacity [25] and compromise mito-

chondrial protein synthesis rates [23]. Pair-fed controls were

included to differentiate between the effects of (semi)starvation

and the effect of zymosan-induced cachexia.
2. Methods

2.1. Animals and experimental design
Experiments were approved by the institutional animal experimental

committee. Rats were individually housed (12 h dark–light cycle, 21–
22 �C and 50–60% humidity). The zymosan model was applied to in-
duce a transient septic shock, as described previously [24]. Ten-week-
old, male Wistar rats with an average body mass of 300 g were given
an aseptic intraperitoneal injection of zymosan (30 mg/100 g body
mass) suspended in liquid paraffin (25 mg/ml). A homogeneous zymo-
san suspension was sterilized by incubation at 100 �C for 90 min. Four
groups of rats (n = 10) were injected i.p. with the zymosan suspension.

Food intake and body mass were recorded daily. Rats were killed at
2 d, 6 d, and 11 d after zymosan injection. Since zymosan-induced sep-
sis is associated with profound decreases in food intake, age-matched
control rats were pair-fed to the 2 d, 6 d, and 11 d zymosan rats. An
age-matched ad libitum fed control group, which was killed at day
11 served to provide control levels of all parameters assessed.
blished by Elsevier B.V. All rights reserved.
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Fig. 1. (A) Food intake of zymosan-treated and ad libitum fed control
rats. (B) Cumulative body weight change in zymosan-treated, pair-fed
and ad libitum fed rats. *P < 0.05 vs. ad libitum fed rats. �P < 0.05 vs.
pair-fed rats.

Table 1
Tibialis anterior (TA) muscle mass in the experimental groups

Group TA muscle mass (mg)

Control 610 ± 9
2-day zymosan 518 ± 22*�

2-day pair-fed 604 ± 14
6-day zymosan 444 ± 15*�

*
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Rats were anaesthetized using a subcutaneous injection of ketamine
(100 mg/kg body mass) and xylazine (10 mg/kg) and blood was sam-
pled by cardiac punction after 2 h of food withdrawal, prior to dissect-
ing the tibialis anterior muscle (TA) which was promptly frozen in
melting 2-methylbutane, after which the rats were killed by cervical
dislocation.

2.2. Muscle UCP3 protein content and lipid peroxidation
Skeletal muscle UCP3 protein content was determined as described

previously [26]. Briefly, from each sample an equal amount of protein
was loaded on a polyacrylamide gel and western blotting was per-
formed against rat UCP3 using a rabbit polyclonal UCP3 antibody
(code 1338; kindly provided by LJ Slieker, Eli Lilly), as previously de-
scribed [27,28]. Blotting was also performed for cytochrome c (Cytc;
polyclonal antibody, Santa Cruz Biotechnology, CA, USA) as a mar-
ker of mitochondrial content. For valid inter gel comparison a stan-
dard sample was loaded on each gel and UCP3 levels were expressed
relative to this standard. Values were expressed as UCP3/Cytc ratios
and as percentage of control values.

As a marker of lipid peroxidation, protein adducts of the lipid per-
oxidation byproduct 4-hydroxy-2-nonenal (4-HNE) were examined on
frozen sections by immunofluorescence using a rabbit polyclonal anti-
body against 4-HNE-protein adducts (Calbiochem, San Diego, CA,
USA). In the present paper, protein adducts of 4-HNE are referred
to as 4-HNE content or levels. Only images in which the entire field
of view comprised muscle fibers were processed for quantification.
Upon conversion to 8 bits grayscale, the 4-HNE derived staining was
measured as integral optical density and expressed as percentage of
control values. Using this approach we ensured the examination of
4-HNE in muscle cells and avoided contamination of other cell-types,
as may occur in muscle homogenates.

2.3. Plasma analyses
Blood samples were collected in tubes containing EDTA and imme-

diately centrifuged at 4000 rpm for 10 min at 4 �C. Plasma was frozen
in liquid nitrogen and stored at �80 �C until further analysis of free
fatty acids (FFA) (Wako NEFA C test kit; Wako chemicals, Neuss,
Germany) and triglycerides (glycerol kinase–lipase method Boehrin-
ger, Mannheim, Germany) was undertaken. All analyses were per-
formed on an automated centrifugal spectrophotometer (Cobas
Fara, La Roche, Basel, Switzerland).

