
Theoretical Computer Science 78 (1991) 3-83
North-Holland

e ation in ru e- ase
an ua es: a surve

N. Bidoit*

ata ase

U.A. 410 du CNRS, Laboratoire de Recherche en Informatique, Bat. 490, 91405 Orsay Cedex,
France

Abstract

3

Bidoit, N., Negation in rule-based database languages: a survey, Theoretical Computer Science
78 (1991) 3-83.

This paper surveys and compares different techniques investigated in order to integrate negation
in rule-based query languages. In the context of deductive databases, a rule-based query is a logic
program. The survey focuses on the problem of defining the declarative semantics of logic programs
with negation. The declarative semantics of logic programs with negation based on fixpoint
techniques, based on three-valued logic and based on non-monotonic logics are presented for
positive logic programs, (Iocally) stratifiable logic programs and unstratifiable logic programs.
The expressive power of rule-based Query languages is examined.

1. Introduction

During the last decades, fundamental work has been done in order to develop
extensions of the theory of relational databases [36]. Undoubtedly, the success of
the relational database model lies in its simplicity. Data are represented by elemen
tary tables or collections of facts. Manipulation of data is performed by means of
basic operations on tables like selecting rows of a table, selecting columns of a
table, merging or combining two tables, ... , adding or deleting a row in a table.
Although the simplicity of the relational model had led to the development of a
real database technology, and commercial relational database management systems
are, limitations of the relational theory have soon been recognized both at the level
of data representation and at the level of data manipulation. Several directions have
been followed, from the non-first normal form database model [1, 52, 100], to the
object-oriented database model [88, 13, 12], through the semantic database model
[58], each of them being developed to overcome the deficiencies of the relational
theory.

* Partially supported by the PRC-BD3.

0304-3975/91/$03.50 © 1991 Elsevier Science Publishers B.Y. (North-Holland)

4 N. Bidoit

One of the major extensions investigated, the theory of deductive databases, has
emerged, very early [54], from the use of the mathematical logic paradigm. Mathe
matical logic offers a precise and uniform formalism to study many database
problems. The main point is that mathematical logic provides both a representation
language and an inference mechanism. The historical development of deductive
databases is quite interestingly presented in [86], and [55] provides a survey of the
application of logic for studying query languages, integrity constraints, query
optimization, data dependencies and database design in the context of conventional
databases and deductive databases. Reiter [99] also presents a nice introduction to
the domain.

The naive introductory definition of a deductive database usually given is that of
a database in which new facts may be derived from facts that were explicitly
introduced and from general laws also contained in the database. Indeed that
definition is quite insufficient to help to distinguish a conventional database from
a deductive database. The relational algebra provides a mechanism (the view
mechanism) for deriving new facts from the facts stored in the database, doesn't
it? Anyway, this definition at least reveals that, in the context of deductive databases,
data are represented, like in the context of relational database, by collection of
facts. In the first case, facts are elementary formulas, in the second case, facts are
elements of a table. So now we ought to try to make clear the frontier between
conventional databases and deductive databases. As a matter of fact, the frontier
can be drawn at the level of data manipulation. A deductive database offers more
powerful "deductive capabilities" (that is a more powerful data manipulation/view
mechanism) than a conventional database.

For instance, it is rather well known that the transitive closure of a relation is
not definable by a relational algebraic (or relational calculus) expression, although
it is a very natural inference to make. Examples of transitive closure query ranges
from the famous Ancestor query to more practical problems in graph theory. The
logic approach to databases, through its inference mechanism, provides a direct
solution which overcomes in an elegant manner the inability of the relational model
to express transitive closure of relations.

Obviously, the contribution of the logical approach to database theory is not to
be reduced to an increase of the expressive power of the query language, though it
is actually its more visible feature.

Intuitively, at the syntactical level, a deductive database is specified by a set of
simple first order formulas. The assumption that function symbols do not occur in
a deductive database is usually made. A partition of the deductive database may
be used to distinguish between relations explicitly defined and relations defined in
terms of the first ones. The first relations are called extensional, the second ones
are called intentional. This partition is essentially useful to present and study
implementation issues of deductive database systems. Although implementation of
deductive database systems is of prime importance, we shall not address this issue
in the current paper. Thus in the following, a deductive database is viewed, at the

Negation in rule·based database languages 5

syntactical level, as a set of laws, some being elementary, that is facts, other being
slightly more complex first order formulas.

This presentation of a deductive database already suggests a strong relationship
between deductive databases and logic programming. Indeed, foundations of deduc
tive databases and logic programming are closely related [35, 80, 81]. Also, the
reader should not be surprised about the fact that we use equally the terms "deductive
database" and "logic program" (even though the use of logic program is abusive
because of the implicit restriction to function free programs).

The application of mathematical logic tools to characterize the relations specified
by a deductive database (or to define the declarative semantics of logic programs)
is not straightforward.

Two first (minor) features of logic databases are identified as the unique name
assumption which states that individuals with different names are different, and the
domain close axiom which states that there are no other individuals than those in
the database. The third (major) feature of logic databases lies in the so-called Closed
World Assumption and roughly speaking concerns the way negation is treated.

Making the Closed World Assumption corresponds to the choice of an incomplete

representation of real world situations; only positive (true) information is specified.
From a database point of view, this choice can be motivated by "common sense"
and performance. For instance in order to define a property, it seems more natural • to give the list of individuals satisfying the property than to give both the list of
entities satisfying the property and the list of entities that fails to satisfy the property.
Thus the Closed World Assumption simplifies tremendously the representation of
data. Now, while data description is incomplete, the Closed World Assumption
entails a second fundamental principle; complete knowledge of the world situation
described is assumed. Intuitively, this means that, although the definition of a
property is limited to the list of individuals satisfying it, one should be able to say
for any individual whether a property holds.

