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This paper surveys and compares different techniques investigated in order to integrate negation 
in rule-based query languages. In the context of deductive databases, a rule-based query is a logic 
program. The survey focuses on the problem of defining the declarative semantics of logic programs 
with negation. The declarative semantics of logic programs with negation based on fixpoint 
techniques, based on three-valued logic and based on non-monotonic logics are presented for 
positive logic programs, (Iocally) stratifiable logic programs and unstratifiable logic programs. 
The expressive power of rule-based Query languages is examined. 

1. Introduction 

During the last decades, fundamental work has been done in order to develop 
extensions of the theory of relational databases [36]. Undoubtedly, the success of 
the relational database model lies in its simplicity. Data are represented by elemen­
tary tables or collections of facts. Manipulation of data is performed by means of 
basic operations on tables like selecting rows of a table, selecting columns of a 
table, merging or combining two tables, ... , adding or deleting a row in a table. 
Although the simplicity of the relational model had led to the development of a 
real database technology, and commercial relational database management systems 
are, limitations of the relational theory have soon been recognized both at the level 
of data representation and at the level of data manipulation. Several directions have 
been followed, from the non-first normal form database model [1, 52, 100], to the 
object-oriented database model [88, 13, 12], through the semantic database model 
[58], each of them being developed to overcome the deficiencies of the relational 
theory. 
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One of the major extensions investigated, the theory of deductive databases, has 
emerged, very early [54], from the use of the mathematical logic paradigm. Mathe­
matical logic offers a precise and uniform formalism to study many database 
problems. The main point is that mathematical logic provides both a representation 
language and an inference mechanism. The historical development of deductive 
databases is quite interestingly presented in [86], and [55] provides a survey of the 
application of logic for studying query languages, integrity constraints, query 
optimization, data dependencies and database design in the context of conventional 
databases and deductive databases. Reiter [99] also presents a nice introduction to 
the domain. 

The naive introductory definition of a deductive database usually given is that of 
a database in which new facts may be derived from facts that were explicitly 
introduced and from general laws also contained in the database. Indeed that 
definition is quite insufficient to help to distinguish a conventional database from 
a deductive database. The relational algebra provides a mechanism (the view 
mechanism) for deriving new facts from the facts stored in the database, doesn't 
it? Anyway, this definition at least reveals that, in the context of deductive databases, 
data are represented, like in the context of relational database, by collection of 
facts. In the first case, facts are elementary formulas, in the second case, facts are 
elements of a table. So now we ought to try to make clear the frontier between 
conventional databases and deductive databases. As a matter of fact, the frontier 
can be drawn at the level of data manipulation. A deductive database offers more 
powerful "deductive capabilities" (that is a more powerful data manipulation/view 
mechanism) than a conventional database. 

For instance, it is rather well known that the transitive closure of a relation is 
not definable by a relational algebraic (or relational calculus) expression, although 
it is a very natural inference to make. Examples of transitive closure query ranges 
from the famous Ancestor query to more practical problems in graph theory. The 
logic approach to databases, through its inference mechanism, provides a direct 
solution which overcomes in an elegant manner the inability of the relational model 
to express transitive closure of relations. 

Obviously, the contribution of the logical approach to database theory is not to 
be reduced to an increase of the expressive power of the query language, though it 
is actually its more visible feature. 

Intuitively, at the syntactical level, a deductive database is specified by a set of 
simple first order formulas. The assumption that function symbols do not occur in 
a deductive database is usually made. A partition of the deductive database may 
be used to distinguish between relations explicitly defined and relations defined in 
terms of the first ones. The first relations are called extensional, the second ones 
are called intentional. This partition is essentially useful to present and study 
implementation issues of deductive database systems. Although implementation of 
deductive database systems is of prime importance, we shall not address this issue 
in the current paper. Thus in the following, a deductive database is viewed, at the 
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syntactical level, as a set of laws, some being elementary, that is facts, other being 
slightly more complex first order formulas. 

This presentation of a deductive database already suggests a strong relationship 
between deductive databases and logic programming. Indeed, foundations of deduc­
tive databases and logic programming are closely related [35, 80, 81]. Also, the 
reader should not be surprised about the fact that we use equally the terms "deductive 
database" and "logic program" (even though the use of logic program is abusive 
because of the implicit restriction to function free programs). 

The application of mathematical logic tools to characterize the relations specified 
by a deductive database (or to define the declarative semantics of logic programs) 
is not straightforward. 

Two first (minor) features of logic databases are identified as the unique name 
assumption which states that individuals with different names are different, and the 
domain close axiom which states that there are no other individuals than those in 
the database. The third (major) feature of logic databases lies in the so-called Closed 
World Assumption and roughly speaking concerns the way negation is treated. 

Making the Closed World Assumption corresponds to the choice of an incomplete 

representation of real world situations; only positive (true) information is specified. 
From a database point of view, this choice can be motivated by "common sense" 
and performance. For instance in order to define a property, it seems more natural • to give the list of individuals satisfying the property than to give both the list of 
entities satisfying the property and the list of entities that fails to satisfy the property. 
Thus the Closed World Assumption simplifies tremendously the representation of 
data. Now, while data description is incomplete, the Closed World Assumption 
entails a second fundamental principle; complete knowledge of the world situation 
described is assumed. Intuitively, this means that, although the definition of a 
property is limited to the list of individuals satisfying it, one should be able to say 
for any individual whether a property holds. 

In the context of relational databases, the Closed World Assumption comes for 
free (although one should pay attention to write safe calculus expressions). From 
a mathematical logic point of view, it is probably unnecessary to recall that first 
order logic does not allow one to infer negative facts from a set of positive facts 
for example. Thus extralogical mechanisms need to be introduced in order to treat 

. " "database negatlOn . 
The Closed World Assumption determines a major distinction between mathemati­

cal logic and logic databases. While first order logic is monotonic (that is adding a 
formula to a theory has the effect of strictly increasing the set of formulas that can 
be inferred), logic databases are non-monotonic. Adding a new positive fact to the 
representation of a logic database has a "side effect": it entails that the negation 
of this fact cannot be inferred from the database any more. 

A very simple case of deductive databases is Horn databases specified by sets of 
definitie Horn clauses. Roughly speaking, a definite Horn clause is a conditional 
definition of a single property (relation) whose conditional part is a conjunction of 



6 N. Bidoit 

elementary positive conditions. Horn databases (or positive logic programs) are 
well understood from a declarative point of view, from a procedural point of view 
and from a computational point of view. 

The relations specified by a Horn database (the declarative semantics of positive 
logic programs) have been characterized in at least three different ways. From a 
model theoretic point of view, the deductive database specified by a set of Horn 
clauses is described by a particular model of the forIIlulas, the minimal Herbrand 
model [44,4]' From a proof theoretic point of view, it is described by the theorems 
derivable from the formulas (and the negation of the sentences not derivable from 
the formulas) [97]. From an operational point of view, it is given by the least fixpoint 
of some operator associated with the formulas [44, 4]. 

Going back to the expressive power issue, positive logic programs allow one to 
define the transitive closure of a relation (in a way which is close to natural language). 
However, simple relations like the complement of a relation with respect to another 
one, are not definable by Horn databases although they are definable by the relational 
algebra. The idea to introduce negation in the "conditional part" of the formulas 
specifying intentional relations in order to overcome this deficiency appears to be 
natural and simple, at first. Nonetheless, extending Horn database (or positive logic 
program) with negation happens to be not such an easy task. 

One of the major problems arising is to characterize the relations intentionally 
defined by logic programs with negation, or in other words, to define the declarative 
semantics of general logic programs. The difficulty is due to the implicit extralogical 
use of negation which makes mathematical logic less a convenient formalism. The 
extralogical use of negation makes us prefer to call rules, the formulas which 
constitute a logic program. 

Declarative semantics gives the meaning of a program in terms of properties and 
does not involve computation as opposed to procedural semantics which gives the 
meaning of a program in terms of the execution or evaluation of the program. In 
other words, declarative semantics is used to formalize what we want while pro­
cedural semantics is more concerned with how to compute it [60]. Providing a 
declarative semantics of logic programs is obviously of prime importance especially 
from the database point of view since declarative database query languages is a 

• • major Issue. 
Much recent work has been devoted to incorporate negation in deductive databases 

and logic programs and various approaches have been proposed from the database 
community, the logic programming community, as well as the artificial intelligence 
community (e.g., [3, 94, 74, 15, 115, 8,66,53,47,69]). This paper is an attempt to 
present the major solutions proposed to the problem and to compare them. We try 
to consider the following three criteria. 

The first criteria concerns the ability of the declarative semantics of a logic program 
to reflect its common sense or intended meaning. We should confess that this criteria 
is a rather fuzzy one. 

The second criteria concerns the computational issue. As pointed out in [104], if 
the only reason for abandoning the clear and well-known concept of classical 
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negation is the inefficiency of its implementation, it might not be unreasonable to 
ask for computational tractability of the declarative semantics of logic programs. 

Finally, the third criteria is obviously the expressive power of the languages 
characterized by a given semantics. 

1.1. Organization of the paper 

The paper consists of a further nine sections. Section 2 contains preliminaries. It 
gives a brief presentation of basic concepts and notation of first order logic, a 
syntactical description of logic programs and a minimal set of results on fixpoint 
theory. 

Section 3 can also be considered as a preliminary section and it includes a review 
of the two major ways to define the declarative semantics of positive logic programs. 
The presentation of the minimal model semantics and the least fixpoint semantics 
of positive logic programs is followed by a discussion whose aim is to show some 
of the problems that arise when negation is introduced and to give a flavor of the 
different approaches that are later examined. 

Sections 4, 5 and 6 are devoted to approaches based on fixpoint techniques. 
Stratifiable programs, that is programs in which recursive negation is ruled out, 

are presented in Section 4. The declarative semantics of stratifiable logic programs 
is defined in this section by means of iterative fixpoint [3]. Two weaker constraints, 
local stratification [94] and loose stratification [26], are examined in this section. 

The restriction that programs should not contain recursive negation is totally 
relaxed in Section 5 where however the declarative semantics of a logic program is 
not forced to "tell everything" about the contents of the relations intentionally 
defined and also about the contents of the complement of these relations. The 
well-founded semantics of a logic program is presented in Section 5 [115]. Effective 
stratification is briefly presented that gives a sufficient condition for logic program 
to have a "fully" defined meaning with respect to the well-founded semantics [17, 
96]. 

The presentation of inflationary semantics of logic programs is included in Section 
6 [8, 66], which does not assume any constraint on the syntax of logic programs. 

Sections 7 and 8 are both dedicated to "model theoretic" definitions of the 
declarative semantics of logic programs. The semantics presented in these sections 
are based on various forms of non-monotonic logic such as circumscription [83, 
73], autoepistemic logic and default logic [98]. 

Section 7 focuses on the alternative model theoretic definitions of the iterative 
fixpoint semantics for stratifiable logic programs. In the presentation of these 
alternative definitions, a particular emphasis is given to the exposition of the perfect 
model approach [94] and its relationship with circumscription [74]. 

The exposition of the contribution of non-monotonic logic to define the declarative 
semantics of logic programs is continued in Section 8 where default logic and 
autoepistemic logic are shown to provide a very appealing formalism to define the 
declarative semantics of logic programs [14, 17,51,53]. 
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A discussion on the expressive power of the query languages defined by the 
various semantics reviewed in the paper is carried on in Section 9. While most 
researcher's attention has been concentrated on the "natural" aspect of the meaning 
assigned to a logic program, less attention has been paid in general to the expressive 
power issue (with the exception [8, 63]). Recent work in this area is reported in 
Section 9. 

Finally, Section 10 presents a brief discussion on the aspects of logic programming 
not developed in the paper. Essentially, Clark's completion approach is discussed, 
then a quick review of the procedural semantics of logic programs with negation is 
provided and finally, extensions of positive logic programs not necessarily involving 
the introduction of negation are suggested. 

2. Preliminaries 

In the following, we assume that the reader is familiar with symbolic logic and 
more precisely with propositional logic and first order logic [45, 50]. We also assume 
that the reader is familiar with notions such as complete lattice, monotonic mapping 
and fixpoint [79, 75, 108]. However, in order to make the discussion clear, we begin 
by reviewing some well-known concepts of first order logic and logic programming 
as well as some elementary results on fixpoint theory. The main notations used 
throughout the paper are presented in this section. 

2.1. First order logic and logic programming 

Syntax 

Usually, logic programs are syntactically defined as sets of first order formulas, 
commonly as sets of Horn clauses. However, as the contents of the paper will show, 
as soon as negation is introduced in logic programs, the semantics associated with 
the formulas in programs is (more or less) far from first order semantics. 

For the sake of clarity (and rigor) and despite some notational overload, we 
choose here to distinguish logic programming syntax and first order syntax. Roughly 
speaking, this distinction is made by using the non logical symbols : -, &, or, not 

for logic programming languages instead of the first order connectives +-, 1\, V, I. 

In the following, f.o. is used as an abbreviation for first order and J.p. is used as 
an abbreviation for logic programming. 

A first order logic (respectively, logic programming) alphabet consists of five 
(respectively, four) classes of symbols (Table 1). 

An alphabet is characterized by its set of function symbols, denoted Fun, and its 
set of predicate symbols, denoted Pred, the rest of the syntactic symbols being 
common to all f.o. (resp. J.p.) alphabets. The O-place function symbols are called 
constants, denoted by a, b, c .... The O-ary predicate symbols are called propositions, 
denoted by A, B, C .... 

The notion of J.p. term (respectively, J.p. atomic formula) is identical to the notion 
of f.o. term (respectively, f.o. atomic formula) and is defined in the standard way. 

, 
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Table I 

Classes of symbols f.o. alphabet I.p. alphabet Notations 

Variables Infinitely many Infinitely many xyz 

O-place 
Non-empty 

abc 
Functions Possibly empty 

fgh n-place 

O-ary 
Non-empty 

ABC 
Predicates Non-empty 

PQR n-ary 

Connectives ~,I\,V,---' :-, &, or, not 
Quantifiers '9',3 

A ground term (respectively, a ground atomic formula) is a term (respectively, an 
atomic formula) containing no variable symbols. 

A f.o. literal (respectively, J.p. literal) L is either an atomic formula (P(t)) and 
it is then called a positive literal or the negation of an atomic formula (,P( t), 

respectively not P( t)) and it is then called a negative literal. A fact is a ground 
literal, a positive fact is a ground positive literal and a negative fact is a ground 
negative literal. 

For the sake of simplicity, given a set S of f.o. literals (respectively, of I.p. literals) 
its corresponding set of I.p. literals (respectively, of f.o. literals) is denoted by S 
itself. The context always makes clear whether a set S of literals is f.o. or I.p. Now, 
given a set S of literals, poseS) denotes the subset of positive literals in Sand 
neg(S) denotes the set of negative literals in S. On the other hand, ,.S denotes 
{IL I L E poseS)} u {L I,L E neg(S)} or {not L I L E poseS)} u {LI not L E neg(S)}. 

A first order language over a f.o. alphabet (Fun, Pred) consists of the set of 
well-formed formulas constructed from the alphabet (Fun, Pred) in the usual 
manner. 

A clause c is a universally quantified well-formed formula of the form L. v ... v Ln 
where the L, are f.o. literals. If the number of positive literals in the clause c is less 
or equal to 1, then c is called a Horn clause. If the number of positive literals in 
the clause c is 1, then c is called a definite clause. 

Given a J.p. alphabet (Fun, Pred), a program rule r is an expression of the form 
L: -L. & ... & Ln with n ;=. 0, where L is a positive literal and the L; are J.p. literals, 
for i = 1, ... , n. 

The literal L is called the head of the program rule r and it is denoted by head( r). 
L. & .. - & Ln is called the body of the rule and body( r) denotes the set of literals 
{L. , ... , Ln}. The elements of body( r) are also called premises of the rule r. 

If n = 0, the rule r is written L and called a unit rule. Now, if all the premises of 
r are positive that is if body( r) = pos(body( r)), then r is called a positive rule. 

A logic programming language is the set of program rules constructed from the 
alphabet (Fun, Pred). A logic program is a set of program rules. In the paper, except 
where otherwise specified, we assume that logic programs are finite set of rules, and 
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we assume that the only function symbols in Fun are constant symbols. A positive 
logic program is a set of positive program rules. 

Given a logic program !/J', the subset of the rules in !/J' in which the predicate 
symbol P occurs in the head is called the definition of Pin !/J' and denoted by def( P, :1'). 

The closed instantiation of a program rule r is obtained by substitution of each 
variable occurring in r by a ground term (or by an element of the Herbrand universe, 
as explained below). The instantiation of a logic program ~, denoted InsL~, is the 
collection of all possible instantiations of each rule in ~. 

For the purpose of the presentation, we need to associate with a logic program 
~ a set of f.o. formulas. The first order notation of a program :1', denoted by :1'ro , 
is simply the set of first order formulas obtained by replacing the connectives :-, 
&, not by +-, 1\, -, in the rules of ~. 

Finally, in the discussion, the following transformation of logic programs is 
frequently used. This transformation is similar to the Davis-Putnam transformation 
of a set of clauses [43]. Let ~ be a logic program and S be a set of ground atomic 
literals. Intuitively, DP(~, S) is the instantiated program obtained as follows: 

(1) remove from InsL~ all the rules having a premise which is in contradiction 
with S, and 

(2) remove from the rules in InsL~ all the premises that belong to S. 
Formally, DP(~, S) is defined by: 

(I) first let ~1 = InsL!/J' - {r IrE InsL!/J' and 3L E body( r), L E I.S}, then 
(2) DP(gp,S)={rlr'Egplt head(r)=head(r') and body(r)=body(r')-S}. 
It may be convenient to represent a logic program by a graph. The precedence 

graph (V, E) associated with a logic program gp is such that: 
(I) the set V of vertices is the set of predicate symbols, and 
(2) there is one edge from Q to P for each occurrence of Q in a premise of a 

rule r in ~ with head P. 
It may be convenient to label the edges of the precedence graph associated with 

gp in such a way that an edge from Q to P induced by a rule r of !/J' is positive if 
Q occurs in a positive premise of r and negative otherwise. 

Semantics 
The semantics of a logic program is usually defined by means of particular models 

of the f.o. notation of the program. We recall below some well-known notions used 
to define the semantics of first order logic. The presentation essentially concentrates 
on Herbrand interpretations. 

Let d = (Fun, Pred) be a f.o. language. The Herbrand universe of d is the set of 
ground atomic terms constructed from the function symbols in Fun. The Herbrand 
base 00.<4 of d is the set of ground atomic formulas constructed from the ground 
terms in the Herbrand universe of d and from the predicate symbols in Pred. When 
the language is understood, the Herbrand base is just denoted by 00. 

For Herbrand interpretations, the domain is the Herbrand universe and the 
assignment of functions is (roughly speaking) the identity. Thus a Herbrand interpre-
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tation can be simply represented by a subset of the Herbrand base. Herbrand 
interpretations represented by subset of the Herbrand base are denoted by bold 
possibly subscripted I (1,110 12 , •• ). 

For the sake of the discussion, we need to introduce another representation of 
Herbrand interpretation. Intuitively, an Herbrand interpretation I as represented 
above gives the set of ground atomic formulas true for I. Implicitly, ground atomic 
formulas not in I are false for I. An alternative way to represent an Herbrand 
interpretation I is to give both ground atomic formulas true for I and the negation 
of ground atomic formulas false for I. Thus a Herbrand interpretation can also be 
represented by a subset of $ U 1.$. In the following, in order to distinguish the 
first representation from the second one, we call Herbrand interpretation an interpre­
tation represented by a subset of $ and completed Herbrand interpretation an 
interpretation represented by a maximally consistent subset of gJ U l.gJ. It should 
be clear for the reader that the subset 1 of gJ and the subset IUI.(gJ-I) of 
gJ U I. $ are two distinct notations for the same Herbrand interpretation. Completed 
interpretations are denoted by cursive, possibly subscripted I (ji, ji), ji2, ... ). 

The set of all possible Herbrand interpretations (i.e. 2911
) is denoted by Int and 

the set of all possible completed Herbrand interpretations (i.e. the subset of complete 
and consistent sets in 2911u

-,.9II) is denoted C_Int. 

The truth of a formula for an interpretation I and the notion of Herbrand model 
of a set of formulas are defined in a standard way. I 1= f means I satisfies f 
Models are denoted by bold/ cursive, possibly subscripted M (M, M) , M 2 , ••• , 

At, At), At2 , •• • ). 

A Herbrand partial interpretation is a partial truth valuation of the ground atomic 
formulas in the Herbrand base. Thus a Herbrand partial interpretation ji is represented 
as a consistent subset of $ U 1.$. In fact, a partial interpretation ji can be viewed 
as a three-valued logic interpretation in the following way: if a ground atomic 
formula belongs to pos( ji), its truth value is true; if a ground atomic formula belongs 
to I.neg(ji), its truth value is false; and otherwise its truth value is undetermined. 
We use the same notational convention for a partial interpretation as for a completed 
interpretation. The set of all possible partial Herbrand interpretations (i.e. the subset 
of consistent sets in 2911u

-,,9ll) is denoted Partial. Note that completed interpretations 
are special cases of partial interpretations, i.e. that we have: C_Int ~ Partial. 

2.2. Complete lattice, monotonic mappings and jixpoints 

Let S be a set and R be a binary relation on S. (S, R) is a complete lattice if R 
is a partial order and if the least upper bound of X, denoted by lub(X), and the 
greatest lower bound of X, denoted by glb(X), exist for each subset X of S. 

Assume from now on that (S, .::;;) is a complete lattice. Let T: S -+ S be a mapping. 
The mapping T is monotonic iff s.::;; s' entails T(s)'::;; T(s') for each pair s, s' in S. 
The mapping T is continuous if T(lub(X» = lub( T(X» for each directed subset X 
where X is directed if every finite subset of X has an upper bound in X. 
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Let s E S, s is a jixpoint of T iff T( s) = s. An element s of S is a leas. jixpoin. of 
T, denoted \fp(T), iff s is a fixpoint of T and VS'ES, T(s')=s'~s~s'. In a 
symmetrical manner an element s of S is a greatest jixpoint of T, denoted gfp( T), 

iff s is a fixpoint of T and V s' E S, T( s') = s'~ s' ~ s. 

The following result has been established by Knaster and Tarski: 

If (S,~) is a complete lattice and T is a monotonic mapping defined 
on S then T has a least fixpoint and a greatest fixpoint. 

The transfinite sequences Tj a and T ~ a associated with the lattice (S, ~) and 
the mapping T are defined by: 

(1) TjO = T(l.) where l. is the greatest lower bound of S, 
Tj a = T( Tj a - 1) for a ordinal successor, and 
Tj a = lub( { Tj 13113 < a} ) for a a limit ordinal. 

(2) T ~O = T(T) where T is the least upper bound of S, 
T ~a = T( T ~a -1) for a ordinal successor, and 
T ~ a = glb( { T ~131 13 < a}) for a a limit ordinal. 