2.4. Statistics
Results are presented as means ± S.E.M. For each time-point, the

zymosan, pair-fed, and control group data were compared using
one-way ANOVA analysis. Differences were located using the Scheffé
post hoc test. Significance was set at P < 0.05. For UCP3 protein anal-
yses, three muscle pools were made per zymosan group and compared
to the corresponding pair-fed and control muscle pools. The effect of
zymosan on UCP3 protein was compared to the effect of pair-feeding
using mixed model analysis with zymosan and time as factors.
6-day pair-fed 545 ± 11
11-day zymosan 522 ± 23*�

11-day pair-fed 611 ± 12

*P < 0.05 vs. ad libitum fed rats.
�P < 0.05 vs. pair-fed rats.
3. Results

3.1. Food intake, body mass and muscle mass

Acute peritonitis was observed during the first 2 days after

zymosan injection, along with symptoms of severe illness

including lethargy, hypophagia, hyperventilation, tachycardia,

fever, diarrhea and loss of hemorrhagic fluid from the nose.

There was a mortality of 20% in this acute phase. Food intake

reduced significantly from �20 g/day to an average of 1 g/day

on days 1 and 2, after which it gradually increased to 75% of

normal intake on day 8 (Fig. 1A), and remained constant

from then onward. Both the zymosan and pair-fed groups

showed a large loss of body mass (Fig. 1B); rats started to re-

gain body mass between days 5 and 11. There were no signif-

icant differences in body mass between the zymosan and the

pair-fed group. No catch-up growth was observed in either

group.
Muscle mass of the main dorsiflexor (TA) muscle is shown in

Table 1. TA muscle mass declined significantly (compared to

pair-fed and ad libitum fed controls) as soon as 2 days after

zymosan injection and up to 66 ± 2.6% of control values at

day 6. The pair-fed group showed a similar but less pro-

nounced response. TA muscle mass had started to regain in

both groups by day 11.

3.2. Plasma analyses

In control rats, plasma triglycerides levels equaled

1142 ± 94 lmol/l (Fig. 2A). In line with the declined food in-

take the first 2 days after zymosan injection, plasma triglycer-

ide levels dropped profoundly in both zymosan-treated



Fig. 2. Plasma levels of: (A) triglycerides and (B) free fatty acids in
zymosan-treated, pair-fed and ad libitum fed control rats (t = 0 days).
*P < 0.05 vs. ad libitum fed rats. �P < 0.05 vs. pair-fed rats.

Fig. 3. UCP3/Cytc protein ratios in tibialis anterior muscles from
zymosan-treated (black bars), pair-fed (grey bars) and ad libitum fed
control (white bar) rats. Ratios are expressed as percentages of control
levels. When compared to pair-fed rats, mixed model analysis showed
a significant zymosan effect on UCP3/Cytc ratios (P = 0.026) and no
time (P = 0.927) or time*zymosan effect (P = 0.603).

Fig. 4. 4-Hydroxy-2-nonenal (4-HNE) protein adduct levels in tibialis
anterior muscles. (A–B) Representative examples of 4-HNE immuno-
fluorescence stainings performed on tibialis anterior muscle sections of
a control (panel A) and 11-day zymosan-treated (panel B) rat. (C)
Quantification of 4-HNE protein adducts in muscles of zymosan-
treated (black bars), pair-fed (grey bars) and ad libitum fed control
(white bar) rats. *P < 0.05 vs. ad libitum fed rats. �P < 0.05 vs. pair-fed
rats.
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(230 ± 34 lmol/l, P < 0.01) and pair-fed control (301 ± 36

lmol/l, P < 0.01) rats. Six days after zymosan injection plasma

triglyceride levels (976 ± 118 lmol/l) had restored to levels

insignificantly different from control values (1142 ± 94 lmol/

l), while in pair-fed rats (492 ± 67 lmol/l) triglyceride content

remained decreased compared to zymosan treated (976 ±

118 lmol/l, P < 0.01) and ad libitum fed control rats (P <

0.001). At day 11, when food intake had partly normalized

and body mass had started to regain, no significant differences

in plasma TG levels were detected between groups (Fig. 2A).