In the context of relational databases, the Closed World Assumption comes for
free (although one should pay attention to write safe calculus expressions). From
a mathematical logic point of view, it is probably unnecessary to recall that first
order logic does not allow one to infer negative facts from a set of positive facts
for example. Thus extralogical mechanisms need to be introduced in order to treat

. " "database negatlOn .
The Closed World Assumption determines a major distinction between mathemati

cal logic and logic databases. While first order logic is monotonic (that is adding a
formula to a theory has the effect of strictly increasing the set of formulas that can
be inferred), logic databases are non-monotonic. Adding a new positive fact to the
representation of a logic database has a "side effect": it entails that the negation
of this fact cannot be inferred from the database any more.

A very simple case of deductive databases is Horn databases specified by sets of
definitie Horn clauses. Roughly speaking, a definite Horn clause is a conditional
definition of a single property (relation) whose conditional part is a conjunction of

6 N. Bidoit

elementary positive conditions. Horn databases (or positive logic programs) are
well understood from a declarative point of view, from a procedural point of view
and from a computational point of view.

The relations specified by a Horn database (the declarative semantics of positive
logic programs) have been characterized in at least three different ways. From a
model theoretic point of view, the deductive database specified by a set of Horn
clauses is described by a particular model of the forIIlulas, the minimal Herbrand
model [44,4]' From a proof theoretic point of view, it is described by the theorems
derivable from the formulas (and the negation of the sentences not derivable from
the formulas) [97]. From an operational point of view, it is given by the least fixpoint
of some operator associated with the formulas [44, 4].

Going back to the expressive power issue, positive logic programs allow one to
define the transitive closure of a relation (in a way which is close to natural language).
However, simple relations like the complement of a relation with respect to another
one, are not definable by Horn databases although they are definable by the relational
algebra. The idea to introduce negation in the "conditional part" of the formulas
specifying intentional relations in order to overcome this deficiency appears to be
natural and simple, at first. Nonetheless, extending Horn database (or positive logic
program) with negation happens to be not such an easy task.

One of the major problems arising is to characterize the relations intentionally
defined by logic programs with negation, or in other words, to define the declarative
semantics of general logic programs. The difficulty is due to the implicit extralogical
use of negation which makes mathematical logic less a convenient formalism. The
extralogical use of negation makes us prefer to call rules, the formulas which
constitute a logic program.

Declarative semantics gives the meaning of a program in terms of properties and
does not involve computation as opposed to procedural semantics which gives the
meaning of a program in terms of the execution or evaluation of the program. In
other words, declarative semantics is used to formalize what we want while pro
cedural semantics is more concerned with how to compute it [60]. Providing a
declarative semantics of logic programs is obviously of prime importance especially
from the database point of view since declarative database query languages is a

• • major Issue.
Much recent work has been devoted to incorporate negation in deductive databases

and logic programs and various approaches have been proposed from the database
community, the logic programming community, as well as the artificial intelligence
community (e.g., [3, 94, 74, 15, 115, 8,66,53,47,69]). This paper is an attempt to
present the major solutions proposed to the problem and to compare them. We try
to consider the following three criteria.

The first criteria concerns the ability of the declarative semantics of a logic program
to reflect its common sense or intended meaning. We should confess that this criteria
is a rather fuzzy one.

The second criteria concerns the computational issue. As pointed out in [104], if
the only reason for abandoning the clear and well-known concept of classical

Negation in rule-based database languages 7

negation is the inefficiency of its implementation, it might not be unreasonable to
ask for computational tractability of the declarative semantics of logic programs.

Finally, the third criteria is obviously the expressive power of the languages
characterized by a given semantics.

1.1. Organization of the paper

The paper consists of a further nine sections. Section 2 contains preliminaries. It
gives a brief presentation of basic concepts and notation of first order logic, a
syntactical description of logic programs and a minimal set of results on fixpoint
theory.

Section 3 can also be considered as a preliminary section and it includes a review
of the two major ways to define the declarative semantics of positive logic programs.
The presentation of the minimal model semantics and the least fixpoint semantics
of positive logic programs is followed by a discussion whose aim is to show some
of the problems that arise when negation is introduced and to give a flavor of the
different approaches that are later examined.

Sections 4, 5 and 6 are devoted to approaches based on fixpoint techniques.
Stratifiable programs, that is programs in which recursive negation is ruled out,

are presented in Section 4. The declarative semantics of stratifiable logic programs
is defined in this section by means of iterative fixpoint [3]. Two weaker constraints,
local stratification [94] and loose stratification [26], are examined in this section.

The restriction that programs should not contain recursive negation is totally
relaxed in Section 5 where however the declarative semantics of a logic program is
not forced to "tell everything" about the contents of the relations intentionally
defined and also about the contents of the complement of these relations. The
well-founded semantics of a logic program is presented in Section 5 [115]. Effective
stratification is briefly presented that gives a sufficient condition for logic program
to have a "fully" defined meaning with respect to the well-founded semantics [17,
96].

The presentation of inflationary semantics of logic programs is included in Section
6 [8, 66], which does not assume any constraint on the syntax of logic programs.

Sections 7 and 8 are both dedicated to "model theoretic" definitions of the
declarative semantics of logic programs. The semantics presented in these sections
are based on various forms of non-monotonic logic such as circumscription [83,
73], autoepistemic logic and default logic [98].

Section 7 focuses on the alternative model theoretic definitions of the iterative
fixpoint semantics for stratifiable logic programs. In the presentation of these
alternative definitions, a particular emphasis is given to the exposition of the perfect
model approach [94] and its relationship with circumscription [74].

The exposition of the contribution of non-monotonic logic to define the declarative
semantics of logic programs is continued in Section 8 where default logic and
autoepistemic logic are shown to provide a very appealing formalism to define the
declarative semantics of logic programs [14, 17,51,53].

8 N. Bidoit

A discussion on the expressive power of the query languages defined by the
various semantics reviewed in the paper is carried on in Section 9. While most
researcher's attention has been concentrated on the "natural" aspect of the meaning
assigned to a logic program, less attention has been paid in general to the expressive
power issue (with the exception [8, 63]). Recent work in this area is reported in
Section 9.