Another interesting result follows: 

If T is monotonic then lfp( T) = Tj a for some ordinal a and 
gfp( T) = T ~a for some ordinal a. 

The least ordinal a such that lfp( T) = Tj a is called the closure ordinal of T. Now 
we also have that: 

If T is continuous, the closure ordinal of T is below2 w. 

The analogous result does not hold for the least ordinal a such that gfp( T) = T~a. 

Note that the set of Herbrand interpretations lot with set inclusion ~ is a complete 
lattice. The set of completed interpretations C_Int with the partial order ~ induced 
by the inclusion of the positive part of interpretation (Le . .j ~ ,I iff pos(.j) ~ pos(,1» 
is isomorphic to (lot, ~) and thus is a complete lattice. 

The set of partial interpretations Partial together with set inclusion is a semi­
complete lattice (only directed subsets of Partial have a glb). Let Inconst be a new 
symbol that is intuitively meant to represent all inconsistent sets of literals or in 
other words the complement of Partial in 2,)Ju, 'j/). Now consider the set Partial u 
{lnconst} with the partial order ~ defined as: 

set inclusion ~ on Partial, and by ,j ~ Inconst for each .j in Partial. 

Then, (Partialu{lnconst},~) is a complete lattice. Intuitively, adding Inconst to 
Partial serves to get a top element. In the following, when saying that Partial is a 
complete lattice, we mean (Partial u {Inconst}, ~) is a complete lattice. 

2 By "below", we mean here less than or equal to. 
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3. Declarative semantics of positive logic programs 

The purpose of this section is twofold. First, we briefly review the model theoretic 
and the fixpoint semantics of positive logic programs. Secondly, we present the 
problems that arise when one tries to directly extend the definitions of the declarative 
semantics proposed for positive programs to logic programs with negation allowed 
in the body of rules. These problems are described for both the model theoretic 
approach and the fixpoint approach. The presentation also serves to motivate the 
different proposals further reviewed in the paper. 

3.1. Declarative semantics of positive logic programs 

Minimal model semantics 
The model theoretic and the fixpoint semantics of positive logic programs have 

been presented and extensively discussed in the literature [4, 75, 44]. A nice 
discussion on these semantics can be found in [60]. Other equivalent approaches 
to define the declarative semantics of positive logic programs such as [97], based 
on the closed world inference rule [72], based on circumscription, and such as [18, 
19], based on default logic are not presented here. 

Following the model theoretic approach, a logic program is viewed as a first order 
formula and its meaning is captured by the set of atomic ground formulas that are 
logical consequences of the program. In other words, the meaning of a logic program 
is captured by the set of ground atomic formulas (facts) true in all models of (the 
f.o. notation of) the program. Particular models are considered, namely Herbrand 
models. 

In the following, by a model it is always meant a Herbrand model (model = 

Herbrand model). As a matter of fact, most of the discussion that follows would 
be incorrect for general models. 

The class of programs considered here, positive programs, leads to a simple and 
nice characterization of the ground atomic formulas that belong to all models of a 
program. The first order notation (lJr.o. of a positive logic program (lJ is equivalent 
to a set of definite clauses. For a set (lJf.o of definite clauses, [44] shows that the 
intersection of all models of (lJr.o. is a model of (lJf.o .• Note that it is not in general 
true that the intersection of the models of a set of well-formed formulas is a model 
of this set of formulas. 

Thus following the model theoretic approach, the meaning of a positive program 
is captured by the least model (intersection of all models) of its f.o. notation. 

For the sake of further discussion, we introduce the notion of minimal model. A 
comprehensive study of minimal models is provided in [27]. 

Definition 3.1 (Minimal Herbrand model). Let [fF be a set of f.o. formulas. A Herbrand 
interpretation M is a minimal model of [fF iff M is a model of [fF and for each M' 
such that M' is a model of [fF, M' ~ M entails M = M'. 
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The notion of a minimal model is more general than the notion of "intersection 
of models" although these two notions coincide for sets of definite clauses. Given 
a set fF of formulas, the intersection of all models of fF may not be a model of fF; 
however, fF may have minimal models. 

Consider for example the clause A v B. It has two minimal models: the first one 
contains A and does not contain B; the other one contains B and does not contain 
A. The intersection of all models of the clause A v B is the empty interpretation 
which is not a model of A v B. 

Theorem 3.2 (Van Emden and Kowalski [44]). If fF is a set of definite clauses then 
fF has a unique minimal model, or equivalently, the intersection of all models of ~ is 
a model of fF. 

The declarative semantics of positive logic programs is simply defined. 

Definition 3.3 (Minimal model semantics of positive logic programs). Let I;}' be a 
positive logic program. The canonical model (the declarative semantics) of I;}' is the 
minimal Herbrand model of I;}'f.o .• 

The definition is illustrated by the program presented in the introduction and 
used to represent a graph and its transitive closure. 

Example 3.4. Let us assume that we want to represent a graph 
(1) with vertex a, band c; 
(2) with arcs between a and b, b and a, c and a; and 
(3) the transitive closure of the graph. 

We need to consider the alphabet consisting of the constants a, b, and c, the binary 
predicates Arc and tc_Arc. We intend to specify the above data by the following 
positive logic program: 

Arc(a, b), 

Arc(b, a), 

Graph = Arc( c, a), 

tc_Arc(x, y) :- Arc(x, y), 

tc_Arc(x, y):- Arc(x, z) & tc_Arc(z, y). 

For instance, the Herbrand interpretation containing all elements of the Herbrand 
base, that is the interpretation given by 

Arc(a, a), Arc(a, b), Arc(a, c), 

Arc(b, a), ... , 
• 
• 
• 

tc_Arc( c, a), tc_Arc( c, b), tcArc( c, c) 
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is a model of (the f.o. notation of) Graph. Obviously, it is not a minimal model. 
The declarative semantics of Graph is given by its unique minimal model, namely: 

Arc(a, b), Arc(b, a), Arc(c, a), 

MGraph = tc_Arc( a, b), tc_Arc( b, a), tc_Arc( c, a), 

tc_Arc( a, a), tc_Arc( b, b), tcArc( c, b). 

We should emphasize here, as it is done in [60], that the least model semantics 
of positive logic programs is an alternative formulation of the closed world assump­
tion [97]. Given a logic program Pf', we abusively say that 
• A formula is true for {JJJ iff this formula is satisfied by the minimal model of (the 

f.o. notation of) PY. For instance, a positive fact is true for {JJJ iff it simply belongs 
to the minimal model of gp . 

• A formula is false for gp iff this formula is not satisfied by the minimal model of 
PY. For instance, a positive fact is false for gp iff it does not belong to the minimal 
model of PY. 
An interesting correspondence does exist between the set of positive facts true 

for a positive logic program Pf' and the set of positive facts which are logical 
consequences of the f.o. notation Pf'r,o, of Pf': 

(1) A positive fact A is true for Pf' iff A is a logical consequence of Pf'r,o, (Pf'r,o F= A). 
This correspondence allows one to make use of resolution techniques in order to 

evaluate positive queries. 
The same relationship does not hold for negative facts true for gp. A negative fact 

-,A is true for gp iff -,A is satisfied by the minimal model of gpr,o , that is, iff A does 
not belong to the minimal model of gpr,o,. Thus: 

(2) A negative fact -,A is true for Pf' iff A is not a logical consequence of Pf'f.o, 

(gpf.o, ~ A). 
It is well-known that {J}r,o, ~ A does not entail Pf'f.o, F= -,A. Indeed, Pf'r,o ~ A as 

soon as one of the models of Pf'r,o, satisfies -,A while it is necessary that all models 
of Pf'r,o satisfy -,A in order to conclude that gpr,o, F= -,A. 

Of course, the set of negative facts that are logical consequences of gpr,o, is included 
in the set of negative facts true for gp, that is, gpr,o F= -,A entails Pf'f.o, ~ A. However 
note that since Pf' is a positive logic program and thus {J}r,o, is equivalent to a set of 
definite clauses, the set of negative facts implied by Pf'r,o, is empty. 

Clearly, (2) is the model theoretic formulation of the Closed World Assumption. 
In [97], the Closed World Assumption is formalized by Pf' infers -,A iff Pf'r,o If- A. 

Fixpoint semantics 
The fixpoint semantics is based on a somewhat different and more operational 

view of logic programs. The program is viewed as a set of rules and (positive) facts 
together with some basic operation for applying rules to facts in order to generate 
new facts. The semantics of a program is given by means of the facts obtained by 
iterative application of the rules of the program to facts, starting with an empty set 
of facts [60]. 
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The key point here is to define what is meant by "apply rules to facts", and make 
sure that, roughly speaking, the iterative application of this basic operation ter­
minates. 

For positive logic programs "apply rules to facts" is defined by means of an 
operator, called immediate consequence operator, associated with the program. 
Given a set of positive facts, the immediate consequence operator simply generates 
the heads of the rules whose bodies are satisfied by the given set of positive facts. 

Because the programs considered are positive programs, the immediate con­
sequence operator is monotonic (and continuous). This ensures (a) the existence 
of a least fix point, (b) the termination of the iterative application of the operator 
and (c) the correspondence between the least fixpoint and the set of facts obtained 
by iterative application of the operator. Formally, we have: 

Definition 3.5 (Immediate consequence operator). Let [!P be a logic program. The 
immediate consequence operator associated with [!P, denoted r;, is the mapping 
on Int defined by 

T~(I)={head(r)lrEInsL[!P and VLEbody(r)lF L}, for IEInt. 

The immediate consequence operator associated with a positive logic program 
satisfies the following property. 

Theorem 3.6 (Van Emden and Kowalski [44], Apt and Van Emden [4]). If [!P is a 
positive logic program then T~ is monotonic and continuous. 

The above result entails (see preliminaries) that 
(1) T~ has a least fixpoint Ifp( T';), 
(2) Ifp(T';) is equal to T';ta for some ordinal a, and 
(3) the closure ordinal (the ordinal a such that Ifp(T~) = r;ta) is below w. 
The fixpoint semantics of positive logic programs is defined by: 

Definition 3.7 (Least fixpoint semantics of positive logic program). Let [!P be a positive 
logic program. The fixpoint semantics of [!P is the least fixpoint of r;. or equivalently, 
the limit of the sequence T~ t a. 

Let us now illustrate the fixpoint approach using the Graph example. 

Example 3.4 (continued). Let us consider the logic program Graph and apply 
iteratively the immediate consequence operator associated with it. 

(1) First iteration 

T~raph to = T~raph(0) = {Arc( a, b), Arc( b, a), Arc( c, an. 
Note that T~raph to is equal to the set of positive facts in the logic program Graph. 
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(2) Second iteration 

Arc( a, b), Arc( b, a), Arc( c, a), --
tC_Arc( a, b), tc_Arc( b, a), tc_Arc( c, a). 

Note that T6raPh jt = T6raPh jO u {tc_Arc(a, b), tc_Arc(b, a), tc_Arc(c, a)}. 
(3) Third iteration 

Arc(a, b), Arc(b, a), Arc(c, a), 

= tc_Arc(a, b), tc_Arc(b, a), tc_Arc(c, a), 

tc_Arc( a, a), tcArc( b, b), tc_Arc( c, b). 

Note that T~raph j 2 = T~raph j 1 u {tc_Arc( a, a), tcArc( b, b), tc_Arc( c, b)} 
(4) Fourth iteration 

T~raph j3 = T~raph( T~raph j2) = T~raPh j2. 

17 

Thus, the least fixpoint semantics of the positive logic program Graph is the least 

fixpoint of T6raPh, that is T6raPh f2. Note here that the fixpoint semantics of Graph 
coincides with its minimal model semantics. 

We would like to insist here on the fact that the fixpoint semantics has a strong 
computational aspect: "the fact that we have a least fixed point simply means that 
we have abstracted a computational process" [60). 

For positive logic programs, the model-theoretic semantics and the fixpoint 
semantics coincide. On the one hand, this justifies the use of the least fixpoint 
semantics as a declarative semantics for positive programs. On the other hand, this 
proves that the minimal model semantics is "reasonable" since a constructive 
alternative definition is provided. 

Theorem 3.8 (Apt and Van Emden [4], Van Emden and Kowalski [44]). Let P; be 
a positive logic program. The minimal model semantics and the jixpoint semantics of 
P; are identical. 

Remark 3.9. It is important to note that during the iterative application of T;, there 
is no manipulation of negative facts. The iteration starts with the empty Herbrand 
interpretation, that is an empty set of positive facts. Applying the immediate 
consequence operator to a set of facts, namely here a set of positive facts, produces 
instantiated heads of rules. Instantiated heads of rules are positive facts. 



18 N. Bidair 

Indeed, for positive logic programs, the fixpoint semantics can be defined in telillS 
of the following operator. 

Definition 3.10 (Set membership immediate consequence operator). Let (if' be a logic 
program. The (set membership) immediate consequence operator associated with 
(ijJ, denoted by T~, is the mapping on Int defined by 

T~(l)={head(r)lrE/nsL(if' andVLE body(r),LEI}. 

It is important to note that: 

Theorem 3.11. For any logic program (ijJ (not necessarily positive logic program), the 
immediate consequence operator T~ is monotonic and continuous. 

This result follows from the fact that applying T':;. to an interpretation / comes 
down to applying Tj,. to / where (ijJ' is the positive logic program obtained by 
removing from (ijJ all rules having some negative premises. 

Moreover, we have for any positive logic program: 

Lemma 3.12. /f(ijJ is a positive logic program, then lfp( 1"';) = lfp( Te,) and thejixpoint 
semantics of (ijJ is equal to the least jixpoint of T':;.. 

Thus, for positive logic programs, logical consequence (F) can be replaced in 
the definition of T; by set membership (E). This substitution preserves the definition 
of the fix point semantics of positive logic programs. 

Now, we would like to emphasize the fact that the definition of the declarative 
semantics of positive logic programs by means of the least fixpoint of the operator 
T;, i.e. by means of the limit of the sequence r;, t a can be viewed as a process 
of two ordered phases. 

The first phase takes care of the generation of positive facts true for (if'. It consists 
of the iterative application of T;. 

The second phase (totally hidden) takes care of the generation of negative facts 
true for (ijJ. Negative facts true for (ijJ are obtained from the positive facts true for 
(ijJ and computed during the first phase, by complementation in the Herbrand Base. 

The completed interpretation.itt associated with the canonical model M = Ifp( T';.) 
of the positive logic program (ijJ, is given by At = M U ,,(@jI-lfp(T;». 

The second part of this section exposes the problems that arise when negative 
premises are introduced in program rules. First we shall briefly recall the motivation 
for introducing negation in logic programs. 

Let us consider the positive logic program Graph of Example 3.4 and say that 
we want to isolate the new arcs in tc_Arc that is the arcs in tcArc that are not 
given in the "relation" Arc. Let us introduce a new predicate symbol New_Arc. 

, 
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New_Arc is not definable (intentionally) by a positive logic program_ Introducing 
negative premises allows us to write the following definition for New_Arc: 

New _Arc( x, Y) : - tc_Arc( x, y) & not Arc( x, y) 

and the intended semantics of the logic program Graph augmented with the above 
rule is given by MOraph plus the facts New _Arc( a, a), New _Arc( b, b) and 
New _Arc( c, b)_ 

From a procedural viewpoint, the semantics of negation in logic programs is close 
to the well-known Negation as Failure procedure (SLDNF) [35]_ SLDNF is a 
top-down evaluation procedure extending SLD-resolution_ The extension concerns 
the notion of a proof of an elementary negative goal which is defined as the failure 
to obtain a proof of the corresponding positive goal. 

For our example, failure to prove Arc(a, a) provides an SLDNF-proof of 
,Arc(a, a) and thus an SLDNF-proof of New_Arc(a, a). The same holds for 
New_Arc(b, b) and New_Arc(c, b). Now, the proof of Arc(a, b) fails the SLDNF­
proof of ,Arc(a, b) and thus the SLDNF-proof of New_Arc(a, b). The same holds 
for New_Arc(b, a) and New_Arc(c, a). 

In the context of databases, introducing negation in logic programs aims to provide 

the ability to express set difference or set complement. 

3.2. Generalizing the jixpoint approach: the problems 

Let us now examine general logic programs, that is logic programs in which 
negative literals are allowed in the body of rules. Before presenting the formal 
arguments that rule out the use of the immediate consequence operator for defining 
the declarative semantics of logic programs, we provide some rather intuitive reasons 
which lead to the very same conclusion and which motivate the contents of the next 

sections. 
The immediate consequence operator has been introduced as a way to "apply 

rules to facts". Intuitively, for a general logic program, because negative premises 
may occur in the body of rules, one expects that "applying rules to facts" involves 
an explicit use of negative facts. 

Let us examine how the two operators T'; and T~ deal with negative premises 
of rules. The main thing to keep in mind is that both operators are defined on lot 
and produce positive facts exclusively. This partially explains their inadequacy to 
define the declarative semantics of logic programs with negation. 

Let us assume that we want to use the limit of the sequence T; t a in order to 
provide a constructive semantics of a logic program (JJ. For the moment, the reader 
is asked to forget or ignore the formal reason which makes our assumption and 
discussion formally incorrect (the immediate consequence operator associated with 
a general logic program is non-monotonic). This assumption is made for the purpose 
of the intuitive motivation of the further presentation. 

Consider for example the simple propositional program (JJo={A, B:- not A}. 
Applying T;o to the empty Herbrand interpretation produces the set of positive 
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facts {A, B}. Intuitively, the proposition A has been derived from the first unit rule 
of the program while the proposition B has been derived from the second rule of 
the program using the fact that the empty Herbrand interpretation satisfies the 
negative literal not A. Loosely speaking, the empty interpretation is intended to 
represent the "starting point" for computing the semantics of the program [1;. Thus, 
normally it should represent the fact that we know nothing about truth values of 
facts (positive and negative ones) defined by [1;. However here, the definition of the 
immediate consequence operator in terms of r;, definitely gives to the empty 
interpretation a rather different intuitive meaning: the empty interpretation rep­
resents a state of "knowledge" in which every positive fact is false. In order to express 
the immediate consequence operator T';. using set membership, we have to write: 

r E InsLeJI, 

T:'(l) = head(r) \f L E pos(body(r», LEI, and 

\f LE neg(body(r», ,Le 1 

Rewriting the definition of T":; as above emphasizes the way heads of rules are 
derived by application of this operator to some set 1 of positive hypotheses. The 
head of a rule r in the instantiation of [1; is generated iff r satisfies the following 
two conditions: 

(1) each positive premise of r belongs to the set of hypotheses, and 
(2) the positive counterpart of each negative premise of r does not belong to the 

set of hypotheses. 
Condition (2) clearly means that negative premises of rules are assumed to be 

"true" by default to get their positive counterpart explicitly in the set of hypotheses. 
In our example, it is clear that B is derived by default to find A in the hypotheses 
represented by the empty interpretation. The reason why B is derived is not that 
,A has been previously inferred. 

This remark leads to the idea that the set membership immediate consequence 
operator T~ may be more adequate. 

Using T'Z;" in order to be considered "true", positive premises as well as negative 
premises of rules are required to belong explicitly to the hypotheses. In this setting, 
as expected, the intuitive meaning of the empty interpretation corresponds to 
knowing nothing about the truth of facts. As a matter of fact, for the program [1;0, 

applying T~o to the empty Herbrand interpretation produces the set of positive 
facts {A}. However, the set membership immediate consequence operator solves 
only one part of the problem: negative premises are not inferred to be true "by 
default". The second part of the problem remains and is crucial: the immediate 
consequence operator is unable to derive negative facts. This is showed by the 
following example. 

Let us delete the first rule of the previous program and thus consider the program 
formed by the unique rule B : - not A. Applying T~ to the empty Herbrand interpreta­
tion produces an empty set of facts. Intuitively, the empty interpretation (either 
viewed as every positive fact is false, or viewed as nothing is either true or false) 
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does not correspond to the intended meaning of the logic program {B :- not A}_ 
Clearly, the intended meaning of this program is captured by the Herbrand interpre­
tation {B} or by the completed Herbrand interpretation {lA, B}. Moreover, the 
empty interpretation is not a model of the logical notation {B ~ A} of the program 
{B :- not A}. 

We now turn to formal arguments that makes the immediate consequence operator 
unusable for defining, in a constructive way, the declarative semantics of logic 
programs with negation. It is well known that: 

Lemma 3.13. Let pjJ be a logic program. The operator T:; is not monotonic. 

It suffices to consider the program {B : - not A} and the two interpretations II = 0 
and 12 = {A}. We have that: II ~ 12 but T';;'(II) = {B} ~ T';;,(I2) = 0. 

The major consequences of Lemma 3.13 are that: 
(1) Tt; mayor may not have fixpoints, 
(2) if Tt; has fixpoints it mayor may not have a least fixpoint, 
(3) in the "good" case where T'; has a least fixpoint, it may not be equal to the 

limit of the sequence T:; i a. 
Some simple examples below illustrate these remarks. 

Example 3.14. (1) T'; may have a least fixpoint. Consider the logic program pjJI = 

{A, C : - A & not B}. The immediate consequence operator T';, has a least fixpoint 
given by the Herbrand interpretation MI = {A, C}. Note first that MI is a (minimal) 
Herbrand model of pjJl ro . Secondly, MI is the limit of the sequence T:;,ia. Now, 
it can also be useful to notice that A, C and -,B may be infered by SLONF. 

(2) T';;, may have fixpoints but no least fixpoint. Consider the logic program 
pjJ2 = pjJI U {B :- B}. Note that the immediate consequence operator T';;,2 has two 
fixpoints given by the two following Herbrand interpretations: M2 = {A, C} and 
M~ = {A, B}. But the immediate consequence operator Tt;, associated with pjJ2 has -
no least fixpoint. Note also that both M2 and M~ are (minimal) Herbrand models 
for '!I2. o ' The limit of the sequence T';,ia is the set of facts M2. Finally, the only 
fact that may be infered by SLONF is the positive fact A. Note that, viewed as a 
"production" rule, the program rule B :- B adds no information to the program '!II' 

We call this rule a "ghost rule". Thus we could reasonably expect the logic programs 
'!II and pjJ2 to have the same declarative semantics. The immediate consequence 
operator fails to match our expectation because it behaves differently on the logic 
programs '!II and '!I2' 

(3) T';;, may not have fixpoints. Consider the logic program pjJ3 = {A :- not A}. 

The immediate consequence operator T';3 does not have a fixpoint (thus a fortiori 
does not have a least fixpoint). Because T';;,/0) = {A} and T';/ {A}) = 0, we have 
T;Jw = {A} is the unique model of '!I3rn (Note that the sequence T';,ia does not 
converge). Not surprisingly, nothing can be infered from '!I3 by SLONF. 
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(4) T'; may have a least fixpoint that is not reachable by 1"';ja. Consider the 
program PJi 4 = {A : - not e, B: - not A, e: - not A & not B}. The immediate con­
sequence operator T';. has a unique fixpoint and thus a least fixpoint given by the 
Herbrand interpretation {A}. This unique fixpoint is one of the (minimal) Herbrand 
models of PJi4ro • While we are in an apparently "good" case where T";. has a unique 
fixpoint, the sequence T';.ta does not converge to this model. Because 1"';.(0) = 

{A, B, e} and T;.({A, B, C}) =0, T':;.tw = {A, B, C} which is not equal to the least 
fixpoint of T";;, •. Of course, nothing can be computed from {if'4 by SLDNF. 