At day 2 both zymosan-treated (Fig. 2B; 290 ± 19 lmol/l)

and pair-fed rats (298 ± 27 lmol/l) showed significantly in-

creased plasma free fatty acid (FFA) levels compared to ad libi-

tum fed rats (215 ± 189 lmol/l). At six days after zymosan

injection a remarkable drop in plasma FFA was observed in

zymosan-treated rats (143 ± 7 lmol/l), whereas in pair-fed rats

(350 ± 17 lmol/l) FFA levels were significantly (P < 0.01)

higher compared to both zymosan-treated and control rats.

At day 11, plasma FFA levels in zymosan-treated rats

(171 ± 9 lmol/l) were not different from control values, while

in pair-fed rats (295 ± 23 lmol/l) plasma FFA levels were still

significantly higher than both zymosan-treated and control

levels.

3.3. Muscle UCP3 protein content and lipid peroxidation

Compared to control values (100 ± 14%) UCP3 protein con-

tent relative to mitochondrial density, as measured by cyto-
chrome c content, was increased in zymosan-injected rats

(224 ± 54%) as in pair-fed controls (197 ± 32%; Fig. 3). At

all time points measured UCP3/Cytc content was higher in

zymosan-injected rats than in pair-fed controls. After an initial

rise UCP3/Cytc content levels seemed to stabilize at approxi-

mately 200% at day 6 and day 11 in pair-feds, whereas in the

zymosan condition UCP3/Cytc content increased towards

262 ± 25% at day 6 and 256 ± 26% at day 11.

Lipid peroxidation was measured by immunofluorescence

(representative 4-HNE stainings for control and zymosan-trea-

ted rats at day 11 are shown in Fig. 4A and B, respectively). In
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control rats, 4-HNE content was set at 100%. In zymosan-trea-

ted rats, 4-HNE was not increased at day 2, but 4-HNE con-

tent was significantly elevated at day 6 (117 ± 4%) and

remained significantly elevated at 11 days after zymosan injec-

tion (119 ± 4%). Interestingly, in pair-fed rats 4-HNE was in-

creased at day 2 (118 ± 5%; P < 0.05), but the initial rise in

4-HNE returned to control values at day 6 and day 11.
4. Discussion

Here, we examined the hypothesis that cachexia-related in-

creased UCP3 protein content serves to modulate lipotoxicity.

Compared to controls, rats rendered cachectic by injection of

zymosan possessed increased muscular UCP3 protein content

lasting for at least 11 days. Pair-fed control rats showed a more

modest increase in UCP3 levels than cachectic rats. In zymo-

san-treated rats, we observed an increase of the lipid peroxida-

tion byproduct 4-hydroxy-2-nonenal (4-HNE) in TA muscle

both 6 and 11 days after injection. Interestingly, after 2 days

of pair-feeding increased 4-HNE content was observed which

returned to control values at days 6 and 11. This may suggest

that in food restricted but otherwise healthy animals, the in-

crease in UCP3 protein content suffices to modulate the in-

creased lipid peroxidation observed after 2 days of pair-

feeding. In contrast to pair-fed rats, 4-HNE content was ele-

vated in rats rendered cachectic by zymosan injection from

day 6 onward, despite an increased UCP3 content. If UCP3 in-

deed serves to modulate lipotoxicity during cachexia, this indi-

cates that in critically ill rats increased UCP3 protein content

or its state of activation is inadequate to deal with the in-

creased oxidative stress and concomitant lipid peroxidation

products present during cachexia.