Finally, Section 10 presents a brief discussion on the aspects of logic programming
not developed in the paper. Essentially, Clark's completion approach is discussed,
then a quick review of the procedural semantics of logic programs with negation is
provided and finally, extensions of positive logic programs not necessarily involving
the introduction of negation are suggested.

2. Preliminaries

In the following, we assume that the reader is familiar with symbolic logic and
more precisely with propositional logic and first order logic [45, 50]. We also assume
that the reader is familiar with notions such as complete lattice, monotonic mapping
and fixpoint [79, 75, 108]. However, in order to make the discussion clear, we begin
by reviewing some well-known concepts of first order logic and logic programming
as well as some elementary results on fixpoint theory. The main notations used
throughout the paper are presented in this section.

2.1. First order logic and logic programming

Syntax

Usually, logic programs are syntactically defined as sets of first order formulas,
commonly as sets of Horn clauses. However, as the contents of the paper will show,
as soon as negation is introduced in logic programs, the semantics associated with
the formulas in programs is (more or less) far from first order semantics.

For the sake of clarity (and rigor) and despite some notational overload, we
choose here to distinguish logic programming syntax and first order syntax. Roughly
speaking, this distinction is made by using the non logical symbols : -, &, or, not

for logic programming languages instead of the first order connectives +-, 1\, V, I.

In the following, f.o. is used as an abbreviation for first order and J.p. is used as
an abbreviation for logic programming.

A first order logic (respectively, logic programming) alphabet consists of five
(respectively, four) classes of symbols (Table 1).

An alphabet is characterized by its set of function symbols, denoted Fun, and its
set of predicate symbols, denoted Pred, the rest of the syntactic symbols being
common to all f.o. (resp. J.p.) alphabets. The O-place function symbols are called
constants, denoted by a, b, c The O-ary predicate symbols are called propositions,
denoted by A, B, C

The notion of J.p. term (respectively, J.p. atomic formula) is identical to the notion
of f.o. term (respectively, f.o. atomic formula) and is defined in the standard way.

,

Negation in rule-based database languages 9

Table I

Classes of symbols f.o. alphabet I.p. alphabet Notations

Variables Infinitely many Infinitely many xyz

O-place
Non-empty

abc
Functions Possibly empty

fgh n-place

O-ary
Non-empty

ABC
Predicates Non-empty

PQR n-ary

Connectives ~,I\,V,---' :-, &, or, not
Quantifiers '9',3

A ground term (respectively, a ground atomic formula) is a term (respectively, an
atomic formula) containing no variable symbols.

A f.o. literal (respectively, J.p. literal) L is either an atomic formula (P(t)) and
it is then called a positive literal or the negation of an atomic formula (,P(t),

respectively not P(t)) and it is then called a negative literal. A fact is a ground
literal, a positive fact is a ground positive literal and a negative fact is a ground
negative literal.

For the sake of simplicity, given a set S of f.o. literals (respectively, of I.p. literals)
its corresponding set of I.p. literals (respectively, of f.o. literals) is denoted by S
itself. The context always makes clear whether a set S of literals is f.o. or I.p. Now,
given a set S of literals, poseS) denotes the subset of positive literals in Sand
neg(S) denotes the set of negative literals in S. On the other hand, ,.S denotes
{IL I L E poseS)} u {L I,L E neg(S)} or {not L I L E poseS)} u {LI not L E neg(S)}.

A first order language over a f.o. alphabet (Fun, Pred) consists of the set of
well-formed formulas constructed from the alphabet (Fun, Pred) in the usual
manner.

A clause c is a universally quantified well-formed formula of the form L. v ... v Ln
where the L, are f.o. literals. If the number of positive literals in the clause c is less
or equal to 1, then c is called a Horn clause. If the number of positive literals in
the clause c is 1, then c is called a definite clause.

Given a J.p. alphabet (Fun, Pred), a program rule r is an expression of the form
L: -L. & ... & Ln with n ;=. 0, where L is a positive literal and the L; are J.p. literals,
for i = 1, ... , n.

The literal L is called the head of the program rule r and it is denoted by head(r).
L. & .. - & Ln is called the body of the rule and body(r) denotes the set of literals
{L. , ... , Ln}. The elements of body(r) are also called premises of the rule r.

If n = 0, the rule r is written L and called a unit rule. Now, if all the premises of
r are positive that is if body(r) = pos(body(r)), then r is called a positive rule.

A logic programming language is the set of program rules constructed from the
alphabet (Fun, Pred). A logic program is a set of program rules. In the paper, except
where otherwise specified, we assume that logic programs are finite set of rules, and

10 N. Bidoit

we assume that the only function symbols in Fun are constant symbols. A positive
logic program is a set of positive program rules.

Given a logic program !/J', the subset of the rules in !/J' in which the predicate
symbol P occurs in the head is called the definition of Pin !/J' and denoted by def(P, :1').

The closed instantiation of a program rule r is obtained by substitution of each
variable occurring in r by a ground term (or by an element of the Herbrand universe,
as explained below). The instantiation of a logic program ~, denoted InsL~, is the
collection of all possible instantiations of each rule in ~.

For the purpose of the presentation, we need to associate with a logic program
~ a set of f.o. formulas. The first order notation of a program :1', denoted by :1'ro ,
is simply the set of first order formulas obtained by replacing the connectives :-,
&, not by +-, 1\, -, in the rules of ~.

Finally, in the discussion, the following transformation of logic programs is
frequently used. This transformation is similar to the Davis-Putnam transformation
of a set of clauses [43]. Let ~ be a logic program and S be a set of ground atomic
literals. Intuitively, DP(~, S) is the instantiated program obtained as follows:

(1) remove from InsL~ all the rules having a premise which is in contradiction
with S, and

(2) remove from the rules in InsL~ all the premises that belong to S.
Formally, DP(~, S) is defined by:

(I) first let ~1 = InsL!/J' - {r IrE InsL!/J' and 3L E body(r), L E I.S}, then
(2) DP(gp,S)={rlr'Egplt head(r)=head(r') and body(r)=body(r')-S}.
It may be convenient to represent a logic program by a graph. The precedence

graph (V, E) associated with a logic program gp is such that:
(I) the set V of vertices is the set of predicate symbols, and
(2) there is one edge from Q to P for each occurrence of Q in a premise of a

rule r in ~ with head P.
It may be convenient to label the edges of the precedence graph associated with

gp in such a way that an edge from Q to P induced by a rule r of !/J' is positive if
Q occurs in a positive premise of r and negative otherwise.