We now examine formally the reason that makes the set membership immediate 
consequence operator T'fy. unsatisfactory for defining the declarative semantics of 
logic programs. 

Lemma 3.1S. Let PJi be a logic program. The least fixpoint lfp( T~) (i.e. the limit of 
the sequence T'fy.ja) associated with {if' may not be a (Herbrand) model of[j)ro. 

It suffices to consider the program {B :- not A}. The least fixpoint associated with 
this program is the empty interpretation. However the empty interpretation is not 
a model of the f.o. formula B +--,A. 

The main weakness of the operator T~ is that it completely ignores the rules in 
PJi having negative premises and treats these rules as "ghost rules". 

Recall that, considering a general logic program {if' and the positive logic program 
PJi' obtained by removing all rules with negative premises from {if', the least fixpoint 
of the operator T~ associated with {if' is equal to the least fixpoint of the operator 
T";;" associated with the positive logic program PJi'. 

3.3. Generalizing the model theoretic approach: the problems 

Problems analogous to the ones encountered with the fixpoint approach arise in 
the model theoretic framework. More precisely, the minimal model approach does 
not provide a satisfactory declarative semantics for programs with negation. 

Briefly, an illustration of the problem can be made by considering the logic 
program {if'1 = {A, C : - A & not B} of Example 3.14. The (f.o. notation of the) pro­
gram PJi t has two minimal models, namely the fixpoints MI = {A, C} and M; = {A, B} 
of Tt;,. Let us recall that among the minimal models MI and M;, the one which 
represents the intended meaning of PJi I is M t • 

Thus the minimality condition is not sufficient for selecting the "good" model 
representing the meaning of a logic program with negation. The question that arises 
immediately is how the "good" minimal model capturing the meaning of a logic 
program can be characterized. The main thing to note is that properties of the f.o. 
notation of a program are unable to overcome the problem. For instance, consider 
the program PJi; = {A, B : - A & not C}. The f.o. notation {A, B +- A A -,e} of g>; is 
logically equivalent to the f.o. notation {A, C +- A A -,B} (because, (B +- A A -,C) 4 • 

(e +- A A -,B) c • (e v -,A v B». It follows that M t and M; are the two minimal 
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models of (the f.o_ notation of) the program ~;. While M\ captures the meaning 
of the program ~\, the minimal model that is intended to represent the meaning 
of ~; is M; . "What complicates the matter is that the choice of M,/ is apparently 
not invariant to logically equivalent transformations of ~" [74]. 

The criterion applied in order to select M\, respectively M;, among M\ and M; 
as describing the semantics of ~\, respectively the semantics of ~;, relies on 
properties induced by the syntax of ~\, respectively by the syntax of ~;. Recall 
that a clear distinction has been made earlier between logic programming languages 
and first order languages. This distinction, which can be cumbersome, is necessary 
in order to be able to state in a formally correct fashion that ~\ and ~; are distinct 
programs and thus (may) have distinct meanings. 

The notion of a supported model has been introduced in [3] as a criterion for 
selecting models among minimal models. The very same notion has been indepen­
dently introduced in [18] where it is called a causal or justified model.4 In [18], the 
motivation for defining supported models is given by the search for a model theoretic 
formalization of Clark's negation as failure inference rule [35]. 

Intuitively, an interpretation M is supported by a logic program ~ if positive 
facts true for M can be "produced" from some rule r in ~ and from the positive 
and negative facts true for M. An elegant definition of supported model is provided 
in [3], which not surprisingly makes use of the immediate consequence operator 
T: associated with ~ . 

• 

Definition 3.16 (Supported model of a logic program). Let ~ be a logic program. Let 
M be a Herbrand interpretation. A model M of ~f.o. is a supported model for ~ 
iff M <:; T';(M). 

Remark 3.17. Shepherdson [104] provides the following simple and pertinent 
remark: 
• M is a model of ~f.o. iff T';(M) £; M and consequently, 
• M is a supported model for ~ iff M is a fixpoint of T';. 

Example 3.18. The definition is briefly illustrated using the program ~\ of Example 
3.14. The models of ~\ are M = {A, B, C}, M\ = {A, C} and M; = {A, B}. The only 
supported model of ~\ is M\ which is the model capturing the intended meaning 
of ~\. Because there exists no rule in ~\ with head C, M and M; are not supported 
for ~1' Note also that the only supported model for ~; = {A, B :- A & not C} is M; 
which is the model intended to capture the semantics of ~;. Recall that the two 
programs ~1 and ~; have equivalent f.o. notations. 

As motivated in [19], the notion of a supported model is not sufficient to capture 
the intended meaning of logic programs. Indeed, the notion of a supported model 

3 The good model. 
4 In the following, we shall use the terminology of [3], that is supported model. 
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does not subsume the notion of a minimal model. As a consequence, the "pure" 
supported model semantics does not generalize the minimal model (or, equivalently, 
the least fixpoint) semantics for positive logic programs. An example follows to 
illustrate this remark. 

Example 3.19. Consider the logic program!!) = {A :- B, B :- A}. It admits two first 
order models, namely M = 0 and M' = {A. B}. Both models are supported models 
for !!). On the other hand, the meaning associated with!!) with respect to the minimal 
model semantics (or equivalently, with respect to the least fixpoint semantics) is 
given by the empty model M. 

In [19], the notion of a positivist model is introduced, combining the two notions 
of a minimal model and of a supported model. Positivist models of logic programs 
are investigated in [19] in the general case, that is, no hierarchical condition on the 
syntax of the logic programs of the kind discussed in [3] is introduced. 

Definition 3.20 (Positivist model of a logic program). Let!!) be a logic program. Let 
M be a Herbrand interpretation. A model M of !!)r o. is a positivist model for !1' iff 
M satisfies the following two properties: 

(1) M is a minimal model of !!)f.o, , and 
(2) M is a supported model for !!). 

Remark 3.21. Attention should be paid to the way positivism combines minimalism 
and supportedness. In fact, examples are given in [19] which show that the family 
of positivist models of a logic program (models which enjoy both minimality among 
the f.o. models of !!) and supported ness for !!» is not identifiable with the family 
of minimal models among the supported models for !!). One of these examples is 
given below. 

, 

Example 3.22. Let us consider the program !!) = {A : - A, A : - B, A : - not C, C:-

A & not B}. The unique model of g>/o, which is a supported model for !1' is M = 
{A, C}. Thus, M is the least supported model of !!). Notice that lU' = {C} is one of 
the minimal models of !!)r,o (the other one is {A, B}) and is less than (included in) 
M. This entails that !!) admits no positivist model. 

The main result of [19] establishes the correspondence between first order models 
of the completion of a logic program and the supported models of the program. 
Soundness of the negation as failure algorithm [35] is proved with respect to the 
positivist models of the program. 

Unfortunately, it appears that minimality and supported ness are not always 
sufficient criteria for selecting the "good" model of a logic program. The introduction 
of rules of the forlIt P(x) : - P(x) in a logic program has the effect of neutralizing 
the impact of supported ness on the predicate P. 
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Example 3.23. The program fill2 =fill t u{B:-B} of Example 3.14 gives a simple 
illustration of some "undesirable" behavior of the positivist semantics. The f.o. 
notation of fill2 is logically equivalent to the f.o. notation of fill). Thus, fill) and fill2 
have the same minimal models, namely M) = {A, C} and M; = {A, B}. Both M) and 
M; are supported models for fill2. To show that M; = {A, B} is a supported model 
for fill2, one makes use of the "ghost rule" B : - B. 

Although supportedness does not provide a completely satisfactory criterion for 
selecting the pertinent model(s) of a logic program, supportedness should be 
regarded as a desirable property of the intended meaning of a logic program because 
a supported model "is able to reproduce itself with a certain natural transformation" 
[115]. In the current context, the natural transformation is the immediate con­
sequence operator. 

In [3], the semantical notions of minimality and supported ness are combined 
with some syntactical restrictions of a hierarchical nature on the logic programs, 
providing a model theoretic semantics for the stratifiable programs (which is presen­
ted in Section 7). 

Two main goals are pursued when defining the declarative semantics of logic 
programs: 

(1) interpreting negation (as close as possible) like complementation, 
(2) providing, if possible a constructive definition. 
The first goal is of a semantic nature while the second one is of a computational 

nature. Both should be related to the two fundamental principles of [104]: "Even 
if the practicing logic programmer does regard the written text of the program as 
its declarative meaning, we feel that in order to be true to the basic aims of logic 
programming two fundamental principles should be observed. 

(1) The semantics of negation should be clear and easily intelligible. That is, the 
naive programmer should be able to understand the full meaning of what he writes. 

(2) The syntax should be computable. That is, at least in theory, an automatic 
proof procedure should exist. Indeed if the only reason for abandoning the clear 
and well-known concept of classical negation is the inefficiency of its implementa­
tion, we might not unreasonably ask for a complete proof procedure to be feasibly 
implementable. " 

In the following sections, we present some contributions to defining the declarative 
semantics of logic programs and try to measure them against the above two goals. 

4. Fixpoint semantics of ble logic programs 

In this section, we focus our attention on the different attempts to exhibit a "good" 
class of logic programs. By "good" logic programs is meant logic programs that are 
sufficiently simple to raise no discussion about their intended meaning. The problem 
is of course to define a class of programs as large as possible. 
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In the previous section, we saw that the semantics of a positive program [j) may 
be constructively defined by means of the least fixpoint of the immediate consequence 
operator associated with [j). It has been suggested that this constructive definition 
can be seen as a process of two phases, the first phase being dedicated to the iterative 
derivation of positive facts, the second (hidden) phase consisting of the derivation 
of the negative facts by complementation. 

This view of the fixpoint semantics leads naturally to the idea that, a "safe" way 
to add negation is to consider a logic program as an ordered sequence of logic 
programs where the use of negation is restricted at each level to apply exclusively 
on predicates defined in programs of lower levels. Intuitively, this ordered structure 
of logic programs implies a very simple way for "evaluating" its semantics. Starting 
from the lowest level program, the least fixpoint semantics gives for each predicate 
P defined at each level, the positive facts and the negative facts related to P. So 
that if, at some level, the definition of P makes use of the negation of the predicate 
Q, the definition of Q belongs to a subprogram of lower level and thus its semantics 
has already been "evaluated". This means that the set of negative facts related to 
Q is available for the evaluation of the positive facts related to P. 

This notion of ordered programs is well known as stratified programs. It is used 
first in [30] in order to generalize the class of Hom clause queries (queries expressed 
by positive logic program). Stratification becomes popular with the work of [3,91, 
94, 111]. 

In [30], it is shown that positive logic programs express exactly the queries 
representable by a fixpoint applied to a positive existential formula (see Section 9 
on the expressive power of logic programs). Thus not all first order queries are 
expressible as positive logic programs. Ways of adding negation to logic programs 
are examined. The first attempt to extend the class of queries specified by positive 
logic programs is very simple. 

In the alphabet, two classes of predicate symbols are distinguished: terminal 
predicates and non-terminal predicates. Using the database terminology, terminal 
predicates correspond to relations explicitly stored in the database and non-terminal 
predicate symbols correspond to relations intentionally defined by rules. In queries 
(logic programs), negation is allowed among the premises of rules as long as it 
applies to terminal predicate symbols. This class of queries corresponds to the class 
of semi-positive programs [3] defined below. 

Definition 4.1 (Semi-positive logic program). A logic program [j) is semi-positive iff 
the set of predicate symbols occurring in negative premises of rules in [j) and the 
set of predicate symbols occurring in head of non-unit rules in [j) are disjoint. 

The logic program [j)1 of Example 3.14 is semi-positive because the proposition 
B does not occur in any head of rules. The logic programs [j)2, [j)3 and [j) 4 of Example 
3.14 are not semi-positive. 

A somewhat more illustrative example is proposed below. 
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Example 4.2. Let us consider the language induced by the constant symbols Mary, 
John, Peter, Eva, and by the unary predicate symbols Businessman, Mathematician, 
Computerscientist, and AvoidLMath. The following program intends to say that 
people who are businessman and not mathematician avoid mathematics. The "rela­
tions" Businessman, Mathematician and Computerscientist are defined 
"extensively" . 

Math = 

Businessman (J ohn), Businessman( Mary), 

Mathematician(Mary), 
Computerscientist( Peter), 
Avoids_Math(x) :- Businessman(x) & not Mathematician(x) 

The intended semantics of the logic program Math is very easy to exhibit. The 
predicates Businessman, Mathematician and Computerscientist are terminal predi­
cates_ The intended semantics assigned by Math to these predicates is simply given 
directly by the unit rules related to each of them (because these unit rules are 
ground). Thus Math defines the three relations: 

Businessman 

John 
Mary 

Mathematician 

Ma~~ __ 

Computerscientist 

Peter 

Now, the relation AvoidLMath defined by Math is the difference between the 
relation Businessman and Mathematician, that is: 

AvoidLMath 

John 

First, note that the (f.o. notation of the) logic program Math has two minimal 
models: one contains the facts represented above in the relation Businessman, 
Mathematician, Computerscientist and AvoidLMath, the other one contains the 
facts represented above in the relations Businessman, Mathematician and Computer­
scientist plus the fact Mathematician(John). The first of these models (the one that 
corresponds to our intention) is a supported model for Math while the second one 
• 
IS not. 

Secondly, note that the immediate consequence operator associated with Math 
has a least fixpoint, namely the model corresponding to our intention, and that this 
least fixpoint can be "computed" by means of the sequence T~ath ja. 

Intuitively, for a semi-positive logic program, predicates that occur in negative 
premises of rules have no intentional definition in the program. Thus, intuitively, 
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the intended semantics assigned by the program to these predicates is the set of 
facts related to these predicates and that belong to the program itself. As a con­
sequence, the "evaluation" of negative premises is immediate and does not require 
any intermediate "evaluation". 

The simplicity of these programs entails that it is "safe" to use the immediate 
consequence operator in order to constructively describe the semantics of a semi­
positive logic program. Formally, 

Lemma 4.3 (Apt et at. [3]). If{J} is a semi-positive program then T;tw is ajixpoint 
ofT;. 

The notion of stratified logic program is a straightforward generalization of 
semi-positive program. Roughly speaking, a stratified logic program is a sequence 
of semi-positive logic programs. The definition of stratified logic programs is presen­
ted here in a slightly different manner than in [3, 91, 94, 111]. 

Definition 4.4 (Stratified logic program). Let C be a set of function symbols. A 
stratified logic program {J}* is a (possibly infinite) sequence ({J} n, Predn )( n ~ J) such 
that: 

(1) Pred; ¥- 0 and Pred; and Pred) are pairwise disjoint, for i ¥- j, 
(2) {J}; is a semi-positive logic program defined over the language (C, U;=J Pred) 
(3) the set of predicate symbols occurring in the head of rules in rJi, is included 

in Pred;, i.e. {head( r) IrE {J},} is defined over (C, Pred;). 
Each ({J}" Pred;) is called a stratum of {J}*. 

Example 4.5. (1) The sequence of semi-positive programs 

{J}f = (0, {B})( {A, C :- A & not B}, {A, C}) 

is a stratified logic program. 
(2) The sequence of semi-positive programs 

{J}f' = ({A, C :- A & not B}, {A, B, C}) 

is a stratified logic program. 
(3) The sequence of semi-positive programs 

{J}f = ({A, B:- B}, {A, B})({C :-A & not B}, {C}) 

is a stratified logic program. 

Note that in Definition 4.4, while Pred, are always non-empty sets of predicates, 
{J}, may be empty programs. Stratifiable logic programs are simply defined as follows. 

Definition 4.6 (Stratifiable logic program). A logic program {J} over (C, Pred) is 
stratifiable iff there exists a stratified logic program {J}* = ({J}", Pred")( n;;o J) such that 
{J} = U~-J {J}j and Pred = U~J Predj • {J}* is then called a stratification for the logic 
program {J}. 
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In [75], stratifiable logic programs are defined in an equivalent way by means of 
a level mapping. "A logic program is stratifiable if it has a level mapping such that, 
in every program rule r, the level of the predicate symbol of every positive literal 
in the body is less than or equal to the level of the predicate symbol of header), 
and the level of the predicate symbol of every negative literal in the body is (strictly) 
less than the level of the predicate in head(r)." 

Infinite stratified logic programs have been introduced for the purpose of the 
presentation of locally stratifiable logic programs provided later in this section. Thus 
until that presentation, it is understood that we only consider finite stratified 
programs. 

Given a stratifiable logic program PfJ, it is easy to verify that there always exists 
a finite stratified logic program PfJ* "equal" to PfJ. 

Example 4.7. (1) The logic program gill of Example 3.14 is semi-positive thus 
obviously it is stratifiable. Also PfJf and PfJf' provided in Example 4.5 are stratified 
programs "equal" to PfJ t • 

(2) Although it is not semi-positive, the logic program gIl2 of Example 3.14, is 
stratifiable. Note that the sequence of semi-positive logic programs PfJf given in 
Example 4.5 is a stratified logic program "equal" to gIl2' 

(3) The logic programs (iJ3 and (iJ 4 of Example 3.14 are not stratifiable. 

Note that more than one stratified logic program may be in correspondence with 
a single stratifiable logic program. 

Given a stratified logic program PfJ* = (gIln, Predn ), we abusively refer to PfJ as 
U,n_ 1 I/I'j and to Pred as U;_I Predj • With the above notational convention, we have 
that: 
• given a predicate symbol PfJ in Pred, def(P, PfJ) £; PfJ, for some j, and 
• given a rule r in (iJ, and a predicate P that occurs in a negative premise of r, 

def(P, gil) £; U;=~ gil). 
From the definition, this implies that there exists j < j such that def( P, PfJ) £; I/I'}" 
The second point above formally expresses the condition that predicates must be 

completely defined "before" they can be used negatively. 
Given a stratified program PfJ* = (PfJJ. Pred l ), (PfJ2 , Pred2 ), •• • , (I/I'n' Predn), the 

declarative semantics of 1/1' is obviously obtained by iteratively applying the "two 
phases" mechanism offered by the immediate consequence operator for constructing 
the canonical model of positive logic programs. Intuitively, we have: 
• PfJ I is a semi-positive logic program. Predicates occurring in negative premises of 

rules in 9»1 do not have intentional definitions in the full program gil. The semantics 
of (iJI is perfectly understood and given by the completed Herbrand interpretation 
All where pos(AlI) = T~,iw and neg(AlI) = ....,.(@ - pos(AlI)). 

• Now, let us examine the logic program PfJ2 while keeping in mind that the semantics 
of 1/1'1 is known. Because predicates occurring negatively in the body of rules of 
PfJ2 must have their definition in PfJ I and because the semantics of PfJ I is known, 
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intuitively the logic program PP2 can be cleaned up of negative premises, moreover 
it can be cleaned up of predicates in Pred,. In order to get rid of negation in PP2, 
it suffices to remove from PP2 the rules having some negative premise not satisfied 
by Al, and to delete negative premise satisfied by Al,. This comes down to 
replacing PP2 by DP(PP2, neg(At,». If one wants to get rid of predicates in Pred" 
it suffices to replace PP2 by DP(PP2, Al,). In either case, the remaining program is 
a positive logic program whose semantics is perfectly understood. 
Another way to convince the reader (if necessary) that negation in PP2 does not 

raise problems is to notice that, at this step, predicate symbols in Pred, play the 
role of terminal predicate symbols and predicate symbols in Pred2 play the role of 
non-terminal symbols. 

Loosely speaking, the semantics of the stratified program PP is obtained by iteration 
from PP, to {JjJn of the process sketched for PP, and PP2, collecting at each step i the 
definition of the predicates in Predi • 

Formally, we have: 

Definition 4.8 (Iterative jixpoint semantics). Let PP* = (PP" Pred,)(, '" ,,,, n) be a stratified 
logic program. The iterative fixpoint of p* is the Herbrand interpretation M~ = Mn 
where the sequence M" ... ,Mn is defined by: 

In the above definition, the "derivation" of negative facts is once again totally 
hidden. However, the reader should be aware that while "computing" the semantics 
of stratified programs, deduction of negative facts is not delayed after complete 
deduction of positive facts but comes in between production of positive facts for 
each stratum of the logic program. Production of negative facts is performed by 
complementation at each step. We now propose a toy example to illustrate the 
notion of stratifiable program and iterative fixpoint semantics. The example is taken 
from [94]. 

Example 4.9. Consider the logic program: 

Businessman( Iacocca), 

PP = Physicist(Einstein), 

AvoidLMath(x) :- Businessman(x) & not Good_Mathematician(x). 

The program {JjJ is stratifiable. One of the stratified programs equal to {JjJ is {JjJ" 

{JjJ2 where 

{JjJ, = 0 over Pred, = {Good_Mathematician}, 

{JjJ2 = PP over Pred, u {Businessman, Physicist, AvoidLMath}. 
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The iterative fixpoint of (gil), Pred l )( P/l2, Pred2 ) is M2 where 

MI =0, and 
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M2 = {Businessman(Iacocca), Physicist(Einstein), Avoids_Math(Iacocca)} 

Another stratified program equal to gil is gil;, gil; where 

Businessman, 
gil' _ Businessman(Iacocca) 

I - Physicist(Einstein) 
over Pred; = Physicist, 

Good_Mathematician. 

g)l2 = {AvoidLMath(x) :- Businessman(x) & not Good_Mathematician(x)} 

over Pred; u {AvoidLMath}. 

The iterative fixpoint of (g)I;, Pred;)(g)l2' Pred;) is M2 where 

M; = {Businessman{Iacocca), Physicist(Einstein}}, and 

M; = {Businessman(Iacocca), Physicist(Einstein), AvoidLMath(Iacocca)}. 

Recall that more than one stratified logic program may be in correspondence with 
a single stratifiable logic program. Thus in order to define the semantics of a 
stratifiable logic program, we need first to present the following property. 

Theorem 4.10 (Apt et al. [3]). (Independence of the stratification). Let g)I* = 

(g)I),Pred)(I""j",n) and g)I*'=(g)lj,Pred~)(I"'j"'m) be two stratified logic programs. If 
U;_I g)I = U;:I gil' and U;=l Pre~ = Ujm=1 Pred5 then the iterative fixpoint of g)I* is 
equal to the iterative fixpoint of P/l*'. 

We are now ready to properly define the iterative fix point semantics for stratifiable 
logic programs. The above property justifies the following definition. 

Definition 4.11 (Iterative fixpoint semantics of stratijiable logic programs). Let g)I be 
a stratifiable logic program. The iterative fixpoint (semantics) of r!l' is the iterative 
fixpoint of any of the stratified logic program "equal" to g)I. 