During the first 2 days after zymosan injection or pair-feed-

ing, when food intake had reduced to virtually zero, we ob-

served a sharp decline in plasma triglyceride levels paralleled

by increased plasma FFA levels in both groups; the classical

response to acute food restriction. Increased plasma FFA lev-

els are potent activators of UCP3 gene expression [29]. Con-

versely, the use of anti-lipolytic agents resulted in a blunted

increase in UCP3 [12], even under conditions of b-adrenergic

stimulated energy expenditure [30]. Increased FFA levels in

both zymosan-treated and pair-fed rats may trigger the initial

rise in UCP3 protein content observed at day 2. In pair-fed

rats, plasma FFA levels remained elevated at days 6 and 11,

potentially explaining why UCP3 protein levels remained rela-

tively high in this condition (albeit lower than in zymosan-in-

jected rats). In contrast to pair-fed rats, plasma FFA levels at

days 6 and 11 of zymosan-injected rats were lower than control

and pair-fed levels. The decreased FFA levels in zymosan-trea-

ted rats are most likely accounted for by reduced tissue lipo-

protein lipase (LPL) activity [31,32]. This notion is

substantiated by the normalization of plasma triglyceride lev-

els observed in the zymosan-treated animals at days 6 and

11. Strikingly, in zymosan-treated rats UCP3 content remained

elevated despite significant reductions in FFA levels, but in the

presence of increased 4-HNE levels. Thus, although elevated

plasma FFA levels may explain the relatively high UCP3 levels

in pair-fed rats, high FFA levels are not involved in increasing

UCP3 content in zymosan-treated rats. Interestingly, an in-

creased UCP3 protein content in the absence of increased plas-
ma FFA levels has previously been observed in cancer cachexia

[13]. This indicates that under conditions of cachectic stress

other processes are involved which induce maintenance of high

UCP3 levels. One such process may be an increased produc-

tion of ROS and 4-HNE, although so far it has not been exam-

ined if 4-HNE is able to increase UCP3 protein content.

Not only has increased oxidative stress been reported in ca-

chexia, but the resultant ROS have also been shown to result in

lipid peroxidation products, as indicated by increased adducts

of the lipid peroxidation byproduct 4-HNE in tumour-bearing

cachectic rats [21]. This is in line with our present observation

of increased 4-HNE in zymosan-treated rats. Interestingly, 4-

HNE has recently been identified as one of the few UCP3 acti-

vators [20]. Thus, as indicated above, it is tempting to suggest

that besides activating UCP3, 4-HNE also induces an in-

creased UCP3 protein expression in the zymosan-treated rats

at days 6 and 11. Activation of UCP3 by 4-HNE has been

shown to result in a reduced mitochondrial proton gradient

[20]. Reduction of the proton gradient in a process referred

to as mild uncoupling results in lowered production of reactive

oxygen species (ROS) [33]. Thus, a unifying physiological role

for increased UCP3 content in cachectic conditions can be

hypothesized; UCP3 increases in a process at least partly dri-

ven by increased plasma FFA levels during early cachexia to

deal with increased ROS and lipid peroxides. In a feed-forward

loop, 4-HNE may activate and possibly upregulate UCP3 to

facilitate efflux of fatty acid anions or lipid peroxides from

the mitochondrial matrix. This process has a dual effect; low-

ering of the proton gradient serves to reduce ROS production

and efflux of fatty acid anions and/or lipid peroxides serves to

preserve mitochondrial integrity and mitochondrial function.

In the present model, where zymosan injection induces critical

illness with a 20% mortality rate during the first 2 days after

injection [34], the increase in UCP3 protein content seems

inadequate to deal properly with the rise in lipid peroxidation

observed at day 6 and 11 after zymosan injection. This may

indicate that under these extreme conditions, the rise in lipid

peroxides exceeds the capacity of UCP3 to deal with this

appropriately, possibly resulting in increased mitochondrial

damage. In line with this, a previous study using the same

model has shown mitochondrial morphological abnormalities

and decreased mitochondrial protein synthesis [23].

In conclusion, the present study shows increased UCP3 pro-

tein content along with increased 4-HNE adducts in skeletal

muscle of cachectic rats. These observations support the idea

that increased UCP3 in cachectic conditions helps to modulate

the cachexia-related oxidative stress and ameliorates lipotoxic-

ity.
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