Semantics
The semantics of a logic program is usually defined by means of particular models

of the f.o. notation of the program. We recall below some well-known notions used
to define the semantics of first order logic. The presentation essentially concentrates
on Herbrand interpretations.

Let d = (Fun, Pred) be a f.o. language. The Herbrand universe of d is the set of
ground atomic terms constructed from the function symbols in Fun. The Herbrand
base 00.<4 of d is the set of ground atomic formulas constructed from the ground
terms in the Herbrand universe of d and from the predicate symbols in Pred. When
the language is understood, the Herbrand base is just denoted by 00.

For Herbrand interpretations, the domain is the Herbrand universe and the
assignment of functions is (roughly speaking) the identity. Thus a Herbrand interpre-

Negation in rule-based database languages 11

tation can be simply represented by a subset of the Herbrand base. Herbrand
interpretations represented by subset of the Herbrand base are denoted by bold
possibly subscripted I (1,110 12 , ••).

For the sake of the discussion, we need to introduce another representation of
Herbrand interpretation. Intuitively, an Herbrand interpretation I as represented
above gives the set of ground atomic formulas true for I. Implicitly, ground atomic
formulas not in I are false for I. An alternative way to represent an Herbrand
interpretation I is to give both ground atomic formulas true for I and the negation
of ground atomic formulas false for I. Thus a Herbrand interpretation can also be
represented by a subset of $ U 1.$. In the following, in order to distinguish the
first representation from the second one, we call Herbrand interpretation an interpre
tation represented by a subset of $ and completed Herbrand interpretation an
interpretation represented by a maximally consistent subset of gJ U l.gJ. It should
be clear for the reader that the subset 1 of gJ and the subset IUI.(gJ-I) of
gJ U I. $ are two distinct notations for the same Herbrand interpretation. Completed
interpretations are denoted by cursive, possibly subscripted I (ji, ji), ji2, ...).

The set of all possible Herbrand interpretations (i.e. 2911
) is denoted by Int and

the set of all possible completed Herbrand interpretations (i.e. the subset of complete
and consistent sets in 2911u

-,.9II) is denoted C_Int.

The truth of a formula for an interpretation I and the notion of Herbrand model
of a set of formulas are defined in a standard way. I 1= f means I satisfies f
Models are denoted by bold/ cursive, possibly subscripted M (M, M) , M 2 , ••• ,

At, At), At2 , •• •).

A Herbrand partial interpretation is a partial truth valuation of the ground atomic
formulas in the Herbrand base. Thus a Herbrand partial interpretation ji is represented
as a consistent subset of $ U 1.$. In fact, a partial interpretation ji can be viewed
as a three-valued logic interpretation in the following way: if a ground atomic
formula belongs to pos(ji), its truth value is true; if a ground atomic formula belongs
to I.neg(ji), its truth value is false; and otherwise its truth value is undetermined.
We use the same notational convention for a partial interpretation as for a completed
interpretation. The set of all possible partial Herbrand interpretations (i.e. the subset
of consistent sets in 2911u

-,,9ll) is denoted Partial. Note that completed interpretations
are special cases of partial interpretations, i.e. that we have: C_Int ~ Partial.

2.2. Complete lattice, monotonic mappings and jixpoints

Let S be a set and R be a binary relation on S. (S, R) is a complete lattice if R
is a partial order and if the least upper bound of X, denoted by lub(X), and the
greatest lower bound of X, denoted by glb(X), exist for each subset X of S.

Assume from now on that (S, .::;;) is a complete lattice. Let T: S -+ S be a mapping.
The mapping T is monotonic iff s.::;; s' entails T(s)'::;; T(s') for each pair s, s' in S.
The mapping T is continuous if T(lub(X» = lub(T(X» for each directed subset X
where X is directed if every finite subset of X has an upper bound in X.

12 N. Bidoit

Let s E S, s is a jixpoint of T iff T(s) = s. An element s of S is a leas. jixpoin. of
T, denoted \fp(T), iff s is a fixpoint of T and VS'ES, T(s')=s'~s~s'. In a
symmetrical manner an element s of S is a greatest jixpoint of T, denoted gfp(T),

iff s is a fixpoint of T and V s' E S, T(s') = s'~ s' ~ s.

The following result has been established by Knaster and Tarski:

If (S,~) is a complete lattice and T is a monotonic mapping defined
on S then T has a least fixpoint and a greatest fixpoint.

The transfinite sequences Tj a and T ~ a associated with the lattice (S, ~) and
the mapping T are defined by:

(1) TjO = T(l.) where l. is the greatest lower bound of S,
Tj a = T(Tj a - 1) for a ordinal successor, and
Tj a = lub({ Tj 13113 < a}) for a a limit ordinal.

(2) T ~O = T(T) where T is the least upper bound of S,
T ~a = T(T ~a -1) for a ordinal successor, and
T ~ a = glb({ T ~131 13 < a}) for a a limit ordinal.

Another interesting result follows:

If T is monotonic then lfp(T) = Tj a for some ordinal a and
gfp(T) = T ~a for some ordinal a.

The least ordinal a such that lfp(T) = Tj a is called the closure ordinal of T. Now
we also have that:

If T is continuous, the closure ordinal of T is below2 w.

The analogous result does not hold for the least ordinal a such that gfp(T) = T~a.

Note that the set of Herbrand interpretations lot with set inclusion ~ is a complete
lattice. The set of completed interpretations C_Int with the partial order ~ induced
by the inclusion of the positive part of interpretation (Le . .j ~ ,I iff pos(.j) ~ pos(,1»
is isomorphic to (lot, ~) and thus is a complete lattice.