Obviously, the iterative fixpoint semantics generalizes the fixpoint semantics for 
positive programs (in the sense that the two semantics match for positive logic 
programs). It is interesting to note that: 

Theorem 4.12 (Apt et al. [3]). Let gil be a stratijiable logic program. Let the Herbrand 
interpretation M(j> be the iterative fixpoint of gil. 

(1) M(j> is a Herbrand model of P/lf.o., 
(2) M(j> is a minimal model of g)lf.o., and 
(3) MfJ> is a supported model of g)I. 
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These properties have been exhibited in [3] in order to support the claim that 
the iterative fixpoint of PJ> is "natural". The proof of the above results can be found 
in [3]. The properties (1) and (2) of Theorem 4.12 entail that the iterative fixpoint 
of a stratifiable logic program is a minimal fixpoint of the immediate consequence 
operator r; and also a minimal model of Comp(PJ» [104]. 

Before discussing the limitation of the stratification constraint, note that 
stratification enjoys the following property. 

Lemma 4.13. Let PJ> be a logic program. It can be checked in polynomial time whether 
PJ> is a stratifiable logic program. 

Roughly speaking, checking stratifiability of a logic program can be reduced to 
checking acyclicity of the precedence graph associated with the program. A poly­
nomial algorithm that checks whether a (finite) logic program is stratifiable is 
provided in [3]. 

Stratifiable logic programs appear to be a natural and useful class of logic 
programs. Moreover, stratifiable programs are more expressive than positive pro­
grams. This last point will be discussed in Section 9. However, it also appears that 
stratification is too strong a constraint. Surprisingly, relaxing stratification has been 
first motivated by allowing function symbols in logic programs. Although the 
"constructive" requirement is not satisfied in such a context, local stratification is 
a formally interesting and very natural generalization of stratification. Local 
stratification has been introduced by [94]. The following presentation slightly differs 
from, but is equivalent to the one in [94]. 

Definition 4.14 (Locally stratifiable logic program). Let PJ> be a logic program (possibly 
with function symbols). PJ> is locally stratifiable iff the propositional logic program 
InscPJ> is stratifiable. The iterative fixpoint of PJ> is the lower upper bound of 
{M; Ii;;. I} where the M, are defined as in Definition 4.8 for a stratified logic program 
equal to InsCPJ>. 

Note that here InsCPJ> can be viewed as a propositional program over the Herbrand 
base ~. Recall also that propositions are O-ary predicate symbols, thus the definition 
of stratified program perfectly applies to the propositional case. Because function 
symbols are allowed, InsCPJ> may be an infinite set of rules and the stratifiable logic 
program equal to InsCPJ> may be an infinite sequence of propositional semi-positive 
logic programs. 

Example 4.15. The following well-known logic program defines even numbers. The 
language is formed of the constant symbol 0, the I-place function symbol suc and 
the unary predicate symbol even. 

even(O) 
Even_F= 

even(suc(x»:-noteven(x) 
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The logic program Even_F is not stratifiable. However, it is locally stratifiable. The 
stratified logic program equal to the instantiation of Even_F is the infinite sequence 
(Even_F1)(I;;.o) defined by: 

Even_Fo = {even( O)} and, 

Even_F, = {even(suc'(O» :- not even(suci- 1(0»}, for i> 0, 

where suco(O) = 0 and suc'(O) = suc(SUC,-I(O». 
The iterative fixpoint of Even_F is the lower upper bound of {{even(O)}, 

... {even(O), even(suc2(O», ... , even(suc2i (O))}, ... } that is {even(suc2i(O»li~0}. 

Lemma 4.16. Let PfJ be a logic program over a language whose function symbols are 
constant symbols only. If PfJ is not stratifiable and if no constant symbol occurs in head 
of non-unit rules in PfJ then PfJ is not locally stratijiable. 

Intuitively speaking, Lemma 4.16 says that a logic program without function 
symbols is locally stratifiable if it is already in its instantiated form or almost. 

This result shows that the contribution of local stratification is restricted to logic 

programs with function symbols. The main limitation of local stratification resides 
in the difficulty of checking whether a logic program is locally stratifiable. 

Theorem 4.17 (Cholak [33]). Checking whether a logic program (with function sym­
bois) is locally stratijiable is undecidable. 

Intuitively, checking local stratifiability can be reduced to checking the existence 
of an infinite path in a (possibly "infinite") graph. This is implied by the fact that 
a logic program PfJ is locally stratifiable iff the priority relation5 associated with pjJ 

is noetherian [94] where (A, B) is in the priority relation as soon as there is a path 
from B to A going through a negative edge in the precedence graph associated with 
the propositional program InscPfJ. 

To conclude this section, we present an example of a logic program (without 
function symbols), which is not locally stratifiable but has a natural intended 
meaning. This example motivates the search for improvements in the definition of 
the declarative semantics of logic programs and thus motivates the contents of 

Sections 5 and 8. 
The example below is reproduced from [17]. 

Example 4.18. Let us consider a logic program that defines even number for a finite 
subset of the natural numbers, say for the natural numbers from 0 to i. The order 

5 Formally defined in Section 7. 
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on natural numbers is represented by means of a relation SUC (instead of using a 
function). The program is then written: 

SUC(O, 1), 

SUC(1,2), 
• 
• 
• 

SUC(i -1, i), 

even(O), 

even(x) :- SUC(y, x) & not even(y). 

The program Even_R is obviously not stratifiable. It is neither locally stratifiable 
because its instantiation contains, for instance, the rule even(O) :- SUC(O, 0) & not 
even(O). No meaning can be assigned to this program with the tools presented in 
this section. However it is clear that this simple program has a clear intended 
meaning captured by the following interpretation: {SUC(O,1), SUC(l, 2), ... , 
SUC(i -1, i), even(O), even(2), ... , even(2j)}. Intuitively. the negative recursion 
appearing in the instantiation of Even_R is not raising problems because it involves 
facts that are obviously "false". For instance, the recursion in even(O):­
SUC(O,O) & not even(O) is not "dangerous" because SUC(O,O) is false. 

Programs that are unstratifiable are discussed in the next section and in Section 
8. 

Although the iterative fixpoint semantics, in general, does not apply directly to 
loosely stratifiable programs, we insert here a presentation of loose stratification 
[26] because. loose stratification and local stratification coincide for function free 
logic programs. One of the nice features of loose stratification is that it does not 
require to consider the instantiation of programs. 

The definition of loose stratification uses a form of precedence graph enriched 
with information (unifiers) concerning the condition under which one atom depends 
on another one. The graph associated with a program is defined as follows. 

Definition 4.19 (Adorned dependency graph). Let PP be a logic program (possibly 
with function symbols). Let us put in V a representative of each type of atomic 
formulas occurring in PP (for instance, if P(x, y) and P(z, y) occur in PP, they have 
the same representant, say P(XIt X2) in V). It is also assumed that, in V, two distinct 
atomic formulas have no variables in common. 

The adorned dependency graph associated with PP is the directed graph (V, G) 
• 

where Atl -+ ~gn At2 is an arc in G iff there exists a rule r in :JJ and a most general 
unifier T such that: 
• AtIT=head(r)T, 
• sign is + if At2T occurs positively in prem(r)T, 

sign is - if At2T occurs negatively in prem(r)T, and 
• U" is the restriction (possibly empty) of T to the variables occurring in Atl and At2. 

Loose stratification relies on adorned dependency graph as follows. 
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Definition 4.20 (Loosely stratifiable logic program). A logic program ~ is loosely 
stratifiable iff the adorned dependency graph associated with ~ contains no path 
Atl ~~~n, At2 ~~~n2 At3 _ • • Atn ~~~nn Atn+1 such that: 

(1) there exists i E {I ... n} such that signj = -, and 
(2) there exists a unifier 0' which is more general than O'j for each i E {I ... n} 

such that Atn+! 0' = Atl 0'. 

Example 4.21. (1) Consider the logic program Even_F presented in Example 4.15. 
The only arc in the adorned dependency graph associated with Even_F is 
Even(s(y» ~[Ylxl Even(x). Thus, because Even(s(x» and Even(x) cannot be 
unified, Even_F is loosely stratifiable. 

(2) Now consider the logic program Even_R of Example 4.18. The vertices of 
the adorned dependency graph associated with Even_R are: Even(O), Even(z), 
Suc(x, y), SUC(O, 1), SUC{l, 2), and SUC(i -I, i). We have a positive arc from 
Even(z) to Suc(x, y) with unifier [ziy], a negative arc from Even(z) to itself with 
empty unifier, etc. The negative arc from Even(z) to itself implies that Even_R is 
not loosely stratifiable. 

It is claimed in [26] that, for function free logic programs, local stratification and 

loose stratification coincide, showing that, for function free logic programs, local 
stratification is independent of the Herbrand instantiation of the program. 

In the case of programs with functions, it is said that loose stratification relaxes 
local stratification. The relationship between loose stratification and local 
stratification is not detailed here. It is investigated in [25]. 

s. Well-founded semantics 

This section is devoted to the presentation of the well-founded semantics of logic 
programs. The approach chosen here is to leave the programmer totally free of 
writing any program he wants but to abandon the idea that "at a minimum, a 
semantics for a logic program must supply an assignment of truth values to ground 
atomic formulas" [47]. 

Thus, in this section, no syntactical restriction is required on the logic programs 
(one is allowed to write unstratifiable logic program like the program Even_R of 
Example 4.18). The meaning of logic programs is captured by means of a partial 
truth assignment on the Herbrand base. The declarative semantics of a logic program 
may not tell whether a fact is true or whether it is false. Indeed, the concepts 
presented in this section are based on three valued logic. In order to avoid the 
formal presentation of Kleene's three valued logic [62] that may discourage the 
non-specialist reader, we present the approach using fixpoint techniques. 

The two proposals presented here can be both motivated by the discussion 
provided in Section 3 and more precisely by the part of the discussion exhibiting 
the inadequacy of the immediate consequence operator T~ to capture the declarative 
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semantics of logic programs with negation. Recall that, loosely speaking, the set 
membership immediate consequence operator restores to the empty interpretation 
its intuitive natural meaning, that is "no truth value is assigned to facts". However, 
as showed in Section 3, the operator T~ suffers from its inability to derive negative 
facts. 

The two proposals presented here share the following features: 
(1) the intended meaning of a logic program is given by a partial interpretation 

of the f.o. notation of the program, and 
(2) the set membership immediate consequence operator T~ is combined with 

another operator whose aim is to overcome the problem of "producing" negative 
facts. 

The second proposal, the well-founded semantics [115] which is presented here, 
can be viewed as a generalization of the first one, the weak well-founded semantics

6 

[48]. The operator defined in [115] to generate negative facts is more powerful than 
the one defined in [48]. The presentation of these two semantics focuses on the 
introduction and definition of these operators called, respectively, weak unfounded 
operator and unfounded operator. 

5.1. The weak well-founded semantics 

Intuitively, the basic idea is to derive negative literals corresponding to facts that 
do not have a definition (extensional as well as intentional) in the logic program. 
This idea is very natural and simple, however its immediate application leads to a 
poor generalization. 

Definition 5.1 (The weak unfounded operator). Let ~ be a logic program. The weak 
unfounded operator associated with~, denoted by w_U~, is a mapping from Partial 
into itself defined by 

( B 
B E 00, and 

w_U~ .i) = -, 
'tirE InsL'lJ (head(r) = B==>3LE body(r) and -,LE .i). 

Given a logic program ~,the weak unfounded operator w_Up is combined with 
the immediate consequence operator T~ to constructively define the semantics of 
logic programs. The two operators T~ and w_ U~ are both iteratively applied to 
the empty partial interpretation . 
• Thus at the first iteration, the set of positive facts Pos. generated by applying T~ 

to the empty interpretation is the set of positive facts that belong to (Ji. The set 
of negative facts N eg l generated by applying w _ U", to the empty partial interpreta­
tion is the set of facts having no definition in the instantiation of (Ji ('tI r E 
InsL~head(r)=B==>3LEbody(r) and -,LEoJ with oJ=0 entails that there is 

6 No particular name is given to the semantics proposed in [48]. The choice of a name here is related 
to the organization of the presentation. 
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no rule r in InsCPJ such that head(r) = Band conversely)_ Now given the partial 
interpretation .1'] = POSt u Neg] obtained from the first iteration, the program 
InsLPJ can be simplified in a natural manner by deleting each rule which has at 
least one premise inconsistent with the partial interpretation .1'] and by deleting 
in the remaining rules the premises that do belong to the partial interpretation 
.1']_ Let us call this set of rules InsL(j)). We have that InsL(j)) = DP«(j), .1')). 

• Then, at the second iteration, applying T'F., to the partial interpretation .1'] generates 
the set of positive facts that belong to the transformed program InsL(j)), and 
applying w _ u,Cj> to the partial interpretation .1') generates the negative facts 
corresponding to facts having no definition in InscPJ). And so on .... 
The example below is followed by the formal definition of the weak well-founded 

semantics of a logic program. 

Example S.2. (1) Consider the logic program (j)] given in Example 3.14. First consider 
the empty partial interpretation. Note that B has no definition in (j)]. Thus we have 

T~,(0) = {A}, w_ U,Cj>,(0) = {,B}. 

Consider now the partial interpretation given by the first step of "derivation", i.e. 
,j)={A"B}. Note that DP(PJI>J\)={A,C} and 

T~,(,j]) = T~p(~".9',)(0) = {A, C} and 

w_U~,(,j)) = w_UDP(gI'\>.9'd(0) = {,B}. 

The partial interpretation {A, ,B, C} obtained by the second step of iteration is a 
complete interpretation. The weak well-founded semantics of the program PJ] is 
given by the completed interpretation {A, ,B, C}. 

(2) Consider now the logic program PJ2 given in Example 3.14. First consider 
the empty partial interpretation. Note that each proposition occurs in the head of 
some rule in (j)2' Then, we have 

T~2(0) = {A} and w_ UgI'2(0) = 0. 

Consider now the partial interpretation given by the first step of "derivation", i.e . 
.1'] = {A}. Note that DP(PJ2 , .1']) = (j)2 and so we have 

T~2(,j])={A} and W-UW>2(,j]) =0. 

The weak well-founded semantics of the program PJ2 is given by the partial interpreta­
tion {A}. Clearly, the weak unfounded operator is unable to detect that the unique 
rule B : - B defining B is a "ghost rule" and thus that there is no effective definition 
for B in PJ2 • 

(3) Consider the program Even_R of Example 4.15. The weak well-founded 
semantics of this program happens to coincide with its intended meaning presented 
in Example 4.15. Indeed, at the first iteration, w_ U Even_R produces the negative facts 
,SUC(O, 0), ,SUC(I, 0) ... , ,SUC(i, i) and the transformation of the instantiation 
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of Even_R by DP with these negative facts plus the positive fact even(O) is a logic 
program without negative cycles or in other words is a stratifiable logic program. 

Example 5.2 illustrates by (3) the ability of the weak wel1-founded semantics to 
give a meaning, the intended one, to programs such as Even_R. The example also 
illustrates by (2) the weakness of the approach in the sense that introduction in a 
program of "ghost rules" of the kind B:- B has a side effect on the semantics 
associated with the program. 

Example 5.2 also allows one to see the different way by which negative facts are 
"derived" according to the iterative fixpoint semantics and according to the weak 
well-founded approach. 

In the first case, "derivation" of negative facts is guided by the stratified structure 
of the program and is performed at each meta-iteration. The main thing to keep in 
mind is that in that framework derivation of negative facts is performed by com­
plementation and thus it strongly depends on the derivation of positive facts. 

In the case of the weak wel1-founded approach, negative facts are generated at 
each iteration and this process is guided by the syntax of the program. More 
importantly, one should notice that at each iteration, derivation of negative facts is 
totally independent of derivation of positive facts. Complementation is not needed 
in this framework in order to generate negative facts. This will be formally discussed 
later. 

Note that a partial interpretation .1 may be inconsistent with the interpretation 
obtained by applying w_Ugp to .1. Consider the (positive) logic program {A :- B} 
and the partial interpretation g = {,A, B}, then w_V~(g) = {,A, IB} is incon­
sistent with .j. 

However, it is easy to check that: 

Theorem 5.3 (Fitting [48]), Let rrfJ be a logic program. The weak unfounded operator 
w_Ugp is monotonic. 

Definition 5.4 (Weak well-founded semantics). Let [!/J be a logic program. The weak 
well-founded model of rrfJ is the least fixpoint of the operator (T~ u w_ U.~) associated 
with [!/J or equivalently, it is the limit of the sequence of partial interpretations 
(T~u w_Vgp)ta. 

Considering finite logic programs without function symbols leads to the weak 
well-founded model of a program by at most w application of (T~u w_V~). 

The next remark to make here is that the weak well-founded semantics does not 
generalize the fixpoint (or minimal model) semantics for positive logic programs in 
the following sense. Although the weak wel1-founded semantics is able to associate 
a meaning to all programs and in particular to positive logic programs, the weak 
well-founded model of a positive logic program may not be a completed interpreta­
tion and thus it may not be isomorphic to the fixpoint semantics of the program. 
This is not surprising in view of the fact that originally the weak well-founded model 

• 
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of a logic program was defined to be the three-valued minimal model of Clark's 
completion of the program. An example follows. 

Example 5.5. Consider the positive logic program {A: - A}. Its weak well-founded 
model is the partial empty interpretation. Note that the completion of this program 
{A ( ) A} neither proves A nor IA. However, the fixpoint semantics of this positive 
logic program is the completed interpretation {IA}. 

However, for a positive logic program rIP, there exists a natural correspondence 
on the one hand, between the positive part pos(.,tt) of its weak well-founded model 
Af and the least fixpoint of Tt;, and on the other hand between the negative part 
neg(Af) of Af and the greatest fixpoint of Tt;. 

Theorem 5.6 (Fitting [48]). Let rIP be a positive logic program. Then for all ordinal a, 
(1) Tt;ja = pos« T~ u w_ Uf?>)ja), 
(2) Tt;~a =neg«T~u w_U:~)ja). 

In fact part (1) of Theorem 5.6 easily follows from Lemma 3.12 which says that 
Ti;ja = T~ja. The merit of Theorem 5.6 is to clearly exhibit the fundamental 
difference that exists between the fixpoint semantics for positive programs (or the 
iterative fixpoint for stratified logic programs) and the weak well-founded semantics. 
The difference resides in the way negation is treated. As already underlined, fixpoint 
semantics treats negation via complementation whereas the weak well-founded 
semantics treats negation via the greatest fixpoint of Tt;. Thus the difference between 
these two semantics is simply an instance of the well-known "Herbrand gap" 
discussed in [75]. As discussed in [47], the well-founded approach does not solve 
the computability problem because while it is known that, for a positive logic 
program, the least ordinal a such that Tt;ja is the least fixpoint of Tt; is below w, 

the same result does not hold for Tt;~ a and the greatest fixpoint of Tt;. Apt and 
Van Emden [4] provide a logic program (with function symholsf whose immediate 
consequence operator is not down continuous. 

5.2. The well-founded semantics 

The well-founded semantics generalizes the weak well-founded semantics in the 
following way. The unfounded operator defined in order to generate negative facts 
is more powerful than the weak unfounded operator in the sense that the set of 
negative facts produced by applying the unfounded operator to a partial interpreta­
tion is larger than the set of negative facts obtained by applying the weak unfounded 
operator to the same interpretation. An intuitive presentation of the unfounded 
operator follows its formal definition. 

Definition 5.7 (The unfounded operator). Let rIP be a logic program, let oJ be a partial 

7 The program contains the rules: P(a):- P(x) & Q(x), P(s(x)):- P(x), Q(b), Q(s(x)):- Q(x). 
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interpretation and [iF be a subset of fJJ. [iF is an unfounded set of ~ with respect to 
.J iff, given any f in [iF, 

3LE body(r), ,LE.J 

(r E InsLr; and head(r) = f) ~ or 
3LE body(r), LE [iF 

The unfounded operator associated with r;, denoted by U~, is the mapping on 
Partial defined by U~(.1» = {,B I B E GUS~ . .9}' where GUS~ . .9 is the greatest unfoun­
ded set of r; with respect to .1>. 

Unfounded sets are closed under set union which makes the greatest unfounded 
set of r; equal to the union of all unfounded sets of r;. 

The intuition underlying the notion of unfounded sets with respect to a partial 
interpretation is the following. First of all, let us see the partial interpretation .J as 
a set of assumptions. Now, given a positive fact A, A belongs to GUS~ . .9 means 
that for any rule in r; that could be used in order to derive A (that is, any rule with 
head A), attempts to activate the rule entail making some assumption explicitly in 
contradiction with the assumptions contained in .J. As such, there is no reason to 
believe, under the assumption .J, that A can be derived from r;. 

It should be noted that the definition of unfounded sets provided here, as well 
as in [15] is an inductive definition. Alternative constructive definitions have recently 
been proposed in [17, 96, 112] and shall be presented later in this section. 

As for the weak well-founded approach, the unfounded operator U~ is combined 
with the immediate consequence operator T~ to "evaluate" (assuming unfounded 
sets are defined in a constructive manner) the semantics of logic programs. In the 
"evaluation" of the well-founded semantics of the logic program r;, the operators 
T~ and U;J> are both iteratively applied to the empty partial interpretation. 

The example below is followed by the formal definition of the well-founded 
semantics of a logic program. 

Example 5.8. (1) Consider the logic program fiJl) given in Example 3.14. Because 
the unfounded operator UfI', "subsumes" the weak unfounded operator w _ U~" it 
is not surprising to have that the weak well-founded semantics of fiJl 1 given by the 
completed interpretation {A, ,B, C} coincides with the well-founded semantics of 
fiJl 1 • 

T~,(0) = {A}, UfI',(0) = w_ UfI',(0) = {,B}, 

T~,( {A, ,B}) = {A, C}, U~I( {A, ,B}) = {,B}. 

(2) The well-founded model of the program Even_R of Example 4.18 is also 
equal to the weak well-founded model of Even_R. Recall that the logic program 
Even_R is unstratifiable. 

(3) As for the logic program fiJl2 given in Example 3.14, the well-founded semantics 
strictly subsumes the weak unfounded semantics : truth values of the kind True or 
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False are not assigned neither to B nor to C by the weak well-founded semantics; 
the well-founded truth values of Band C are respectively false and true. 

Note that the greatest unfounded set of {JP2 with respect to the empty interpretation 
is {B} and thus, we have 

T~2(0) = {A}, U~2(0) = {iB}, 

T~2({A, iB}) = {A, C}, U~2({A, iB}) = {iB}. 

Note that under the well-founded semantics the programs {JPt and {JP2 are equivalent. 
This equivalence is natural if one considers the rule B : - B as a "ghost rule", that 
is, as a rule adding no information to {JPt. 

(4) Consider now the program {JP4 given in Example 3.14. The well-founded model 
of {JP4 is a partial model. Note that the greatest unfounded set of {JP4 with respect 
to the empty interpretation is the empty set offacts. This implies that the well-founded 
model of {JP4 is the empty partial interpretation. In other words, the meaning of {JP4 
is defined but "unknown". 

We now formally present the well-founded semantics for logic programs. 

Theorem 5.9 (VanGelder et al. [115]). Let ~ be a logic program. The unfounded 
operator U,,,,, associated with ~ is monotonic. 

Definition 5.10 (The well-founded semantics). Let {JP be a logic program. The well­
founded model of {JP is the least fixpoint of the operator (T~ u V,,) associated with 
{JP or equivalently, it is the limit of the sequence of partial interpretations (T'(;p u 

U~)ja. 

We now focus our attention on a constructive definition of unfounded sets which 
leads to constructive definitions of the well-founded semantics for logic programs. 

In [17], the notion of a potentially founded set of facts is introduced which is 
the dual of the notion of unfounded sets. As a matter of fact, given a logic program 
{JP, a potentially founded set is defined in [17] as the complement (with respect to 
the Herbrand base) of the greatest unfounded set of {JP with respect to the empty 
partial interpretation. The notion of potentially founded facts is defined below with 
respect to partial interpretations (not necessarily empty ones). 

Definition 5.11 (Potentially founded set).8 Let ~ be a logic program, let .1 be a 
partial interpretation and let ~ be a subset of ~. ~ is a potentially founded set of 
~ with respect to .1 iff, 

[3rE Insc{JP such that VLEpos(body(r», (LE F, or iL~ .1)] 
• 

~ head(r) E~. 

8 This definition has been proposed in a revised version of [17]. 



42 N. Bidoit 

Intuitively, potentially founded facts are facts that can be derived from the rules 
of the program while declaring true all negative premises as soon as these additional 
assumptions are not in contradiction with the interpretation .1. 

Potentially founded sets of (J' with respect to .1 are closed under intersection. We 
are naturally interested in the smallest potentially founded set of (J' with respect to 
.'J (intersection of all potentially founded sets of (J' with respect to .1), denoted by 
SPFf1>.~ for which [17] provides the following constructive definition. 

Lemma 5.12. Let (J' be a logic program and .'J be a partial interpretation. Consider the 
sequence (SPFj)(,,,,o) of sets of facts defined by 

SPFo = {head(r) 1 r E InsL(J' pos(body(r» = 0 and \f L E body(r)-,Le .1}, 

SPFi+1 = {head(r) 1 r E InsL(J' pos(body(r» s SPFj and \f LE body(r)-,Le .'J}. 

Let us denote SPFoo the first element SPFj of the sequence satisfying SPFj = SPF,+I' 
Then SPFf1>.~ = SPFoo • 

Another equivalent way to define SPFoo is provided by: 
(1) first, consider the logic program (J" obtained by removing from (J' the rules 

with at least one premise inconsistent with .1, i.e. 

(J'1={rlrElnsL(J' and 3LEbody(r)-,LE.1}, 

(2) now, consider the positive logic program (J' pos obtained by removing the 
negative premises in the rules of (J", i.e. 

(J' pos = {r 13 r' E (J" head( r) = head( r') and body( r) = pos(body( r'))}. 

Then, SPFoo is simply the least fixpoint of the immediate consequence operator 
associated with the positive logic program (J' pos(SPFoo = lfp( T;pJ = lfp( T~pJ). 

The notion of potentially founded sets has been introduced as the dual notion 
of unfounded sets. The next result confirms that the greatest unfounded set of (J' 

with respect to .'J can be defined in terms of the smallest potentially founded set of 
(J' with respect to .1 as follows. 

Theorem 5.13 (Bidoit and Froidevaux [17]). Let (J' be a logic program and .'J be a 
partial interpretation. Then G USf1>.~ = 97J - SPF f1> ~ . 

• 

A constructive definition of the well-founded model of a logic program follows 
immediately from the initial definition of a well-founded model, the theorem above 
and the constructive definition of a smallest potentially founded set. 

In fact the constructive definitions of a well-founded model proposed in [17, 112, 
96] all differ slightly from this straightforward approach. We review below the 
proposals in [17, 112]. 
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Until now, we have characterized two kinds of (sets of) propositions, namely 
unfounded and potentially founded propositions. It is very natural to introduce a 
third kind of propositions that are called founded and that intuitively correspond 
to facts that can be derived from the rules in a program and the facts in a partial 
interpretation without making any additional assumptions. 

Definition 5.14 (Founded set). Let tJfJ be a logic program and let .1 be a partial 
interpretation. The set of founded facts of tJfJ with respect to .1, denoted by F.</' .. ~ is 
defined by F",.~ = Ifp( T~p(", . .9'»' 

The constructive definition of a well-founded model provided in [17] is based on: 
• on the one hand, the notion of founded facts defined above and the notion of 

unfounded facts as defined by Lemma 5.12 and Theorem 5.13 (the particularity 
of the approach is that these two notions are restricted to the case of empty partial 
interpretation), 

• on the other hand, a simple iterative transformation of logic programs that, given 
a logic program, constructs an equivalent9 logic program. 
The underlying idea is quite simple. Founded facts (respectively, unfounded facts) 

of tJfJ with respect to the empty partial interpretation are true (respectively, false) 
for tJfJ. More formally, it is shown in [17] that F."".f/IU I.GUSGp.f/I~ At where At is the 
well-founded model of tJfJ. 

Thus, as soon as we get the sets of founded and unfounded facts of tJfJ with respect 
to the empty partial interpretation, the logic program tJfJ can be transformed into a 
"simpler" equivalent logic program as follows: 
• rules with premise -V (resp. with premise f), where f is a founded fact (resp. 

unfounded fact), can be deleted from tJfJ, and 
• premises f (resp. -V) where f is founded (resp. unfounded) can be removed 

from the rules in tJfJ. 
This "simpler" logic program is nothing else than the logic program DP( tJfJ, F.Y>.f/1 U 

I.GUS~.I1)' This program is denoted by EFF~ in the following. 
If the program EFF~ is not trivial (is not a set of facts), we can iterate the process 

by computing the set of founded and unfounded facts of EFF::JP with respect to the 
empty interpretation. Thus consider the sequence EFFiJ'~i(i"o) defined by 

EFF~tO = tJfJ and EFFiJ'Hi + 1) = EFFEFF"'~i for i > O. 

Intuitively, the (i + 1 )th element of the sequence contains less rules than the ith 
element as well as the rules remaining in the (j + 1 )th element of the sequence 
contain less premises than the rules in the ith element. Thus, at some point a program 
is obtained that contains a minimal number of rules and these rules are "as small 
as possible". 

In [17], it is shown that: 

9 With respect to the well-founded semantics and also with respect to the default semantics presented 
in Section 8. 
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Theorem 5.15. Let g; be a logic program. 
(1) There exists i such that EFF~!i+l=EFF",,!i. Let us denote EFF~!WlO the 

logic program EFFij>!i where i is the smallest integer such that EFF~!i + 1 = EFF ~!i. 
(2) The well-founded model At of g; is equal to the union of the greatest unfounded 

set of EFF~! w with respect of the empty partial interpretation and of the founded set 
of EFF~!w with respect to the empty partial interpretation. That is At = 

-,.GUSEFF",~w.0 U FEFF",~w.0· 

The aim of [17] is to define a class of logic programs larger than the class of 
(locally) stratifiable programs and having a "natural" intended meaning. Intuitively, 
a "good" logic program is a program which can be transfollued into an equivalent 
stratifiable logic program. Formally, effectively stratifiable logic programs are defined 

in [17] by: 

Definition 5.16 (Effectively stratijiable logic program). Let ;:y; be a logic program 
(over a language containing no function symbols other than constant symbols). ;:y; 
is effectively stratifiable iff there exists i such that the logic program EFF~! i is 
locally stratifiable. 

Note that in the definition above EFFij>!i is a finite program and it is equal to 
its instantiation. Thus, in this particular case local stratification can be checked in 
polynomial time. 

The next result formalizes the fact that effectively stratifiable programs have a 
natural intended meaning. 

Theorem 5.17 (Bidoit and Froidevaux [17]). Let g; be a logic program. The two 
following assertions are equivalent: 

(1) r;; is effectively stratifiable, 
(2) the well-founded model of g; is total (i.e. is a completed interpretation). 

The following example aims to illustrate the definition of potentially founded 
facts, founded facts, the notion of effective stratification and the related results. 

Example S.lS. Let us consider the logic program Even_R presented in Example 
4.18. Table 2 shows the smallest potentially founded set, the greatest unfounded set 
and the founded set of Even_R with respect to the empty partial interpretation. 
Note that the smallest potentially founded set is equal to the least fixpoint of the 
immediate consequence operator associated with the positive logic program: 

SUC(O, 1), SUC(I, 2), ... , SUC(i -1, i), 
Even_R_pos = even(O), 

even(x):- SUC(y, x). 

\0 This notation does not refer to a greatest fixpoint. 
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Table 2 

Potentially founded facts Unfounded facts Founded facts 

SUC(O,1) SUC(O,O) SUC(O,I) 
SUC(l,2) SUC(O,2) SUC(I,2) 
• • • • • • • • • 

SUC(i -I, i) SUC(O, i) SUC(i -I, i) 
even(O) • • • even(O) 
even(l) SUC(i, i) 
• • • 

even(i) 

Actually, the founded set contains the facts in the least fixpoint of the set 
membership operator associated with Even_R. 
Let us call .i) the partial interpretation formed by the founded and unfounded sets 
of Even_R with respect to the empty partial interpretation . .i) can be used in order 
to simplify the (instantiation of) the logic program Even_R. The program obtained 
• 
IS 

SUC(O, 1), SUC(I, 2), ... , SUC(i -1, i), 
even(O), 

even(1) :- not even(O), 

even(2) :- not even( 1), 
• • • 

even(i) :- not even(i -1). 

Note that the logic program EFF Even_R is stratifiable and thus the logic program 
Even_R is effectively stratifiable. The well-founded semantics of Even_R is equal 
to the well-founded semantics of EFF Even_R and to the iterative least fix point 
semantics of EFF Even_R • 

Table 3 gives the smallest potentially founded set, the greatest unfounded set and 
the founded set of EFF Even_R with respect to the empty partial. Note that the greatest 
unfounded set of EFF Even_R with respect to the empty partial interpretation corre­
sponds to the greatest unfounded set of the initial program Even_R with respect to 
the partial interpretation .i1 • 

The only changes between Tables 2 and 3 is that the fact even( 1) has moved from 
potentially founded to unfounded. No change is to be noticed in Founded Facts. 

Let us call .i2 the partial interpretation formed by the founded and unfounded 
facts of EFF Even_R with respect to the empty partial interpretation. 

Once again, we can simplify the logic program EFF Even_R using .i2 • The new 
logic program has a smallest potentially founded set (respectively, greatest unfoun­
ded set) with respect to the empty partial interpretation equal to the preceding ones. 
The only change that occurs at this step is the introduction of the fact even(2) in 
the Founded Facts. 
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Table 3 

Potentially founded facts Unfounded facts Founded facts 

SUC(O, 1) SUC(O,O) SUC(O, I) 
SUC(l,2) SUC(0,2) SUC(I,2) 
• • • • • • • • • 

SUC(i -I, i) SUC(O, i) SUC(i -I, i) 
even(O) • • • even(O) 
even(2) SUC(i, i) 
• • • even(l) 
even( i) 

The courageous reader is free to check that iterating the process outlined here 
leads to the computation of the well-founded semantics of the logic program Even_R. 

The notion of an effectively stratifiable program has been independently proposed 
in [96], where it is called a dynamically stratifiable logic program. Indeed, an 
interesting constructive definition of a well-founded model is also presented there. 

In a different but related context (the methodology of software development in 
the framework oflogic programming), [40] defines a condition analogous to effective 
stratification through the notion of well-founded semi-proof trees. 

The term "dynamic" is particularly appropriate. Stratification and local 
stratification are syntactical constraints and can be checked directly on the logic 
program. They are independent of the data (facts) contained in the program. On 
the contrary, effective (or dynamic) stratification is strongly dependent on the data 
in the program: the facts in the program are needed in order to check whether that 
program is dynamically stratifiable. 

Checking whether a logic program is effectively (or dynamically) stratifiable may 
lead, in the worst case, to computing the well-founded model of that program. 

The next example illustrates this remark. 

Example 5.19. Consider the following logic program: 

SUC(O,1), 

{JjJ = SUC(1,O), 

even(x) :- SUC(y, x) & not even(y). 

Note that this program is the program Even_R in which facts about the relation 
SUC have been changed. Now, note also that EFFg>~CtJ is the logic program 

SUC(O,1), 

SUC(1,O), 

even(O):- SUC(1, 0) & not even(1), 
even(O) :- SUC(O, 1) & not even(O), 
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which is not locally stratifiable. Thus ~ is not effectively stratifiable. As a matter 
of fact, the well-founded model of ~ is the partial interpretation {SUC(O, 1), 
SUC(l,O), .SUC(O,O), .SUC(1, I)} which gives no truth value to even(O) and 
even(1). 

We now expose the constructive definition of a well-founded model proposed in 
[112]. Interestingly, [112] makes use of the notions of founded set and of its 
complement. The particularity of this approach is to consider negative partial 
interpretations. A new operator is introduced. 

-Definition 5.20. Let ~ be a logic program. The operator Sf'P associated with ~ is 
defined from 2,·00 into 2,·00 by Sf'P(.1) = .(00 - Ff'P."» where .1 is a set of negative 

literals. 

-Intuitively, in [112] the operator Sf'P is used in order to generate the negative part 
neg("tl) of the well-founded model "tl of a logic program. An intuitive description -of the behavior of Sf'P is helpful to understand the next definition and result. 

Remark 5.21. Let ~ be a logic program and let "tl be the well-founded model of 
~. The set of positive facts not occurring (either positively or negatively) in "tl is 

denoted by unknown ("tl) = gJ - (pos("tl) u •. neg("tl». Now let us consider a set 
of negative literals .1. Two complementary cases are interesting to examine: 

(1) Assume that .1 is a subset of neg("tl). Then Su;>(,j) happens to be a superset 
of neg("tl) u •. unknown(At). 

(2) Assume now that .1 is a superset of neg("tl) u •. unknown("tl). Then S,1'(.1) 
happens to be a subset of neg("tl). 

So, intuitively speaking, the sequence .10 = 0, .11 = Sr;o(.1o), ... , .1i+1 = Sf'P(.1;) -obtained by iteratively applying Sf'P starting with the empty set of negative facts 
alternates in the following sense (note that trivially .10 = 0 is a subset of neg("tl»: 

(1) each even element of the sequence is an underestimation of neg("tl), and 
(2) each odd element of the sequence is an overestimation of neg("tl) u 

unknown(At). 
Moreover, 

(1) the subsequence of even elements of .1;(i;'O) is an increasing sequence, and 
(2) the subsequence of odd elements of .1'(i;'O) is a decreasing sequence. 

Assume that the sequence stabilizes for 2k, that is .12k +2 =,j2k and .12(k+Il+1 = ,j2k+I' 
Then, on the one hand .12k is a (maximal) underestimation of neg("tl) and on the 
other hand .12k+1 is a (minimal) overestimation of neg("tl) u •. unknown(At). In 
other words, one expects that .12k = neg("tl), .12k +1 = neg("tl) u •. unknown("tl) and 
moreover that "tl = .12k u (B - •. .12k+I). 

This is formally stated in [112] by: 

Definition 5.22 (Alternating jixpoint of a logic program). Let ~ be a logic program. 
The alternating fixpoint of ~ is the least fixpoint of the monotonic operator AJI> 
defined from 2,00 into 2,·00 by Af'P(,j) = Sf'P (SfJI> (.1» where.1 is a set of negative facts. 
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Theorem S.23 (Van Gelder [112]). Let PP be a logic program and let szr be the least 
fixpoint of A~. Let d+ = F~,sr. The well-founded model of PP is equal to d- u d+. 

The relationship between the alternative operator and the notion of smallest 
potentially founded set highlights the relationship between the constructive definition 
of well-founded model in [17] and the one in [112]. 

Lemma 5.24. Let PP be a logic program and .1' be a (negative) partial interpretation. 
(1) F.o/',s",,, = SPF~,h and thus . --
(2) A~(,j) = S~(S~(,j)) = GUS~,.9' 

It is important to note that although it is hidden in the inductive definition of the 
unfounded operator, complementation is needed in order to compute the greatest 
unfounded set of PP with respect to .1'. This appears very explicitly in [17] as well 
as in [112]. This remark also applies to [96] although indirectly. In [96], the inverse 
inclusion is considered between the negative parts of partial interpretations and 
thus the least fixpoint which gives the negative part of the well-founded model of 
a logic program is computed by iterative application of some operator starting with 
the Herbrand Base. 

The end of this section is devoted to the minimality and supportedness properties 
of the well-founded semantics. Of course, since the well-founded model of a logic 
program is a partial model, these properties need to be slightly modified. 

Given a logic program PP and a partial interpretation .1' of (the f.o. notation) PP: 
(1) .1' is a (partial) minimal model of (the f.o. notation of) PP iff there exists a 

model of ppr.o. which is an extension of .1' and a minimal model of ppr.o., 
(2) .1' is a (partial) supported model of PP iff pos(,j) ~ T;(,j). 

Then, we have: 

Lemma 5.2S. Let r;; be a logic program. Then: 
(1) the well-founded model of r;; is a (partial) minimal model of PPf.o., 
(2) the well-founded model ofr;; is a (partial) supported model ofPP, and moreover, 
(3) the well-founded model.At ofr;; satisfies the property: pos(.At)~ T~(.M). 

6. Inflationary semantics 

In this section, we present the inflationary semantics oflogic programs. Inflationary 
(or cumulative) fixpoints are investigated in [57] and its application to the definition 
of the semantics of logic programs is studied in [8, 66]. The motivation given in [8] 
for introducing and studying this semantics as a "new and appealing" semantics 
for logic programs with negation is different from the one given in [66]. 

In [8, 7,9] database transformations, that is database queries and database updates, 
are investigated. A variety of database languages, that is query languages and update 



Negation in rule-based database languages 49 

languages, are proposed and analyzed in detail at a fundamental level. In particular, 
different families of languages are characterized_ For instance, the choice of a 
non-deterministic semantics versus a deterministic semantics is discussed. 

Roughly speaking, in the context of logic programs, deterministic fixpoint seman­
tics corresponds to "apply ALL rules" at once, while non-deterministic semantics 
corresponds rather to "apply ONE rule" at a time. These two different ways of 
"evaluating" logic programs can be illustrated on programs with negation. 

Example 6.1. Consider the logic program 

(1) Deterministic "evaluation" of the inflationary (cumulative) semantics of (fp: 

As usual, let us consider the empty Herbrand interpretation and let us "fire", at 
once, all rules that apply, that is all rules whose premises are satisfied by the empty 
interpretation. Here, both rules (']) and ('2) have their premise satisfied by the 
empty interpretation. This leads, at once, to the two facts A and B. The intermediate 
evaluation of the semantics of (fp is {A, B}. Given the set of facts {A, B}, we proceed 
in the same way. No facts are produced because neither (']) nor ('2) can be activated. 
Thus no fact can be added to the intermediate semantics {A, B}. Thus the determinis­
tic inflationary semantics of (fp is given by the Herbrand interpretation {A, B}. 

(2) Non-deterministic "evaluation" of the inflationary semantics of (fp: As above, 
let us consider the empty interpretation and let us choose, non-deterministically, 
one rule of (fp that applies, that is one rule whose premises are satisfied by the empty 
interpretation . 
• Let us choose the rule ']. The fact produced by,] is A and thus the intermediate 

evaluation of the semantics of (fp is {A}. Given the set of facts {A}, we proceed 
in the same way. No rule can be activated and thus no fact can be added to the 
previous intermediate semantics. Thus a non-deterministic semantics of (fp is given 
by the Herbrand interpretation {A} . 

• Now let us choose the rule '2' It is easy to check that, in this case, the non­
deterministic interpretation "evaluated" is {B} which gives another non-deter­
ministic inflationary semantics of (fp. 

In [8], connections between procedural database languages and declarative 
database languages are exhibited that suggest how explicit control can be used in 
conjunction with declarative languages. 

Concerning logic programs with negation (Datalog with negation), the inflationary 
fixpoint semantics is introduced in [8] as a deterministic, declarative (and strongly 
safe) update language. 

In [66], the interest taken in inflationary fixpoint semantics is essentially motivated 
by exhibiting "compelling complexity-theoretic obstacles" that lead to inefficient 
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implementation of classical fixpoint semantics (based on the immediate consequence 
operator T~). Let us briefly present these results here. 

First of all, a tight correspondence is established between problems in NP and 
logic programs with negation. The result in [66] uses the connection between 
computability and second order formula established by [46]. Shortly, a database, 
that is considered to be a Herbrand interpretation of the language IE in our context, 
is NP computable iff it is definable by an existential second order formula over IE. 
The first result 11 of [66] implies that: 

Theorem 6.2. If M is a NP-computable database, then there exists a logic program @J 

with negation such that the immediate consequence operator associated with @J u lU 
has a jixpoint. 

In conclusion, the existence of a fixpoint for ~ is a NP-complete problem. A 
similar connection is established between program and the class US (unique solution) 
whose prototypical problem is UNIQUE SAT (given a Boolean formula does it 
have a unique satisfying assignment?). 

This second result can be summarized by: the existence of a unique fixpoint for 
T:;' where @J is a logic program with negation is a US (unique solution) problem. 
Uniqueness of fixpoint for r:;. is a desirable situation since obviously it implies the 
existence of a least fixpoint for T';. 

Thus it is not surprising that the existence of a least fixpoint for ~ is harder 
than US. In [66], this problem is shown to range between the class US and the class 
FONP (first order with NP-oracles) of problems. This technical result is not detailed 
here. We limit ourselves to provide the prototypical FONP problem given in [66]. 
Given a graph G = ( V, E), is there an edge E (x, y) such that if this edge is removed 
then the resulting graph is 3-colorable but not Hamiltonian? 

Inflationary semantics of logic programs is introduced in [66] as a natural 
extension of the standard fixpoint semantics for positive logic programs with the 
advantage of overcoming the computational obstacles of standard fixpoint semantics 
of logic programs with negation. 

A common motivation links both presentations [8,66] which can be summarized 
by: developing an extension of Datalog (the language corresponding syntactically 
to positive logic programs with the least fixpoint semantics) with increased expressive 
power. Indeed, logic programs with inflationary semantics leads to first order+ 
fixpoint queries [8, 66]. Results on the expressive power of logic programming 
languages are provided in Section 9. 

Inflationary semantics of logic programs is a natural technical extension of the 
classical fixpoint semantics. From this point of view , this apparoach can be compared 
with the iterative fixpoint semantics for stratifiable logic programs. 