The set of partial interpretations Partial together with set inclusion is a semi
complete lattice (only directed subsets of Partial have a glb). Let Inconst be a new
symbol that is intuitively meant to represent all inconsistent sets of literals or in
other words the complement of Partial in 2,)Ju, 'j/). Now consider the set Partial u
{lnconst} with the partial order ~ defined as:

set inclusion ~ on Partial, and by ,j ~ Inconst for each .j in Partial.

Then, (Partialu{lnconst},~) is a complete lattice. Intuitively, adding Inconst to
Partial serves to get a top element. In the following, when saying that Partial is a
complete lattice, we mean (Partial u {Inconst}, ~) is a complete lattice.

2 By "below", we mean here less than or equal to.

Negation in rule-based database languages 13

3. Declarative semantics of positive logic programs

The purpose of this section is twofold. First, we briefly review the model theoretic
and the fixpoint semantics of positive logic programs. Secondly, we present the
problems that arise when one tries to directly extend the definitions of the declarative
semantics proposed for positive programs to logic programs with negation allowed
in the body of rules. These problems are described for both the model theoretic
approach and the fixpoint approach. The presentation also serves to motivate the
different proposals further reviewed in the paper.

3.1. Declarative semantics of positive logic programs

Minimal model semantics
The model theoretic and the fixpoint semantics of positive logic programs have

been presented and extensively discussed in the literature [4, 75, 44]. A nice
discussion on these semantics can be found in [60]. Other equivalent approaches
to define the declarative semantics of positive logic programs such as [97], based
on the closed world inference rule [72], based on circumscription, and such as [18,
19], based on default logic are not presented here.

Following the model theoretic approach, a logic program is viewed as a first order
formula and its meaning is captured by the set of atomic ground formulas that are
logical consequences of the program. In other words, the meaning of a logic program
is captured by the set of ground atomic formulas (facts) true in all models of (the
f.o. notation of) the program. Particular models are considered, namely Herbrand
models.

In the following, by a model it is always meant a Herbrand model (model =

Herbrand model). As a matter of fact, most of the discussion that follows would
be incorrect for general models.

The class of programs considered here, positive programs, leads to a simple and
nice characterization of the ground atomic formulas that belong to all models of a
program. The first order notation (lJr.o. of a positive logic program (lJ is equivalent
to a set of definite clauses. For a set (lJf.o of definite clauses, [44] shows that the
intersection of all models of (lJr.o. is a model of (lJf.o .• Note that it is not in general
true that the intersection of the models of a set of well-formed formulas is a model
of this set of formulas.

Thus following the model theoretic approach, the meaning of a positive program
is captured by the least model (intersection of all models) of its f.o. notation.

For the sake of further discussion, we introduce the notion of minimal model. A
comprehensive study of minimal models is provided in [27].

Definition 3.1 (Minimal Herbrand model). Let [fF be a set of f.o. formulas. A Herbrand
interpretation M is a minimal model of [fF iff M is a model of [fF and for each M'
such that M' is a model of [fF, M' ~ M entails M = M'.

14 N. Bidait

The notion of a minimal model is more general than the notion of "intersection
of models" although these two notions coincide for sets of definite clauses. Given
a set fF of formulas, the intersection of all models of fF may not be a model of fF;
however, fF may have minimal models.

Consider for example the clause A v B. It has two minimal models: the first one
contains A and does not contain B; the other one contains B and does not contain
A. The intersection of all models of the clause A v B is the empty interpretation
which is not a model of A v B.

Theorem 3.2 (Van Emden and Kowalski [44]). If fF is a set of definite clauses then
fF has a unique minimal model, or equivalently, the intersection of all models of ~ is
a model of fF.

The declarative semantics of positive logic programs is simply defined.

Definition 3.3 (Minimal model semantics of positive logic programs). Let I;}' be a
positive logic program. The canonical model (the declarative semantics) of I;}' is the
minimal Herbrand model of I;}'f.o .•

The definition is illustrated by the program presented in the introduction and
used to represent a graph and its transitive closure.

Example 3.4. Let us assume that we want to represent a graph
(1) with vertex a, band c;
(2) with arcs between a and b, b and a, c and a; and
(3) the transitive closure of the graph.

We need to consider the alphabet consisting of the constants a, b, and c, the binary
predicates Arc and tc_Arc. We intend to specify the above data by the following
positive logic program:

Arc(a, b),

Arc(b, a),

Graph = Arc(c, a),

tc_Arc(x, y) :- Arc(x, y),

tc_Arc(x, y):- Arc(x, z) & tc_Arc(z, y).

For instance, the Herbrand interpretation containing all elements of the Herbrand
base, that is the interpretation given by

Arc(a, a), Arc(a, b), Arc(a, c),

Arc(b, a), ... ,
•
•
•

tc_Arc(c, a), tc_Arc(c, b), tcArc(c, c)

Negation in rule-based database languages 15

is a model of (the f.o. notation of) Graph. Obviously, it is not a minimal model.
The declarative semantics of Graph is given by its unique minimal model, namely:

Arc(a, b), Arc(b, a), Arc(c, a),

MGraph = tc_Arc(a, b), tc_Arc(b, a), tc_Arc(c, a),

tc_Arc(a, a), tc_Arc(b, b), tcArc(c, b).

We should emphasize here, as it is done in [60], that the least model semantics
of positive logic programs is an alternative formulation of the closed world assump
tion [97]. Given a logic program Pf', we abusively say that
• A formula is true for {JJJ iff this formula is satisfied by the minimal model of (the

f.o. notation of) PY. For instance, a positive fact is true for {JJJ iff it simply belongs
to the minimal model of gp .