II We do not present Theorem 1 of [66] because it would require to make an explicit separation 
between database predicate symbols and non-database predicate symbols. 
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However, whereas the iterative fixpoint semantics is defined for the class of 
stratifiable logic programs exclusively and thus is unable to assign a meaning to all 
logic programs with negation, inflationary semantics has the advantage that it gives 
a meaning to all logic programs. From this point of view, the inflationary approach 
can be compared with the well-founded semantics. 

The analogy is limited by the following. While the well founded semantics of a 
logic program presented in Section 5 is a partial Herbrand interpretation (or a 
three-valued interpretation), the inflationary semantics of a logic program is always 
a Herbrand interpretation (bivalued interpretation). 

Recall that the well founded model of a logic program is a total Herbrand 
interpretation iff that program is effectively (or dynamically) stratifiable. Indeed, 
the analogy between the well founded semantics and the inflationary semantics 
collapses completely when one compares the meaning assigned by each of these 
approaches to an effectively stratifiable program. 

The main point as we will see later, is that, while the inflationary approach is 
concerned with the computational (and thus implementation) and the expressive 
power issues, it is not so concerned with the "common sense"12 issue. 

We now proceed to the formal presentation of the inflationary semantics of logic 
programs_ The operator applied in order to generate new facts is simply the cumula­
tive operator obtained from the immediate consequence operator T';. In the follow­
ing, this operator is called the inflationary immediate consequence operator. It 
should be pointed out that the inflationary immediate consequence operator is 
applied to Herbrand interpretations. Thus, we are back in the situation where the 
empty interpretation represents an assignment of each truth value of positive facts 

to false. 

Definition 6.3 (The inflationary immediate consequence operator). Let ~ be a logic 
program. The inflationary immediate consequence operator associated with [ffJ, 

denoted by InC T';, is the mapping defined on Int by 

InC T';(I) = I u T';(I) for I E lot. 

The operator InC T'; is not monotonic. It suffices to consider the logic program 
{A :- not B} and the two interpretations II = 0 and 12 = {E}. Although 1\ r;;./2• 
InC T';(II) = {A} ~ InC T';(I2) = {B}. However, the inflationary immediate con­
sequence operator associated with a logic program ~ is inflationary that is: 

I r;;. InC T';(I) for I E Int. 

This property ensures the existence of a unique fixpoint for InC T'; where ~ is 
a logic program (over a language without function symbols other than constant 

12 The natural, intended meaning of programs. 
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symbols). Moreover, the fixpoint ofInL T; is of the form InL r; j i for some i;;. 0 
where the sequence of interpretations (InL T;ji),;;.o is defined as usual. 

The inflationary semantics of I!J> is naturally defined by: 

Definition 6.4 (The inflationary semantics of logic programs). Let I!J> be a logic 
program. The inflationary model of I!J> is the fixpoint of the inflationary immediate 
consequence operator InL T; associated with 'lJ', or equivalently, is the limit of the 
sequence of interpretations InL r~ i a. 

We insist on the fact that the inflationary approach assigns a meaning to all logic 
programs. 

The definition is illustrated below by some examples which show that at the 
opposite of the previously presented approaches, the inflationary semantics of logic 
programs is not concerned with the "common sense" meaning of negation. In order 
to make easier the comparison between the inflationary semantics and the well 
founded semantics, we choose to give the completed interpretation associated with 
the inflationary model of each program considered. 

Example 6.5. (1) Consider the program 'lJ'. of Example 3.14. Recall that this program 
is semi-positive. The inflationary semantics of 'lJ'. is given by the completed interpre­
tation {A, ,B, C}. 

(2) Consider the logic program 1!J>2= 'lJ'. u{B:- B} of Example 3.14. Recall that 
this program is stratifiable. The inflationary semantics of 'lJ' 2 is given by the completed 
interpretation {A, ,B, C}. Note that the programs I!J>. and 1!J>2 are equivalent under 
the inflationary semantics. 

(3) The inflationary semantics of the program 'lJ'3 = {A :- not A} is given by the 
completed interpretation {A} which is the unique model of 'lJ'3,o . 

(4) The inflationary semantics of the program 'lJ' 4 = {A : - not C, B : - not A, C :­
not A & not B} is given by the completed interpretation {A, B, C} which is a model 
of 'lJ'4 but neither a minimal model of 'lJ'4 nor a fixpoint of r; . 

fo fo 74 

(5) Let us now consider the program Even_R of Example 4.18 which is supposed 
to define even numbers of a finite set of numbers. The inflationary semantics of this 
program is given by the completed interpretation 

SUC(O, 1), SUC(1, 2), SUC(2, 3), 

,SUC(O, 0), ,SUC(O, 2), ... , ,SUC(i, i), 

Even(O), ,Even(1), Even(2), .. " Even(i). 

The inflationary semantics of the program Even_R does not correspond to the 
intended definition of even numbers. 

Note that the logic program Even_R can be easily modified in such a way that 
its inflationary semantics corresponds to the definition of even numbers. In order 
to do so, we need to introduce a unary predicate Reached that will intuitively be 
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used to delay the production of certain facts. The modified program follows: 

even(O), 

Then 

SUC(O, 1), 

SUC(1,2), 
• 
• 

Even_Inf= . 
SUC(i -1, i), 

even(x) :- suc(y, x) & not even(y) & reached(y), 
reached(x) :- even(x), 

reached(x) : - suc(y, x) & reached(y). 

InCT~ven_lnf(0) = {even(O), suc(O, 1), SUC(1, 2), ... , 

SUC( i-I, i), reached(O)} = 110 

InC T~ven_lnJ(lI) = II U {reached(l)} = 12, 

InC T~vednf(I2) = 12 U {even(2), reached(2)} = 13 , 

InC T~vednf(I3) = 12 u {reached(3)} = 14 , •••• 
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The inflationary model of Inf_Even corresponds to the "intended" definition of 
even numbers. 

Theorem 6.6. Let I/} be a logic program. The inflationary model of I/} is a Herbrand 
model of (fJr.o.· 

It is simple to note that the inflationary semantics generalizes the standard fixpoint 
semantics for positive logic programs. Indeed for a positive logic program (fJ, the 
operator Inf- Ti; is inflationary and monotonic and the fixpoint of Inf_ Ti;, is equal 
to the least fixed point of Ti;. 

The Example 6.5 above shows two things. On the one hand, it shows that the 
inflationary model of a logic program is not, in general, a minimal model of (the 
f.o. notation of) that logic program. It suffices to look at the logic programs I/} 4 and 
Even_R. On the other hand, Example 6.5 also shows that the inflationary model of 
a logic program is not, in general, a supported model of that program. Once again, 
it suffices to consider the logic programs (fJ 4 and Even_R. The behavior of inflationary 
negation steps back from complementation and is uneasy to motivate from an 
intuitive point of view. 

Finally, Example 6.5 suggests that, although the programmer has to write programs 
in a less natural manner (for instance the rules which define even numbers), there 
exists a way to express what one intends to define. Indeed, inflationary semantics 
has an expressive power strictly higher than the expressive power of stratifiable 
programs with iterative fixpoint and equal to the expressive power of well-founded 
semantics. The comparative study of the expressive power of logic programming 
languages for databases will be developed in detail in Section 9. 
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7. Model theoretic semantics of stratifiable logic programs 

This section is devoted to the model theoretic semantics of stratifiable logic 
programs. A number of approaches have been proposed which all provide definitions 
equivalent to the iterative fixpoint semantics presented in Section 4. 

The first definition presented is based on the notion of minimal and supported 
models, and it uses the stratified structure of the program. This first model theoretic 
definition is due to [3]. This definition can be "simplified" in the sense that if one 
chooses carefully a stratification of the progam, the notion of supportedness is 
unnecessary. Thus, the second model theoretic definition proposed here uses the 
notion of minimal model and the stratified structure of the program. This second 
alternative model theoretic definition is due to [15, 14] and it leads directly to 
defining the declarative semantics of stratifiable logic program in tenus of circum­
scription [74] and thus in terms of perfect models [94]. 

Some new notations are required to make the presentation clear. 

Notation. Let .st = (Fun, Pred) and .st' = (Fun, Pred') be two languages such that 
Pred £; Pred'. Note that the language .st' can be viewed as an extension of the 
language.st. Recall that ood (respectively, ood') denotes the Herbrand base associated 
with .st (resp . .st'). Because the language .st' is an extension of the language .91, 
notice that ood ~ ood" Now let M' be a Herbrand interpretation of .91' (i.e. a subset 
of 00,>1')' The Herbrand interpretation M' fl 00.01 of .91 is denoted M(Pred' 

7.1. The iterative positivist semantics 

The model theoretic alternative definition of a stratifiable logic program proposed 
by [3] is based on the notion of positivist models, that is, models statisfying both 
minimality and supported ness properties. Recall that in Section 4, it has been shown 
that the iterative fixpoint M", of a stratifiable logic program q:; is a minimal model 
of q:;r.o. and a supported model for q:;, thus Mg> is a positivist model for q:;. However, 
the converse does not hold, that is, given a positivist model M of q:;, this model M 
may not be equal to the iterative fixpoint M;J> of ~. In order to define the declarative 
semantics of stratifiable logic programs in terms of positivist models, one needs to 
make use of the stratified structure of the programs as follows. 

Definition 7.1 (The iterative positivist model of a stratified logic program). Let rJJ* = 

(~I> Pred,) (~2' Pred2 ) •• '(~n' Predn) be a stratified logic program. The iterative 
positivist model M of ~* is the Herbrand interpretation of (Fun, U;=, PredJ ) such 

that: for i = 1 ... n, MiU;_,Pred, is a positivist model of (U~=, ~i' U;=, Pred,). 

The notion of iterative positivist model provides an alternative definition of the 
declarative semantics of stratifiable logic programs. 
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Theorem 7.2. Let r;p be a stratifiable logic program. 
(1) [3] Let r;p* be a stratification for r;p. The iterative jixpoint of r;p* is equal to the 

iterative positivist model of r;p*, and thus 
(2) the iterative jixpoint of r;p is equal to the iterative positivist model of r;p (where 

the iterative positivist model of r;p is the iterative positivist model of one of the 
stratifications of r;p). 

The proof of this result can be found in [3]. Note that because two distinct 
stratifications r;p* and r;p*' of a stratified logic program r;p have the same iterative 
fixpoint, part (1) of Theorem 7.2 implies that they also share the same iterative 
positivist model. This justifies defining the iterative positivist model of r;p as the 
iterative positivist model of one of the stratifications of r;p. 

As a matter of fact, in [3], Definition 7.1 is given in slightly different terms. A 
sequence (M;)J",;",n of Herbrand interpretations are defined by: 

M J = n {MIM is a supported model of r;pJ} and for 1 ~ i < n, 

M i + 1 = n {M 1M is a supported model of U;:~ r;pj and M1Ui_, Pred; = M i }, 

and the iterative positivist model MiY' of r;p is defined as Mn. 
Let us briefly show that Definition 7.1 and the definition in [3] sketched above 

are equivalent. First notice that: 
Although it has been emphasized in Section 3 that, in general, the family of 

positivist models of a logic program r;p cannot be identified with the family of 
minimal models among supported models for r;p, for semi-positive logic programs 

we have: 

Lemma 7.3. If r;p is a semi-positive logic program, then r;p admits a unique positivist 
model MiY' and MiY' = n {M I M is a supported model of r;p}. 

Lemma 7.3 gives a characterization of a class of logic programs, namely semi­
positive logic programs, whose positivist model is the least supported model. In 
fact, the proof of Lemma 7.3 follows directly from the results of [3]. 

7.2. The iterative minimal model 

We continue this presentation by showing that with a careful choice of a 
stratification, the notion of supported ness is not necessary in order to define the 
semantics of stratifiable logic programs. 

Recall that the intended meaning of a stratifiable logic program r;p is defined as 
the iterative fixpoint (or the iterative positivist model) of some stratification r;p* of 
r;p. The choice of a stratification r;p* for r;p is not relevant because all stratifications 
of r;p have the same iterative fixpoint (or iterative positivist model). 

In the following, we introduce some property of stratifications and utilize this 
property in order to assign meaning to stratifiable logic programs. 
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Remark 7.4. If ~ is stratifiable then there exists a stratification ~* = 

(@II> Pred.) (~2' Pred2) •• '(~n' Predn ) for ~ such that: 
(I) Def( P, ~) = 0 entails that ~ E Pred., and 
(2) ~. is a positive logic program. 

Let us briefly show that our remark is correct. Given a random stratification of 
@I which may not satisfy the two conditions above, it is easy to construct a 
stratification of ~ which does satisfy both conditions. The way one can enforce 
condition (1) is obvious. Concerning condition (2) and assuming that ~* = 
(~I> Pred.) (@l2 , Pred2 ) •• '(~n' Predn ) is a stratification of @I that does not satisfy 
(2), it suffices to split ~. in two programs. The first program @I; is the subset of 
positive rules of g)l., the second g)lr is the remaining rules in g)l •• The stratified logic 
program obtained by concatenation of g)l; and ~r to (@l20 Pred2 ) • •• ( @In, Pred") is 
a stratification of ~ that does satisfy (2). 

The first stratum (g)ll> Pred.) of a stratified program satisfying conditions (1) and 
(2) may be such that the program g)l. is empty (but this is not a new situation). 

In the following, a stratification for @I (resp. a stratified program g>*) satisfying 
conditions (1) and (2) is called a strict stratification for g)l (resp. a strictly stratified 
program). 

Definition 7.5 (Iterative minimal model, Bidoit and Hull [19]). Let ~* = (g)l .. Pred.) 
(@l2 , Pred2 ) • •• (~n' Predn ) be a strictly stratified logic program. The iterative minimal 
model M of @I is the Herbrand interpretation of (Fun, U;=t Predj ) such that for 

i = 1. .. n, ~U;PredJ is a minimal model of (U;=t g)lj, U~=t Pred,). 

The notion of iterative minimal model of strictly stratified programs provides an 
alternative definition of the declarative semantics of stratifiable logic programs. 

Theorem 7.6 (Bidoit and Froidevaux [14]). Let ~ be a stratifiable logic program and 
let g)l* be a strict stratification for g)l. Then, the iterative jixpoint of f} is equal to the 
iterative minimal model of g)l*. 

Proofs of the above result can be found in [14]. 

7.3. Circumscription 

The notion of iterative minimal models of strictly stratified logic programs happens 
to be a special case of the notion of model of Prioritized Circumscription. The 
relationship between Prioritized Circumscription and iterative minimal model has 
been shown in [94] through the relationship between Prioritized Circumscription 
and perfect models of stratifiable logic programs. Prioritized Circumscription has 
been introduced by [83] and further investigated by [73]. The model theoretic 
characterization of Prioritized Circumscription is presented below. 
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Definition 7.7 (Model of prioritized circumscription). Let d = (Fun, Pred) be a first 
order language and $ be a set of first order formulas over d. Let Pred, . .. Predn be 
a partition of the set of predicate symbols Pred. A model M of $ is a model of 
Prioritized Circumscription of $ with respect to priorities Pred, > ... > Predn iff 
for i = 1 ... n, 

lWiu;-. Pred, is minimal'3 in the set 
N N is a model of $, and 

IU;-. Pred, M N 
IU;=: PredJ = IU;:: Pred,' 

Intuitively, a model of Prioritized Circumscription of $ with respect to Pred, > 
... > Predn is a model that "first" minimizes the truth offacts related to the predicates 
in Pred" and then, with the interpretation of the facts related to predicates in Pred, 
being fixed, minimizes the truth of facts related to the predicates in Pred2 • ••• 

Definition 7.7. together with the definition of iterative minimal models of strictly 
stratified logic programs gives a strong intuition of the way that the declarative 
semantics of stratifiable logic programs can be defined in terms of Prioritized 

• •• Circumscnptlon. 

Theorem 7.8 (przymusinski [94]). Let {f} be a stratifiable logic program and let 
P;* = ({f} I> Pred\) ... ({f} n, Predn ) be a strict stratification for {f}. Then, the iterative 
jixpoint of {f} is equal to the model of Prioritized Circumscription of {f} with respect to 
Pred\ > ... > Predn • 

Note that a strict stratification for {f} is needed in Theorem 7.8. The proof of this 
theorem can be derived from the proof that the perfect model of a stratifiable logic 
program is equal to the model of Prioritized Circumscription with respect to 
Pred, > ... > Predn [94]. In fact, in the context of logic programs, the notion of a 
perfect model is introduced as a conceptually simpler and more natural definition 
of model of Prioritized Circumscription. 

Before presenting the perfect model semantics of logic programs, it should be 
mentioned that the semantics of stratifiable logic programs has also been defined 
using another form of circumsciption, namely Pointwise Circumscription [74]. 

7.4. Perfect model 

From a technical point of view, perfect models are defined by deriving from the 
syntax of the logic program, a relation, called the priority relation, on the elements 
of the Herbrand base. This priority relation is, in turn, used to derive another 
relation, called the preferability relation, on the f.o. models of the program. Under 
certain condition, the preferability relation is a partial order and a perfect model 
is a minimal model with respect to preferability. 

The definition of the priority relation is motivated by the two following principles. 
(1) The consequent of a rule r should have strictly lower priority (for minimiz­

ation) than a negative premise of the rule r. 

13 With respect to set inclusion. 
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(2) The consequent of a rule r should have priority not higher than a positive 
premise of the rule r. 

Let us try to rephrase the first principle. Consider a propositional rule r with 
head A and with ---,B in its body. Then one should first minimize the truth of B 
(which leads us to prefer the models in which B is false and to select these models 
if some exist) and then minimize the truth of A (which leads us to prefer among 
the preceding collected models the ones in which A is false). Intuitively, principle 
(1) is made in the same spirit as the one used to motivate stratification, that is, 
"predicates must be completely defined before they can be used negatively". The 
nature of principle (1) is slightly different because it does not express any syntactical 
constraint on the program. Anyway, it will be shown that principle (1) leads to 
requiring the (local) stratification of the programs. 

Definition 7.9 (Dependency and priority relation). Let ~ be a logic program over the 
language d. The dependency relation on 00.91 associated with ~, denoted by ~"", is 
the transitive closure of the binary relation 

{(A, B)lrE InsLP, head(r)=A and BEpos(prem(r»u---,.neg(prem(r))}. 

The priority relation on 9lJd associated with ~,denoted by <~, is the binary relation 
( <"qp 0 ~'lP) U (:S;;qp 0 <"'lP) where 

<~ = {(A, B) IrE InsLP, header) = A and BE neg(prem(r))} 

and 

Rei 0 Rei' = {(A, B) I (A, C) E Rei and (C, B) E Ren, 

with Rei and Rei' binary relations. 14 

Intuitively, while considering the precedence graph associated with ~, we have: 
A ~ 9" B if there exists a path from B to A and A < 9" B if there exists a path from B 
to A going through a negative edge. 

The priority relation among ground atomic formulas is used to induce a relation 
on the models of the program as follows. 

Definition 7.10 (Preferability relation and perfect model of a logic program). Let ~ 
be a logic program. The preferability relation on the set of f.o. models of ~f.o. 
associated with ~, denoted <"" is defined by 

M<i¥'N iff M~N and VAEM-N,3BEN-M A<i¥'B. 

A model M of ~f.o. is a perfect model of ~ iff there exists no model N of ~f.o. such 
that N <i¥'M. 

14 The operation 0 defined here is similar to the relational database join operation. 
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One should notice that preferability may only hold between distinct models of 
the program and thus is antirefiexive by definition. 

As it is shown in [94], not all logic programs can be assigned a meaning under 
the perfect model semantics. In other words, a logic program may not have a perfect 
model. An example is given below of such a logic program. 

Example 7.11. Let us consider the propositional logic program ~ = {A:-not B, 
B:-notA}. Then, we have: A:S:;gI>B, B:S:;gI>A and A<gI>B, B<gI>A. ~ has three f.o. 
models, namely M) = {A}, M2 = {B} and M3 = {A, B}. Thus, M) <gI>M3 , M2 < gl>M3 , 

M) <gI>M2 and M2 < gl>M). Each model of ~ has a preferred model, thus ~ has no 
perfect model. 

However, it should be noted that: 

Lemma 7.12. A logic program ~ has at most one perfect model. 

A class of logic programs having a perfect model has been exhibited in [94]. 
Unsurprisingly, we have: 

Theorem 7.13 (Przymusinski [94]). If ~ is a locally stratifiable logic program then ~ 
has a unique perfect model. 

The proof of this theorem utilizes the fact that, if < fJ' is noetherian (i.e. if there 
exits no infinite increasing sequence) then the priority relation < fJ' and the preferabil· 
ity relation <fJ' are (strict) partial orders. As a matter of fact, local stratification 

entails that <fJ' is noetherian. 
It should be emphasized here that local stratification is a sufficient condition for 

the existence of a perfect model. However, a logic program may not be stratifiable 
and still have a perfect model. This is illustrated by the following example. 

Example 7.14. Let us consider the propositional program ~ = {A :- not A}. We 
simply have that A:s:; g>A and A < g>A. Anyway, because the preferability relation is 
antirefiexive, the unique f.o. model M = {A} of ~ is a perfect model. Note that ~ 

is not stratifiable. 

Now let us consider the class UnstracPerfect of logic programs that are 
unstratifiable but still have a perfect model. Intuitively, this class is "small" which 
can be explained by the fact that the definition of a perfect model closely follows 
the definition of stratification. Again from a very intuitive point of view, programs 
in UnstraCPerfect contain recursive negation in a very restrictive form, that is, of 
the form A <gI>A. 

As a matter of fact, the class UnstracPerfect does not include dynamically 
stratifiable logic programs (which are unstratifiable at the same time). This remark 
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can be illustrated by considering the logic program Even_R of Example 4.18. Recall 
that Even_R is not locally stratifiable. It can be easily checked that none of the 
models of Even_R is perfect. 

The need for an extension of the notion of a perfect model has been strongly felt 
and a first attempt to provide such an extension has been proposed in [92]. More 
recently, a major and interesting extension has been investigated in [96] which leads 
us to redefine the well-founded semantics. 

To conclude this section, let us now examine the perfect model semantics with 
respect to minimality and supportedness. In [94], it is shown that: 

Theorem 7.15 (przymusinski [94]). A perfect model of a logic program rJ' is a minimal 
model (with respect to set inclusion) of !/PIa .. 

As a consequence, in order to show that a model is perfect, it suffices to show 
that there exists no minimal model preferable to it. 

While perfect models enjoy the minimal model property, a perfect model of a 
logic program !/P may not be a supported model of !/P. Consider the program !/P of 
Example 7.14 above. Notice that the perfect model ~1 of this program is not a 
supported model of !/P. Notice also that this program is not stratifiable. 

Of course, perfect models of locally stratifiable programs enjoy supportedness. 
This directly follows from the equivalence between perfect model semantics and 
iterative fixpoint semantics for the class of stratifiable logic programs established 
by [94] and from the equivalence between perfect model semantics and default 
model semantics for the larger class of locally stratifiable logic programs established 
by [14]. 

Theorem 7.16 (przymusinski [94]). Let!/P be a stratifiable logic program. Then, the 
iterative jixpoint of!/P is equal to the perfect model of!/P. 

It should be mentioned that the notion of a perfect model has been defined and 
investigated for disjunctive logic programs (with negation). A disjunctive rule is a 
rule whose head is a disjunction of positive literal. 

In order to define perfect models of disjunctive logic programs, a third principle 
is added to the two principles stated at the beginning of this subsection: 

(3) Predicates occurring in the head of a given rule should have the same priority. 
Thus in Definition 7.9 the dependency relation associated with !/P needs to be 

completed by the couples (A, B) where A and B are in the head of some rule in 
!/P. The definition of perfect model is unchanged. 

The notion of stratified programs is also slightly generalized in order to deal with 
disjunctive programs. Intuitively, it is required that predicates (or positive facts) 
occurring in the head of a given rule should belong to the same stratum. Of course 
stratification ensures the existence of at least one perfect model for disjunctive logic 
program. A disjunctive logic program may have more than one perfect model. 

We limit ourself to presenting an example. 
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Example 7.17 (Przymusinski [94]). Let us consider the following disjunctive logic 
program: 

Happy = 

HaL Vacation(Jones), 
Goto_Australia(x) v Goto_Europe(x) :- Has_ Vacation(x), 
Unhappy(x) : - not Goto_Australia(x), 
Unhappy(x) :- not Goto_Europe(x). 

Perfect models of a disjunctive logic program are among the minimal models of 
that program. Here the f.o. notation of Happy has three minimal models, namely: 

M J = {HaL Vacation(Jones), Goto_Australia(Jones), Unhappy(Jones)}, 

M2 = {Has_ Vacation(Jones), Goto_Europe(Jones), Unhappy(Jones)}, 

M3 = {HaL Vacation(Jones), Goto_Australia(Jones), Goto_Europe(Jones).} 

Because Unhappy < Happy Goto_Australia and Unhappy < Happy Goto_Europe, we 
have: 

Moreover, the two models M\ and M2 are not comparable. It follows that these 
two models, M J and M 2 , are the perfect models of Happy. Finally, it is quite easy 
to check that the disjunctive program Happy is stratifiable. 

8. Default and stable semantics 

In this section, we shall discuss two equivalent approaches for defining the 
declarative semantics of logic programs which are both based on non-monotonic 
logic. The first approach, called default semantics was proposed in [15, 14] and is 
based on Reiter's Default logic [98]. The second approach, called stable semantics 
was proposed in [51, 53] and is based on Moore's Autoepistemic logic [87], which 
in its turn is based on ideas from [39]. 

First of all, the reader should be informed that there is nothing very deep in the 
fact that the stable model semantics and the default model semantics for logic 
programs are equivalent. This is a straightforward consequence of the equivalence 
between Autoepistemic logic and Default logic in generaL The equivalence has been 
recently exhibited in [64]. 

The two approaches follow a quite classical process. A systematic translation of 
logic programs into default/ autoepistemic theories is provided. (This resembles 
Clark's completion approach where a first order theory is associated to a logic 
program.) Then the semantics of logic programs is defined in terms of the 
default/ autoepistemic translation of the programs, that is in terms of 
"extension"/"stable expansion" of the translations. Since our purpose is not a 
review of non-monotonic logics, we do not detail the foundations of default logic 
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and autoepistemic logic. Neither do we give details on the translations of the 
programs into the respective formalism. Such presentations have been provided in 
[15, 14] concerning the default logic approach and in [51, 53] concerning the 
autoepistemic approach. 

We limit ourself to a brief intuitive presentation of the motivations which lead 
to investigate default logic for defining the declarative semantics of logic programs. 
The motivations leading to the use of autoepistemic logic are very similar. 

Default logic has been introduced by Reiter [98] in order to formalize default 
reasoning. Default reasoning is a fundamental component of common sense reason­
ing and it is a form of non-monotonic reasoning. Default logic allows one to reason 
about real world situations whose descriptions may be incomplete and provides a 
way to infer more than what these descriptions allows. These additional inferences 
are determined by special rules called default rules. Default rules have premises 
(properties that need to be "proved" in order to activate the rules), justifications 
(properties that need only to be consistent with all the properties that can be inferred) 
and of course a consequence. 

Indeed, the Closed World Assumption [97] is an instance of default reasoning. 
Making the Closed World Assumption corresponds to the choice of describing real 
world situations in an incomplete manner: only positive (true) information is 
specified. From a database point of view, this choice can be motivated by "common 
sense". For instance in order to define a property, it seems more natural, to give 
the list of entities satisfying the property than to give both the list of entities satisfying 
the property and the list of entities that fails to satisfy the property. Thus the Closed 
World Assumption simplifies tremendously the representation of data. 

Now, while data description is "incomplete", the Closed World Assumption 
entails a second fundamental principle: complete knowledge of the world situation 
described is assumed. Intuitively, this means that, although the definition of a 
property is limited to the list of entities satisfying it, one should be able to say for 
any entity whether the property holds. It is probably unnecessary to recall that first 
order logic does not allow one to infer negative facts from a set of positive facts 
for example. This is where default logic (and default rules) intervene: in order to 
be able to derive negative information from the incomplete description, one resorts 
to default rules, called CWA-default rules, of the form: if it is consistent to assume 
that an entity does nOf satisfy a property, then infer that this entity does not satisfy 
the property. 

When properties are specified by rules rather than extensively, CW A-default rules 
are obviously still needed and rules having negative premises have the status of 
default rules, or in other words, negative premises are treated like justifications. 

The use of default logic for defining the declarative semantics of logic programs 
has been first investigated in [18, 19] where positive disjunctive programs are 
considered. It is shown there that this approach is equivalent to the Generalized 
Closed World Assumption [84]. The use of default logic has been extended to logic 
programs with negation in [15]. 
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For the sake of simplicity, we prefer to give, in the current paper, a definition of 
stable/ default models that does not require the introduction of autoepistemic logic 
or default logic. A unique formalism is adopted for this presentation. We shall just 
ask the reader to keep in mind that the notion of a stable model and the notion of 
a default model originate from ideas developed for non-monotonic and common 
sense reasoning [39, 98] and from the observation that the Closed World Assumption 
is a form of default reasoning. 

We proceed now to the formal presentation of the stable/ default semantics of 
logic programs. First we need to draw the reader's attention to the fact that the 
stable/ default semantics of a logic program is given by some model of (the first 
order notation of) the program and that models are required to be represented by 
completed Herbrand interpretation. 

Definition 8.1 (Stable/ default model of logic programs). Let {J} be a logic program. 
A stable/default model of {J} is a completed model "tl such that pos("tl) = T'/,("tl). 

From the point of view of default logic, if we want to motivate the definition of 
a stable/ default model, we would say that a default model "tl of a logic program 
is a model whose negative part neg("tl) leads to compute (by means of T~) a set 
of positive facts pos("tl) consistent with "tl. Indeed, "T~("tl) is a superset of pos("tl)" 
means that positive facts have been produced by T'/, which are in contradiction 
with neg("tl). Now, "T'/,("tl) is a subset of pos("tl)" means that the CWA is not 
taken into account because the complement of T'/,("tl) is a superset of (and is 
inconsistent with) neg("tl). 

The definition above can be rewritten as follows. 

Lemma 8.2. The completed interpretation "tl is a stable/ default model of the logic 
• 

program {J} iff there exists i;;;:: 0 such that "tl ="tll where the sequence ("tlI)(O,,"i) is 

defined by 

"tl0 = neg("tl), 

Note that the sequence ("tli)(O"'i) defined above always converges even when "tl 
is not a stable/ default model of {J}. It is an increasing sequence of sets of literals 
thus, its limit is a subset, not necessarily consistent, of gJ U l.gJ. (For instance if 
we consider the logic program {A: - not B} and the completed interpretation "tl = 

{,A"B}, the limit of the sequence associated with {J} and "tl is the inconsistent 
set of facts {lA, A, IB}. Thus a stable/ default model is characterized by the fact 
that the limit of the sequence is a completed interpretation. 

In [53], the definition of a stable model is given in a slightly different and less 
concise form. The proof of the equivalence of Gelfond's definition and the above 
definition can be found in [17]. 
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Example 8.3. Consider the logic program Even_R presented in Example 4.18 and 
the completed interpretation M corresponding to the intended meaning of that 
program (this intended completed interpretation has already been characterized as 
the well-founded model of Even_R). It is rather immediate to check that "tt

2 = "tt. 

Thus .M is a stable/ default model of Even_R. In this particular case, "tt is the unique 
stable/ default model of ~. 

An interesting characterization of the stable/default model has been recently 
proposed in [112]. This characterization is based on: 

(1) the use of the dual representation of Herbrand interpretation as a set of 
positive facts, that is, a Herbrand interpretation is represented by the set of negative 
facts corresponding to the ground atomic formulas false in this interpretation. -(2) the use of the operator Sf!> presented in Section 5. 

Theorem 8.4. A completed model .M of fPf.o. is a stable/ default model of the logic -program fP iff neg(.M) is a jixpoint of Sf!>. 

The proof is immediate from the definitions of a stable model and from the -definition of Sf!>, 
As discussed in [14, 16, 17, 53] and as suggested by the above remark, not all 

logic programs can be assigned a meaning under the stable/ default model semantics. 
In fact, there are two kinds of programs to which the stable/ default model semantics 
is not applicable. The first kind are the programs that have no stable/ default model. 
These programs are called inconsistent. The second kind are the logic programs 
that do have more than one stable/ default model. These programs are called 
ambiguous. Very simple programs are presented below to illustrate the phenomenon. 

Example 8.S. (1) Let us first consider the logic program ~ = {A:- not A}. Recall 
that this program has a unique f.o. model given by the completed interpretation 
{A}. A e T~( {A}), thus ~ has no stable/ default model. 

(2) Consider now the program fP = {A :- not B, B:- not A}. This program has 
three f.o. models, namely "ttl = {A, ,B}, .M2 = {,A, B} and "tt3 = {A, B}. Note that 
pos(.M t) = {A} = T~(.Mt) and pos(.M2) = {B} = T~(.M2)' while POS("tl3) = {A, B} ¢ 

T~( .M3 ) = 0. Thus ~ has two stable/ default models. 

The interest of the stable/default model semantics lies in its applicability to a 
class of logic programs which is wider than the class of (locally) stratifiable logic 
programs. Note that the unstratifiable logic program Even_R has a unique 
stable/ default model. The class of locally stratifiable logic programs is included in 
the class of logic programs having a unique stable/ default model. The stable/ default 
model semantics generalizes the standard semantics of positive logic programs and 
the iterative fixpoint semantics of stratifiable logic programs. 
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Theorem 8.6 (Bidoit and Froidevaux [14], Gelfond and Lifschitz [53]). 
(1) If g} is a locally stratifiable logic program then g} has a unique stable/ default 

model. 
(2) If g} is a stratifiable logic program then the (unique) stable/ default model of 

g} is equal to the completion of the iterative fixpoint of fl>. 

(3) Ifg} is a locally stratifiable logic program then the (unique) stable/ default model 

of g} is equal to the completion of the perfect model of g}. 

The logic program Even_R given in Example 4.15 and which defines even numbers, 
illustrates the applicability of the stable/ default semantics to unstratifiable logic 
programs. This example also gives an indication of the relation between the 
stable/ default model semantics and the well-founded semantics. The unique 
stable/ default model of the program Even_R is equal to its well-founded model. 

A particular effort has been put into characterizing the class of logic programs 
that do have a unique stable/ default model. Indeed, only subclasses have been 
exhibited and the following result shows that the problem is a difficult one. 

Theorem 8.7 (Bidoit and Froidevaux [17]). Determining whether a propositional logic 

program has a stable/ default model is a NP-complete problem. 

The largest class of programs so far shown to have a unique stable/ default model 
is the class of effectively (or dynamically) stratifiable logic programs. 

Theorem 8.8 (Bidoit and Froidevaux [17]). Iffl> is effectively stratifiable then fl> has 

a unique stable/default model. 

Recall that checking whether a program is effectively (or dynamically) stratifiable 
can be done in polynomial time (in the size of the total number of premises in the 
program) and in the worst case, requires to compute the entire well-founded model 
of the program. 

Although effective stratification ensures the existence and uniqueness· of a 
stable/ default model, clearly it is not a necessary condition. The program given in 
the following example provides a logic program which is not effectively stratifiable 
and which has a unique stable/ default model. 

Example 8.9. Consider the logic program g} 4 == {A : - not e, B: - not A, e:­
not A & not B} of Example 3.14. It is immediate to check that EFF~4 == ~4 thus 
because g} 4 is not stratifiable, it is not effectively stratifiable. However, g} 4 has a 
unique stable/default model, namely the completed interpretation {A, ,B, ,e} 
which as a matter of fact corresponds to the unique fixpoint of T~4. Note that the 
well-founded model of g}4 is the empty partial interpretation (which can be inter­
preted as "the well-founded semantics is not able to assign a meaning to the program 
g}4"). 
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Recall that effective stratification characterizes exactly the class of logic programs 
whose well-founded model is a completed interpretation (a 2-valued model). In fact 
there exists a strong relationship between the stable/default model semantics and 
the well-founded semantics. 

Theorem 8.10 (Bidoit and Froidevaux [17], VanGelder et al. [115]). 
(1) If the well-founded model At of 'lP is total (i.e. is a completed interpretation) 

then At is the (unique) stable/default model of 'lP. 
(2) If'lP has a unique stable/default model At then the well-founded model of'lP is 

included in At. 

Note that the converse of statement (2) does not hold simply because a logic 
program always has a well-founded model (possibly empty) whereas it may not 
have a stable/ default model. 

Finally, it is also worth noticing that: 

Theorem 8.11 (Bidoit and Froidevaux [14], Gelfond and Lifschitz [53]). Let 'lP be 

a logic program and let At be astable/default model of'lP. Then: 

(1) At is a minimal model of 'lPr.o., and 

(2) At is a supported model of'lP. 

Recall here that positivist (minimal and supported) models of a logic program 
'lP are fixpoints of T~. Thus the theorem above just says that stable/ default models 
of 'lP are particular fixpoints of the immediate consequence operator T~ associated 
with 'lP. 

To conclude this section, note that the notion of a default model has been defined 
for disjunctive logic programs. The extended notion of stratification has been used 
to characterize a class of disjunctive logic programs having (at least) a default 
model. Unsurprisingly, it has been shown in [14] that the default model semantics 
and the perfect model semantics coincide for the class of stratifiable disjunctive 
logic programs. 

9. On the expressive power of rule-based query languages 

The focus of this section is on the expressive power of the various logic program­
ming semantics defined throughout the paper. In this section, logic programs are 
viewed as specifying queries and each semantics (iterative fixpoint, well-founded 
semantics, inflationary semantics) defines a distinct query language. 

The problem of defining a "natural" semantics of negation cannot be separated 
from the problem of defining sufficiently expressive query languages. Recall indeed 
that the introduction of negation in logic programs has been motivated by the 
inability of positive logic programs to define, for instance, the complement of the 
transitive closure. The problem of providing a suitable semantics of negation has 
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retained most of the researcher's attention, concentrating on the "natural" aspects 
of the proposed semantics and neglecting the expressive power aspect. It is only 
recently that the expressive power of these languages has been studied in more 
detail [2, 8, 7, 66, 63, 112]. 

9.1. Minimal background 

Querying occupies a central place in the history of database technology and 
constitutes by itself a domain. The literature [37, 11, 28, 29, 32, 61, 110] offers a 
large place to the theory of database queries. 

For the purpose of the presentation, we briefly present classes of computable 
database queries. The following well-known database query languages are briefly 
described: First Order queries (FO) [37], Fixpoint queries (FP) [29] and Inflationary 
Fixpoint queries (IFP) [57]. 

Intuitively, a query defines a mapping from the set of instances of a (input) 
database schema into the set of instances of a (output) database schema. The 
restriction that the output database schema be a single relation schema is frequently 
stated but not significant for the discussion. A database schema is a pair (D, fJl) 
where D is a finite set of values and fJl is a finite set of predicate symbols. An 
instance of a database schema (D, gz) is simply a finite relational structure (D, I) 
where 1 is an "interpretation" of the predicate symbols in PJi (the reader can see 1 
as a Herbrand interpretation where the constant symbols are the elements of the 
domain D and where no other function symbols are allowed). 

The two major questions to examine are: 
• What does it mean to be a "reasonable" query? 
• What queries are expressible in a given query language? (and, are all reasonable 

queries expressible in the language?) 
Clearly, a query cannot be an arbitrary mapping. A computable query [28] should 

satisfy the following basic features: 
(1) it is a partial recursive function p, and 
(2) p should map isomorphic input database instances to isomorphic output 

database instances in order to preserve symmetry among the elements in the database 
and in order to avoid considering queries whose answer would depend on the 
implementation of relation instances as ordered sets. Also this allows one to avoid 
queries inventing values. 

A first order query is represented by an expression of the form {x I <I> (x)} where 
<I> is a first order formula on the language constructed from the predicate symbols 
in the database schema. Given an input database instance (D, 1), the output relation 
instance produced by the first order query {x I <I> (x)} is the set of facts OULp( c) such 
that <I>(C) is satisfied by (D, 1). 

In the following, the first order query language is denoted FO. 
In the database community, first order queries have a favored place and the 

expressive power of database query languages are often measured with respect to 
the expressive power of FO. The notion of complete query language is indeed 
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defined in terms of "as expressive as Fa". The relational algebra is an instance of 
a complete database query language since it is as expressive as FO [37]. 

Note that FO defines a strict subclass of computable queries. First order queries 
are, of course, computable queries. However, it is easy to note that all computable 
queries are not in Fa. The well-known transitive closure query is an instance of a 
computable query which is not definable by a FO query. 

A natural way to increase the expressive power of FO is to add a fixpoint construct. 
Let P be a predicate symbol not in the database schema (a variable predicate 
symbol) and let c/J(x) be a f.o. formula for P (the arity of P is assumed to match 
the length of x). 

We say that c/J(x) is positive for P iff each occurrence of P in c/J is under an even 
number of negation. 

We say that c/J(x) is monotone for P iff given two input databases (D, I) and 
(D,I') which only differs on P in such a way that 1 on P is included in I' on P, 
then the answer of the f.o. query {x I c/J(x)} on (D, I) is included in the answer of 
the f.o. query {x I c/J(x)} on (D, 1'). 

The fact that the formula c/J(x) for P is positive entails that it is monotone and 
the monotonicity of c/J(x) entails that the equation P(x) 4) c/J(x) has a least fixpoint 
on any instance database over the schema containing the predicate symbols in c/J 
except P. 

The least fixpoint of c/J(x) on (D, I) is the instance database ouLP (over the 
schema containing the predicate symbol P) where ouLP is classically defined by 
ouLP = U;:l OULp', and 

(1) ouLpo = 0, and 
(2) OULP)+l is the output instance produced by applying the f.o. query c/J(x) on 

(D,luouLp)). 
Informally, a constructor fp is introduced which, applied to a predicate P and a 

formula c/J where c/J is positive for P, constructs the least fixpoint of the formula 
(P(x) 0 c/J(x)). This construction is denoted by fp[P, c/J(x)]. 

Then jixpoint formulas are obtained from the first order constructors and the 
fixpoint constructor fp. Ajixpoint query is an expression of the form {x I c/J(x)} where 
c/J(x) is a fixpoint formula. 

For example, assume that the arcs of a graph are represented by the binary 
predicate symbol Arc. The transitive closure of the graph is expressed by the fixpoint 
query {(x, y) I fp[tc_Arc, c/J(x, y)]} where 

c/J(x, y) is the positive formula Arc(x, y) v 3z (tc_Arc(x, z) 1\ Arc(z, y)). 

In the following the fixpoint query language is denoted by FP. As a matter of 
fact, FP is a strict subclass of computable queries. It is noted in [32] that: "One 
capability missing from fixpoint queries is that of counting. For example fixpoint 
queries cannot tell if the size of a relation is even or odd ... ". It should be stressed 
here that the complement of a fixpoint query can be expressed itself as a fixpoint 
(because finite domains are considered) [59]. 
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Other query languages can be defined using fixpoints. The first "extension" that 
one can consider is obtained by allowing the application of the fixpoint construct 
not only to positive formulas (formulas in which the variable predicate symbol 
occurs only under even number of negations) but to monotonic formulas in general. 
Although there exists some monotonic first order formula which is not equivalent 
to any positive first order formula [5], it turns out that adding the fixpoint construct 
to the first order constructs on monotonic formulas yields the same class of queries 
as FP (because finite domains are considered) [57]. The problem arising here is 
that monotonicity is not a decidable property. 

The second "extension" consists in allowing any formula (monotonic or not) and 
adding the inflationary construct to the usual first order constructs. Thus, given an 
input database instance (D, I), the output relation instance produced by ifp[P, «/J(x)] 
is the set of facts ouLp = U~1 ouLp, where: 

(1) oULPo=0 and 
(2) OULp,+1 is the union of ouLpj and of the output relation produced by applying 

the query «/J(x) on (D, luouLp,). 
If the formula «/J(x) is monotone, its least fixpoint coincides with its inflationary 
fixpoint. 

The query language obtained by adding the inflationary fixpoint construct to the 
first order constructs is denoted by IFP. 

Although IFP seems more general than FP because any formula is allowed, once 
again it turns out that IFP = FP (because finite domains are considered) [57]. 

9.2. Expressive power of rule based languages for databases 

In the following, logic programs denote queries_ This is done by partitioning the 
set of predicate symbols into two sets: 

(1) a set of "EOB" predicate symbols which intuitively correspond to relation 
instances stored in the database, and 

(2) a set of "lOB" predicate symbols which are defined by the (non-unit) rules 
of the program. 

Given a logic program I!P, it is assumed that the EOB predicate symbols occurs 
only in the body of rules. One of the lOB predicate symbols P is distinguished and 
roughly speaking is used to collect the answers of the query specified by I!P. We say 
that rJ> is a logic program for P. 

Now, given a logic program I!P for P and a (input) database instance (D, I), the 
output relation database (D, J) produced by I!P with respect to the" x" -semantics 
is defined in a natural way: (D, J) is the restriction on the predicate symbol P of 
the "x"-fixpoint (or "x "-model) of the logic program l!Pul. 

For the well-founded semantics, because the well-founded model of a logic 
program is a partial Herbrand model and thus contains positive and negative literals, 
the restriction on the predicate P of the well-founded model of I!P u 1 designates 
the positive portion of the literals related to the predicate symbol P. 
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For example the logic program expressing the transitive closure of a graph where 
the arcs are represented by the EDB predicate symbol Arc is the logic program 
TC_ARC for the predicate tc_Arc and it contains the two following rules: 
• tc_Arc(x, y) :- Arc(x, y), 
• tc_Arc( x, y) : - Arc( x, z) & tc_Arc( z, y). 