• A formula is false for gp iff this formula is not satisfied by the minimal model of
PY. For instance, a positive fact is false for gp iff it does not belong to the minimal
model of PY.
An interesting correspondence does exist between the set of positive facts true

for a positive logic program Pf' and the set of positive facts which are logical
consequences of the f.o. notation Pf'r,o, of Pf':

(1) A positive fact A is true for Pf' iff A is a logical consequence of Pf'r,o, (Pf'r,o F= A).
This correspondence allows one to make use of resolution techniques in order to

evaluate positive queries.
The same relationship does not hold for negative facts true for gp. A negative fact

-,A is true for gp iff -,A is satisfied by the minimal model of gpr,o , that is, iff A does
not belong to the minimal model of gpr,o,. Thus:

(2) A negative fact -,A is true for Pf' iff A is not a logical consequence of Pf'f.o,

(gpf.o, ~ A).
It is well-known that {J}r,o, ~ A does not entail Pf'f.o, F= -,A. Indeed, Pf'r,o ~ A as

soon as one of the models of Pf'r,o, satisfies -,A while it is necessary that all models
of Pf'r,o satisfy -,A in order to conclude that gpr,o, F= -,A.

Of course, the set of negative facts that are logical consequences of gpr,o, is included
in the set of negative facts true for gp, that is, gpr,o F= -,A entails Pf'f.o, ~ A. However
note that since Pf' is a positive logic program and thus {J}r,o, is equivalent to a set of
definite clauses, the set of negative facts implied by Pf'r,o, is empty.

Clearly, (2) is the model theoretic formulation of the Closed World Assumption.
In [97], the Closed World Assumption is formalized by Pf' infers -,A iff Pf'r,o If- A.

Fixpoint semantics
The fixpoint semantics is based on a somewhat different and more operational

view of logic programs. The program is viewed as a set of rules and (positive) facts
together with some basic operation for applying rules to facts in order to generate
new facts. The semantics of a program is given by means of the facts obtained by
iterative application of the rules of the program to facts, starting with an empty set
of facts [60].

16 N. Bidoit

The key point here is to define what is meant by "apply rules to facts", and make
sure that, roughly speaking, the iterative application of this basic operation ter
minates.

For positive logic programs "apply rules to facts" is defined by means of an
operator, called immediate consequence operator, associated with the program.
Given a set of positive facts, the immediate consequence operator simply generates
the heads of the rules whose bodies are satisfied by the given set of positive facts.

Because the programs considered are positive programs, the immediate con
sequence operator is monotonic (and continuous). This ensures (a) the existence
of a least fix point, (b) the termination of the iterative application of the operator
and (c) the correspondence between the least fixpoint and the set of facts obtained
by iterative application of the operator. Formally, we have:

Definition 3.5 (Immediate consequence operator). Let [!P be a logic program. The
immediate consequence operator associated with [!P, denoted r;, is the mapping
on Int defined by

T~(I)={head(r)lrEInsL[!P and VLEbody(r)lF L}, for IEInt.

The immediate consequence operator associated with a positive logic program
satisfies the following property.

Theorem 3.6 (Van Emden and Kowalski [44], Apt and Van Emden [4]). If [!P is a
positive logic program then T~ is monotonic and continuous.

The above result entails (see preliminaries) that
(1) T~ has a least fixpoint Ifp(T';),
(2) Ifp(T';) is equal to T';ta for some ordinal a, and
(3) the closure ordinal (the ordinal a such that Ifp(T~) = r;ta) is below w.
The fixpoint semantics of positive logic programs is defined by:

Definition 3.7 (Least fixpoint semantics of positive logic program). Let [!P be a positive
logic program. The fixpoint semantics of [!P is the least fixpoint of r;. or equivalently,
the limit of the sequence T~ t a.

Let us now illustrate the fixpoint approach using the Graph example.

Example 3.4 (continued). Let us consider the logic program Graph and apply
iteratively the immediate consequence operator associated with it.

(1) First iteration

T~raph to = T~raph(0) = {Arc(a, b), Arc(b, a), Arc(c, an.
Note that T~raph to is equal to the set of positive facts in the logic program Graph.

Negation in rule-based database languages

(2) Second iteration

Arc(a, b), Arc(b, a), Arc(c, a), --
tC_Arc(a, b), tc_Arc(b, a), tc_Arc(c, a).

Note that T6raPh jt = T6raPh jO u {tc_Arc(a, b), tc_Arc(b, a), tc_Arc(c, a)}.
(3) Third iteration

Arc(a, b), Arc(b, a), Arc(c, a),

= tc_Arc(a, b), tc_Arc(b, a), tc_Arc(c, a),

tc_Arc(a, a), tcArc(b, b), tc_Arc(c, b).

Note that T~raph j 2 = T~raph j 1 u {tc_Arc(a, a), tcArc(b, b), tc_Arc(c, b)}
(4) Fourth iteration

T~raph j3 = T~raph(T~raph j2) = T~raPh j2.

17

Thus, the least fixpoint semantics of the positive logic program Graph is the least

fixpoint of T6raPh, that is T6raPh f2. Note here that the fixpoint semantics of Graph
coincides with its minimal model semantics.

We would like to insist here on the fact that the fixpoint semantics has a strong
computational aspect: "the fact that we have a least fixed point simply means that
we have abstracted a computational process" [60).

For positive logic programs, the model-theoretic semantics and the fixpoint
semantics coincide. On the one hand, this justifies the use of the least fixpoint
semantics as a declarative semantics for positive programs. On the other hand, this
proves that the minimal model semantics is "reasonable" since a constructive
alternative definition is provided.

Theorem 3.8 (Apt and Van Emden [4], Van Emden and Kowalski [44]). Let P; be
a positive logic program. The minimal model semantics and the jixpoint semantics of
P; are identical.

Remark 3.9. It is important to note that during the iterative application of T;, there
is no manipulation of negative facts. The iteration starts with the empty Herbrand
interpretation, that is an empty set of positive facts. Applying the immediate
consequence operator to a set of facts, namely here a set of positive facts, produces
instantiated heads of rules. Instantiated heads of rules are positive facts.

18 N. Bidair

Indeed, for positive logic programs, the fixpoint semantics can be defined in telillS
of the following operator.

Definition 3.10 (Set membership immediate consequence operator). Let (if' be a logic
program. The (set membership) immediate consequence operator associated with
(ijJ, denoted by T~, is the mapping on Int defined by

T~(l)={head(r)lrE/nsL(if' andVLE body(r),LEI}.