Assume that the database graph contains the following arcs Arc( a, b), Arc( b, a) 
and Arc( c, a). The answer to the query specified by TC_ARC for tc_Arc with respect 
to the least fixpoint semantics (or with respect to the iterative fixpoint semantics or 
the well-founded semantics or the inflationary semantics) is the restriction on tc_Arc 
of the least fixpoint (or of the iterative fixpoint, or the positive part of the well­
founded model, or of the inflationary fixpoint) of the program obtained by adding 
the facts Arc(a, b), Arc(b, a) and Arc(c, a) to the two above rules, that is 
{tc_Arc(a, b), tc_Arc(b, a), tc_Arc(c, a), tc_Arc(a, a), tc_Arc(b, b), tc_Arc(c, b)}. 

A logic programming query language (or rule based query language) is character­
ized by the type of rules allowed (positive rules, stratifiable programs) and also by 
the semantics considered. In the following, we consider the following query 
languages. 
• Datalog is the query language obtained by considering positive logic programs 

together with the standard least fixpoint semantics presented in Section 3. 
• Datalog~~:, is the query language obtained by considering stratifiable logic pro­

grams together with the (standard) iterative fixpoint semantics presented in Section 
4 (or any other semantics presented in the paper with the exception of the 
inflationary semantics). 

• Datalog~~fl_f is the query language obtained by considering logic programs 
(without any syntactical restriction) together with the well-founded semantics 
presented in Section 5. 

• Datalogi:.fiB is the query language obtained by considering logic programs (without 
any syntactical restriction) together with the inflationary semantics presented in 
Section 6. 
It is quite easy to note that: 

Lemma 9.1. FO and Datalog are not comparable. 

Simply: 
• The complement of a relation with respect to another relation cannot be expressed 

by a Datalog query. However such a query can be expressed for instance in the 
relational algebra using the set difference. Since the relational algebra as the same 
expressive power as FO, such a query is a first order query. 

• The transitive closure cannot be expressed by a FO query. This has already been 
highlighted. However such a query can be expressed by a positive logic program. 
Note that the class of conjunctive queries (which are obtained by removing 

negation -, and universal quantification 'tJ from the first order construct in FO) is 
a strict subclass of Datalog (and of course of FO). 
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Theorem 9.2. Datalog is a strict subclass of FP. 

This last result is a consequence of the fact that a Datalog query can be shown 
to be equivalent to a fixpoint query where the fixpoint construct is applied on a 
first order formula containing no universal quantification or negation [30, 105]. 
Thus Datalog queries cannot express FO queries including universal quantification 
or negation. 

Intuitively, it is clear that Datalog~~:t has more expressive power than FO and 
Datalog. An example of a query which can be expressed in Datalog~~:t but is not 
definable in FO or Datalog is the complement of the transitive closure of a graph. 
This query is expressed by the stratifiable logic program COMP_ TC_ARC for 
comp_tc_Arc whose first stratum is the program TC_ARC and whose second stratum 
is formed by the unique simple rule 

comp_tc_Arc(x, y) : - not tc_Arc(x, y). 

Indeed, the iterative fixpoint of a stratifiable logic program is a .:i: relation [63]. 

Thus: 

Lemma 9.3. FO and Datalog are strict subclasses of Datalog~~:t. 

However, it has been shown in [63] that Datalog~~:t cannot express all FP queries. 
In particular, it cannot express fixpoint queries involving fix points over universal 
quantifiers. 

Theorem 9.4 (Kolaitis [63], Dahlaus [38]). Datalog~~:t is a strict subclass of FP. 

A FP query which is not expressible in Datalog~~:t is exhibited in [63]: it uses 
the "game tree" structures of [30]. We prefer to present here a simpler example 
that has been utilized in [8] for another purpose. 

Once again consider a graph whose arcs are represented by the binary predicate 
symbol Arc(x, y). A node of the graph is a good one if all its incoming arcs originate 
from other good nodes. The query "finds all good nodes in the graph" is expressed 
by the following FP query fp[Good, cI>(x)] where 

cI>(x) is the first order formula (Vy Arc(y, x) ... Good(y)). 

There exists no stratifiable logic program which expresses this query. 
Indeed, the separation of FP and Datalog~~:t is tight because every formula of 

fixpoint logic over a vocabulary having unary predicate symbols only is equivalent 
to a first order formula on finite structure. 

Apt and Blair [2] provides a study of the recursion theoretic complexity of the 
iterative fixpoint of stratifiable logic programs. This study is carried on in the context 
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of finitely generated Herbrand universe (at leat one function symbol in the language). 
The main result is that: 

Theorem 9.S (Apt and Blair [2]). 
(1) If {JP is a stratified logic program with n strata, then the iterative fixpoint of <!J 

· . ~o d IS In" n an 

(2) For each n ~ 1 there exists a stratified logic program {JP with n strata whose 

iterative fixpoint is I~-complete. 

The next language to be examined here is of course Datalog~~fl.f. This language 
allows more general forms of logic programs, indeed any logic program. Therefore, 
one can expect Datalog ~~'I.f to be more expressive than Datalog~~!,. 

In [112], a transformation of FP queries into Datalog~~'I.f queries is provided. 
Conversely, the existence of a representation of Datalog~~".f queries by FP queries 
is proved. This yields the following interesting result. 

Theorem 9.6 (VanGelder [112]). FP and Datalog~~tf have the same expressive power 

(for finite domain). 

To illustrate this result, we present below the logic program for good_node which 
expresses the "good node" query (with respect to the positive part of the well-founded 
semantics for logic programs). In order to express this query, a new predicate bad(x) 
is introduced. The program is very simple. It consists of the two following rules: 
• good_node(x):- not bad(x), 
• bad(x) :- Arc(x, y) & not good_node(y). 

We emphasize the restriction to the positive part of the well-founded model of 
programs in the above result. 

In fact, given a graph I (for instance consider the graph given by Arc(a, b), 
Arc(b, c), Arc(c, a) and Arc(d, e»: 

• The logic program {JP used to compute the answer of the "good node" query and 
obtained by adding I to the two above rules is not necessarily dynamically 
stratifiable and, 

•. As a consequence, its well-founded model is not total (i.e. is not maximally 
consistent) which means that the "truth" of some facts (for instance here, the 
truth of good_node( a» remains unknown. 

• More precisely, let us consider the completed answer" to the "good node" 
query, the restriction of the well-founded model of {JP to the facts (positive and 
negative) related to the predicate symbol good_node is not equal to J. 
Here ,,= {good_node(d), good_node(e), -,good_node(a), -,good_node(b), 
-,good_node(c)} and although the positive part pose,,) of " is included in the 
well-founded model of {JP, J itself is not included in the well-founded model of 
{JP. The well-founded model of {JP contains none of the negative facts in J. 

• This leads also to the fact that the rules of {JP fail to express the "good node" 
query with respect to the stable/ default semantics. It suffices to note that for our 
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example @> u {Arc(a, b), Arc(b, c), Arc(c, a), Arc(d, e)} has no stable/ default model. 
The above discussion comes as an illustration for the remark from [112]: "This 
suggests the general rule that the alternating fixpoint partial model [i.e. the well· 
founded model] captures the negation of positive existential closures (such as the 
transitive closure), but not the negation of positive universal closures." 

As for Datalog~~fl.f' the Datalog:;,~g query language allows any logic program to 
specify query. Although inflationary models of logic programs are less "natural" 
than well-founded models, a prime advantage of Datalogr;,~g lies in its expressive 
power. 

Theorem 9.7 (Abiteboul and Vianu [8], Kolaitis and Papadimitriou [66]). Datalog:;,~g 
and IFP (= FP) have the same expressive power. 

We reproduce here the logic program of[8] that is used to illustrate the simulation 
of IFP (= FP) by Datalog:;,~g. The following logic program for good_node(x) does 
express the "good nodes" query (with respect to the inflationary semantics for logic 
programs). 
• bado(x) : - Arc(x, y) & good(y), 

• Co, 

• good_node(x) :- not bado(x) & Co, 

• good_node(x) :- result(x, t), 
• good(x, t) :- good_node(x) & good_node(t) & not old(t), 
• old(x):- good_node(x), 
• bad(x, t) :- Arc(y, x) & old(t) & not good(y, t), 

• c(t):- old(t), 
• result(x, t) : - not bad(x, t) & c( t). 

As explained in [8], the above inflationary logic program is designed in order to 
simulate the consecutive iterations of the IFP formula ifp[Good, 4>(x)] where 

4>(x) is the first order formula ('fly Arc(y,x)~Good(y». 

To conclude this section, note that none of the logic programming languages 
presented here can express all computable queries defined as the largest set of 
"reasonable" queries. Query languages able to express all computable queries are 
studied in [28]. More recently the problem is addressed in [7,9] in a larger 
framework. Although a presentation of these languages is out of the scope of this 
paper, the interested reader should find interesting discussions and results in [7, 8, 
9, 32]. 

10. Concluding remarks 

Many aspects and developments of "rule based languages" have not been dis­
cussed in the paper which nevertheless are of prime importance. 
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In this section, we first motivate our choice not to present the Clark's completion 
approach to defining the declarative semantics of logic programs with negation. 
Then, we focus our attention on a very important aspect of logic programming with 
negation, namely the evaluation procedure of logic programs with negation. Finally, 
we say a few words on the extensions of Datalog (in other words the extensions of 
positive logic programs) which do not involve (only) adding negation in the premise 
of program rules. 

10.1. (Why not) Clark's completion 

The paper includes neither a presentation nor a comparative discussion of Clark's 
completion. Let us briefly explain this choice. While Clark's completion is a funda­
mentally important contribution to logic programming, the completion approach 
focuses essentially on the following specific problem. 

A procedural semantics of logic programs with negation is given by means of the 
negation as failure resolution procedure (SLDNF) in [35]. SLDNF is a top-down 
evaluation procedure. It is an intuitively simple extension of SLD-resolution which 
consists in defining the notion of a proof of a negative elementary goal as the failure 
to obtain a proof of the corresponding positive goal. More precisely, the notion of 
failure is the reverse notion of success and goal +- not Q succeeds if the goal +- Q 
finitely fails while the goal +- not Q finitely fails if the goal +- Q succeeds. 

SLDNF is an ineffective evaluation procedure because it is a non-detenllinistic 
procedure and a sound implementation of SLDNF would require a depth first search 
strategy. Not all queries may be processed by SLDNF. The impossibility of handling 
"floundering queries" (negative goals with variables) is a very difficult problem as 
well as a very important limitation of SLONF. 

Prolog [34, 65, 102] implements a restrictive form of SLDNF in the sense that 
Prolog's proofs have a specific form determined by a fixed selection rule on literals 
and by a depth first search strategy on rules. 

One of the main problems which retains the attention of the logic programming 
community is to provide a declarative semantics of logic programs in order to 
"validate" the procedural SLDNF semantics. This is testified by the vast number 
of papers addressing this problem [e.g., 35, 48, 68, 76, 77, 75, 90]. 

By a semantics which validates SLONF, is meant a semantics leading to establish 
the soundness and completeness results. Intuitively, soundness establishes that 
answers obtained by SLDNF evaluation of a query on a logic program are satisfiable 
by or derivable from the declarative meaning associated with the program. Complete­
ness is the reverse notion. Completeness states that answers satisfiable by or derivable 
from the declarative meaning of a logic program can be retrieved by SLONF 
evaluation. Soundness together with completeness assure a total correspondence 
between the declarative meaning and the procedural meaning of logic programs. 
Clark's completion is the main approach investigated for this purpose. 

Given a logic program ~, its completion Comp(~) is constructed by considering 
a new predicate symbol = for equality, and by considering the first order theory 
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containing the equality axioms plus the completed definition of each predicate 
symbol. Intuitively, the completed definition of a predicate symbol is obtained by 
replacing the symbol :- ("if") by the logical equivalence (~ ("iff") in the program 
rules_ When a predicate P has no occurrence in the program, the universal closure 
of -,P(x) is introduced in Comp(9Jl)_ 

The first obstacle concerning soundness and completeness results of SLDNF with 
respect to completion is that Comp(9Jl) may be an inconsistent theory. If Comp( 9Jl) 
is inconsistent then anything can be derived from Comp(PJI). In particular anything 
that can be computed by SLDNF can be derived from Comp(9Jl). Hence soundness 
is trivial and meaningless in this case. On the other hand, it is quite clear that if a 
query succeeds, it cannot fail at the same time and vice versa. Thus it is rather 
obvious that SLDNF is not complete (for logic programs with inconsistent 

Comp(PJI». 
This obstacle cannot be neglected because the problem of deciding whether 

Comp( PJI) is consistent is recursively undecidable. 
For consistent (with respect to Comp) logic programs, SLDNF is sound. For 

establishing completeness, it is not sufficient to avoid inconsistent programs, it is 
necessary to introduce some other restrictions, but this time on the type of queries 
(programs) considered. This is essentially due to the fact that even for a logic 
program PJI with Comp( PJI) consistent, it may arise that a query Q neither succeeds 
nor fails (but has an infinite evaluation tree) and at the same time Q may be a 
logical consequence of Comp(PJI). 

Restrictions such as hierarchy and allowedness are introduced in order to overcome 
that kind of problem and in order to establish the (weak) completeness result. 

The "weak" correspondence between the SLDNF procedural semantics of pro­
grams and the completion of programs suffers from the following drawback. The 
completion approach tends to embody, at a declarative level, the undesirable features 
of SLD NF. At the declarative level, the non-termination of the evaluation of a query 
Q on a program PJI is conveyed by the non-derivability of Q and the non-derivability 
of -,Q from Comp(PJI). 

It is commonly asserted that when one writes a logic program 9Jl what one really 
has in mind is Comp(PJI). For instance, if one states that "If I come then I will 
bring a cake" what one really means is "I will bring a cake iff I come". As it is 
nicely discussed in [104], this point of view of the programmer's intention is 
justifiable in simple cases but gets less easy to apprehend when the program is more 
involved and in particular when the program contains recursive rules. 

It is interesting to report here an important result established recently by Kunen 
[69]. Intuitively, this result says that the transitive closure of a relation is not definable 
by the completion semantics (and cannot be computed by SLDNF). This result 
strengthens the remark of [111] that "the usual rules to define transitive closure of 
a directed graph did not yield the value false on pairs of nodes not in the transitive 
closure." Before presenting an example illustrating this remark, recall that, in the 
context of a database, rule based languages have been looked at in order to specify 
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more expressive query languages and specifically to provide languages able to 
express transitive closure queries. 

Consider a simple graph. The existence of an arc between two nodes a and b in 
the graph is represented by asserting Arc( a, b). The usual rules to define the transitive 
closure tc_Arc of the relation Arc are: 

(a) tc_Arc(x,y):- Arc(x,y), 

(b) tc_Arc( x, y) : - Arc( x, z) & tc_Arc( z, y). 

Assume that we have the following arcs in the graph: Arc( a, b), Arc( b, a), 
Arc( c, a). Let us consider the query +- tc_Arc( a, c). 

(1) The SLDNF evaluation of the query +- tc_Arc( a, c) enters an infinite loop 
and fails to provide an answer: 

(i) The goal tc_Arc(a, c) unifies with the head of rule (b) and, the first new 
goal +- Arc( a, z) & tc_Arc(z, c) is obtained. 

(ii) The first literal Arc(a, z) of the goal +- Arc(a, z) & tc_Arc(z, c) unifies with 
the fact Arc( a, b) and the second new goal generated is +- tc_Arc( b, c). 

(iii) The goal+-tc_Arc(b, c) unifies with the head of rule (b) and the new goal 
+- Arc( b, z) & tc_Arc( z, c) is obtained. 

(iv) The first literal Arc( b, z) of the newly obtained goal +- Arc( b, z) & tc_Arc( z, c) 
unifies with the fact Arc(b, a) and it follows that+-tc_Arc(a, c) is the next 
goal to be examined. This happens to be the initial goal +- tc_Arc( a, c). 

(2) The completed definition of the predicate symbol tc_Arc defined by the rules 
(a) and (b) is the following first order formula: 

tc_Arc(x, y) (~ (Arc(x, y) v (3z (Arc(x, z) 1\ tc_Arc(z, y»». 

Neither tc_Arc(a, c) nor ,Arc(a, c) are logical consequences of the completion of 
the program. 

(3) (Bottom-Up Evaluation) Let us evaluate the query +- tc_Arc( a, c) in a bottom 
up fashion. Simply, the following facts related to the predicate tc_Arc are generated: 

tc_Arc(a, b), tc_Arc(b, a), tLArC(C, a), 

tc_Arc(a, a), tc_Arc(b, b), tc_Arc(c, b). 

The fact tc_Arc(a, c) is not among the generated facts thus the naive bottom-up 
evaluation of+-tc_Arc(a, c) returns the answer NO (,tc_Arc(a, c». 

(4) The least (Herbrand) model of the program satisfies ,tc_Arc(a, c). 

In conclusion, for the class of positive programs, the above examples and dis­
cussion show that, from the database point of view; 5 the completion approach is 
unsatisfactory. Declarative semantics of logic programs defined in terms of the 
logical consequences of Comp(~) or in terms of 2-valued models of Comp(~) as 
well as in terms of 3-valued models of Comp(~) all reflect these shortcoming. 
Taking the risk to be brutal, we will say that, from the database point of view, 

15 We insist: from the database point of view. 
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"interesting" results for logic programs with negation are unlikely to be obtained 
using this approach. 

Clark's completion and the works related to it are presented and discussed in 
detail in [35, 104, 75, 48, 47, 68, 69]. 

10.2. Evaluation procedures 

The previous section on Clark's completion approach and SLDNF introduces 
the presentation of evaluation procedures for logic programs with negation. The 
purpose of the paper was essentially to discuss the declarative aspects of rule-based 
languages with negation. The procedural semantics of logic programs with negation 
is nevertheless equally important. One could even find it awkward to dissociate 
these two aspects. On the one hand, in order to be able to use a given declarative 
semantics, a corresponding procedural semantics is necessary. On the other hand, 
it seems unreasonable to define the computation of programs without knowing what 
should be computed. 

There has been much research into rule-based query evaluation during the past 
ten years. Most of this work has concentrated on evaluating recursive queries, that 
is queries specified by positive logic programs. The underlying declarative semantics 
considered in this context is the minimal model (or least fixpoint) semantics. Various 
strategies have been proposed which are reviewed in [23]. In general function 
symbols other than constants are ruled out. Restrictions on the programs considered 
are made in order to avoid having infinite answers to compute (the use of evaluable 
predicates combined with free variables in the head of rules which does not appear 
in the body is a source of unsafeness). The major characteristics of these procedures 
are: top-down versus bottom-up, and recursive versus iterative. Among the evaluation 
procedures proposed, let us quote the naive evaluation procedure which is a 
bottom-up iterative strategy and is a direct "implementation" of the immediate 
consequence operator, QSQR [113, 114] which is one of the most interesting 
top-down recursive strategy, the Magic Sets, Counting and Reverse Counting [22, 
24, 107] which belong to the class of optimization strategies. 

Concerning stratifiable logic programs and the iterative fix point semantics, most 
of the procedures designed for positive logic programs can be easily extended. This 
is not really surprising, because a stratifiable logic program is a sequence of 
semi-positive logic programs. 

In [3], the notion of "interpreter" is formally defined for logic programs. Problems 
such as ambiguity and non-computability are identified. Essentially, the contribution 
of [3] is twofold. It shows that, if there exists an interpreter for a stratifiable logic 
program, then it "computes" the iterative fixpoint model of that program (interpreter 
of a stratifiable logic program is not ambiguous). The existence of an interpreter 
for stratifiable logic programs is proved, the computability of the interpreter is 
guaranteed for stratifiable logic programs without function symbols other than 
constants. 
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przymusinski [95] introduces SLS-resolution (Linear Resolution with Selection 
function for Stratified Programs) as a natural generalization of SLD-resolution from 
the class of positive logic programs to the class of stratifiable logic programs. 
SLS-resolution is a modification of SLDNF-resolution. In this framework, the 
declarative semantics of logic programs is given by the class of all (not necessarily 
Herbrand) perfect model models of programs [95]. Considering non-Herbrand 
models is motivated by the principle that "positive information not derivable from 
the f.o. notation of a program should not be either derivable from the declarative 
semantics assigned to the program". Note that for SLS-resolution, an infinite branch 
of an SLS-resolution is regarded as failed. As usual, a goal (query) is failed if each 
branch of an SLS-tree is (not necessarily finitely) failed. As stated in [95], SLS­
resolution can be considered as an "ideal" sound and complete evaluation procedure 
for stratifiable logic programs, but it is not effective. Let us have a brief look at 
some "effective approximations" of SLS-resolution. 

Kemp and Topor [67] propose an extension ofVieille's QSQRjSLD for stratifiable 
logic programs. Roughly speaking, the extension is "straightforward" and consists 
in forcing the complete evaluation of sub queries issued from negative (ground) 
subgoals. The contribution of [67] is to provide an effective query evaluation 
procedure which is sound and complete. 

In the same spirit, let us quote [106] which proposes an extension of OLD­
resolution with tabulation [109]. 

Bry [26] proposes an extension of the Generalized Magic Set optimization strategy 
in order to deal with (loosely) stratifiable logic programs. 

Procedural semantics for unstratifiable is still under study. przymusinski [96] 
extends SLS-resolution [95] from the class of stratifiable programs (under the 
iterative fixpoint model semantics) to the class of all programs (under the well­
founded semantics). 

Independently, [101] provides a procedural semantics for well-founded programs, 
called global SLS-resolution, which extends SLS-resolution [95]. As discussed in 
[101], there are three sources of the non-effectiveness in global SLS-resolution: 
infinite branches are treated as failed, the SLP-tree for a goal may have an infinite 
number of branches and if a goal is indeterminate, global SLS-resolution will recurse 
infinitely through negation. 

Ross [101] suggests that developing an effective top-down procedure should 
provide some fOfm of loop checking to handle the above mentioned problems. 
Legay [71] started to investigate this direction and proposes an extension of QSQR 
[113,114]. Intuitively, QSQR is modified in order to compute in a top-down manner 
founded and potentially founded facts. The loop checking principle of QSQR (a 
stack of subqueries) "traps" negative recursion in the same way as it "traps" positive 
recursion. This method does not avoid the problem of floundering queries and logic 
programs are restricted to those in which variables in head of rules and in negative 
premises occur in positive premises. 
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10.3. Other extensions of Datalog 

Extending Datalog (in other words, extending positive logic programs) is not 
limited to adding negation in the premise of program rules. Interesting extensions, 
motivated by various database concepts such as complex objects, updates and 
incomplete information, have been investigated. 

In the context of complex object adding sets to rule-based query languages has 
been investigated by introducing special predicates, data functions or special con­
structor like groupings [6, 10, 70]. The language COL [6], for instance, integrates 
sets, data functions and negation; its semantics is based on minimal model; because 
of sets and data functions, some COL programs may have more than one minimal 
model; a notion of stratification is used; finally negation can be simulated using 
data functions. 

Adding tuple deletion has been recently investigated by allowing negative con­
sequences in program rules providing an update oriented extension of Datalog 
[7,42]. 
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