It is important to note that:

Theorem 3.11. For any logic program (ijJ (not necessarily positive logic program), the
immediate consequence operator T~ is monotonic and continuous.

This result follows from the fact that applying T':;. to an interpretation / comes
down to applying Tj,. to / where (ijJ' is the positive logic program obtained by
removing from (ijJ all rules having some negative premises.

Moreover, we have for any positive logic program:

Lemma 3.12. /f(ijJ is a positive logic program, then lfp(1"';) = lfp(Te,) and thejixpoint
semantics of (ijJ is equal to the least jixpoint of T':;..

Thus, for positive logic programs, logical consequence (F) can be replaced in
the definition of T; by set membership (E). This substitution preserves the definition
of the fix point semantics of positive logic programs.

Now, we would like to emphasize the fact that the definition of the declarative
semantics of positive logic programs by means of the least fixpoint of the operator
T;, i.e. by means of the limit of the sequence r;, t a can be viewed as a process
of two ordered phases.

The first phase takes care of the generation of positive facts true for (if'. It consists
of the iterative application of T;.

The second phase (totally hidden) takes care of the generation of negative facts
true for (ijJ. Negative facts true for (ijJ are obtained from the positive facts true for
(ijJ and computed during the first phase, by complementation in the Herbrand Base.

The completed interpretation.itt associated with the canonical model M = Ifp(T';.)
of the positive logic program (ijJ, is given by At = M U ,,(@jI-lfp(T;».

The second part of this section exposes the problems that arise when negative
premises are introduced in program rules. First we shall briefly recall the motivation
for introducing negation in logic programs.

Let us consider the positive logic program Graph of Example 3.4 and say that
we want to isolate the new arcs in tc_Arc that is the arcs in tcArc that are not
given in the "relation" Arc. Let us introduce a new predicate symbol New_Arc.

,

Negation in rule-based database languages 19

New_Arc is not definable (intentionally) by a positive logic program_ Introducing
negative premises allows us to write the following definition for New_Arc:

New _Arc(x, Y) : - tc_Arc(x, y) & not Arc(x, y)

and the intended semantics of the logic program Graph augmented with the above
rule is given by MOraph plus the facts New _Arc(a, a), New _Arc(b, b) and
New _Arc(c, b)_

From a procedural viewpoint, the semantics of negation in logic programs is close
to the well-known Negation as Failure procedure (SLDNF) [35]_ SLDNF is a
top-down evaluation procedure extending SLD-resolution_ The extension concerns
the notion of a proof of an elementary negative goal which is defined as the failure
to obtain a proof of the corresponding positive goal.

For our example, failure to prove Arc(a, a) provides an SLDNF-proof of
,Arc(a, a) and thus an SLDNF-proof of New_Arc(a, a). The same holds for
New_Arc(b, b) and New_Arc(c, b). Now, the proof of Arc(a, b) fails the SLDNF
proof of ,Arc(a, b) and thus the SLDNF-proof of New_Arc(a, b). The same holds
for New_Arc(b, a) and New_Arc(c, a).

In the context of databases, introducing negation in logic programs aims to provide

the ability to express set difference or set complement.

3.2. Generalizing the jixpoint approach: the problems

Let us now examine general logic programs, that is logic programs in which
negative literals are allowed in the body of rules. Before presenting the formal
arguments that rule out the use of the immediate consequence operator for defining
the declarative semantics of logic programs, we provide some rather intuitive reasons
which lead to the very same conclusion and which motivate the contents of the next

sections.
The immediate consequence operator has been introduced as a way to "apply

rules to facts". Intuitively, for a general logic program, because negative premises
may occur in the body of rules, one expects that "applying rules to facts" involves
an explicit use of negative facts.

Let us examine how the two operators T'; and T~ deal with negative premises
of rules. The main thing to keep in mind is that both operators are defined on lot
and produce positive facts exclusively. This partially explains their inadequacy to
define the declarative semantics of logic programs with negation.

Let us assume that we want to use the limit of the sequence T; t a in order to
provide a constructive semantics of a logic program (JJ. For the moment, the reader
is asked to forget or ignore the formal reason which makes our assumption and
discussion formally incorrect (the immediate consequence operator associated with
a general logic program is non-monotonic). This assumption is made for the purpose
of the intuitive motivation of the further presentation.

Consider for example the simple propositional program (JJo={A, B:- not A}.
Applying T;o to the empty Herbrand interpretation produces the set of positive

20 N. Bidoil

facts {A, B}. Intuitively, the proposition A has been derived from the first unit rule
of the program while the proposition B has been derived from the second rule of
the program using the fact that the empty Herbrand interpretation satisfies the
negative literal not A. Loosely speaking, the empty interpretation is intended to
represent the "starting point" for computing the semantics of the program [1;. Thus,
normally it should represent the fact that we know nothing about truth values of
facts (positive and negative ones) defined by [1;. However here, the definition of the
immediate consequence operator in terms of r;, definitely gives to the empty
interpretation a rather different intuitive meaning: the empty interpretation rep
resents a state of "knowledge" in which every positive fact is false. In order to express
the immediate consequence operator T';. using set membership, we have to write:

r E InsLeJI,

T:'(l) = head(r) \f L E pos(body(r», LEI, and

\f LE neg(body(r», ,Le 1

Rewriting the definition of T":; as above emphasizes the way heads of rules are
derived by application of this operator to some set 1 of positive hypotheses. The
head of a rule r in the instantiation of [1; is generated iff r satisfies the following
two conditions:

(1) each positive premise of r belongs to the set of hypotheses, and
(2) the positive counterpart of each negative premise of r does not belong to the

set of hypotheses.
Condition (2) clearly means that negative premises of rules are assumed to be

"true" by default to get their positive counterpart explicitly in the set of hypotheses.
In our example, it is clear that B is derived by default to find A in the hypotheses
represented by the empty interpretation. The reason why B is derived is not that
,A has been previously inferred.

This remark leads to the idea that the set membership immediate consequence
operator T~ may be more adequate.

Using T'Z;" in order to be considered "true", positive premises as well as negative
premises of rules are required to belong explicitly to the hypotheses. In this setting,
as expected, the intuitive meaning of the empty interpretation corresponds to
knowing nothing about the truth of facts. As a matter of fact, for the program [1;0,

applying T~o to the empty Herbrand interpretation produces the set of positive
facts {A}. However, the set membership immediate consequence operator solves
only one part of the problem: negative premises are not inferred to be true "by
default". The second part of the problem remains and is crucial: the immediate
consequence operator is unable to derive negative facts. This is showed by the
following example.

Let us delete the first rule of the previous program and thus consider the program
formed by the unique rule B : - not A. Applying T~ to the empty Herbrand interpreta
tion produces an empty set of facts. Intuitively, the empty interpretation (either
viewed as every positive fact is false, or viewed as nothing is either true or false)

Negation in rule-based database languages 21

does not correspond to the intended meaning of the logic program {B :- not A}_
Clearly, the intended meaning of this program is captured by the Herbrand interpre
tation {B} or by the completed Herbrand interpretation {lA, B}. Moreover, the
empty interpretation is not a model of the logical notation {B ~ A} of the program
{B :- not A}.

We now turn to formal arguments that makes the immediate consequence operator
unusable for defining, in a constructive way, the declarative semantics of logic
programs with negation. It is well known that:

Lemma 3.13. Let pjJ be a logic program. The operator T:; is not monotonic.

It suffices to consider the program {B : - not A} and the two interpretations II = 0
and 12 = {A}. We have that: II ~ 12 but T';;'(II) = {B} ~ T';;,(I2) = 0.

The major consequences of Lemma 3.13 are that:
(1) Tt; mayor may not have fixpoints,
(2) if Tt; has fixpoints it mayor may not have a least fixpoint,
(3) in the "good" case where T'; has a least fixpoint, it may not be equal to the

limit of the sequence T:; i a.
Some simple examples below illustrate these remarks.

Example 3.14. (1) T'; may have a least fixpoint. Consider the logic program pjJI =

{A, C : - A & not B}. The immediate consequence operator T';, has a least fixpoint
given by the Herbrand interpretation MI = {A, C}. Note first that MI is a (minimal)
Herbrand model of pjJl ro . Secondly, MI is the limit of the sequence T:;,ia. Now,
it can also be useful to notice that A, C and -,B may be infered by SLONF.

(2) T';;, may have fixpoints but no least fixpoint. Consider the logic program
pjJ2 = pjJI U {B :- B}. Note that the immediate consequence operator T';;,2 has two
fixpoints given by the two following Herbrand interpretations: M2 = {A, C} and
M~ = {A, B}. But the immediate consequence operator Tt;, associated with pjJ2 has -
no least fixpoint. Note also that both M2 and M~ are (minimal) Herbrand models
for '!I2. o ' The limit of the sequence T';,ia is the set of facts M2. Finally, the only
fact that may be infered by SLONF is the positive fact A. Note that, viewed as a
"production" rule, the program rule B :- B adds no information to the program '!II'

We call this rule a "ghost rule". Thus we could reasonably expect the logic programs
'!II and pjJ2 to have the same declarative semantics. The immediate consequence
operator fails to match our expectation because it behaves differently on the logic
programs '!II and '!I2'

(3) T';;, may not have fixpoints. Consider the logic program pjJ3 = {A :- not A}.

The immediate consequence operator T';3 does not have a fixpoint (thus a fortiori
does not have a least fixpoint). Because T';;,/0) = {A} and T';/ {A}) = 0, we have
T;Jw = {A} is the unique model of '!I3rn (Note that the sequence T';,ia does not
converge). Not surprisingly, nothing can be infered from '!I3 by SLONF.

22 N. Bidoir

(4) T'; may have a least fixpoint that is not reachable by 1"';ja. Consider the
program PJi 4 = {A : - not e, B: - not A, e: - not A & not B}. The immediate con
sequence operator T';. has a unique fixpoint and thus a least fixpoint given by the
Herbrand interpretation {A}. This unique fixpoint is one of the (minimal) Herbrand
models of PJi4ro • While we are in an apparently "good" case where T";. has a unique
fixpoint, the sequence T';.ta does not converge to this model. Because 1"';.(0) =

{A, B, e} and T;.({A, B, C}) =0, T':;.tw = {A, B, C} which is not equal to the least
fixpoint of T";;, •. Of course, nothing can be computed from {if'4 by SLDNF.

We now examine formally the reason that makes the set membership immediate
consequence operator T'fy. unsatisfactory for defining the declarative semantics of
logic programs.

Lemma 3.1S. Let PJi be a logic program. The least fixpoint lfp(T~) (i.e. the limit of
the sequence T'fy.ja) associated with {if' may not be a (Herbrand) model of[j)ro.

It suffices to consider the program {B :- not A}. The least fixpoint associated with
this program is the empty interpretation. However the empty interpretation is not
a model of the f.o. formula B +--,A.

The main weakness of the operator T~ is that it completely ignores the rules in
PJi having negative premises and treats these rules as "ghost rules".

Recall that, considering a general logic program {if' and the positive logic program
PJi' obtained by removing all rules with negative premises from {if', the least fixpoint
of the operator T~ associated with {if' is equal to the least fixpoint of the operator
T";;" associated with the positive logic program PJi'.

3.3. Generalizing the model theoretic approach: the problems

Problems analogous to the ones encountered with the fixpoint approach arise in
the model theoretic framework. More precisely, the minimal model approach does
not provide a satisfactory declarative semantics for programs with negation.

Briefly, an illustration of the problem can be made by considering the logic
program {if'1 = {A, C : - A & not B} of Example 3.14. The (f.o. notation of the) pro
gram PJi t has two minimal models, namely the fixpoints MI = {A, C} and M; = {A, B}
of Tt;,. Let us recall that among the minimal models MI and M;, the one which
represents the intended meaning of PJi I is M t •

Thus the minimality condition is not sufficient for selecting the "good" model
representing the meaning of a logic program with negation. The question that arises
immediately is how the "good" minimal model capturing the meaning of a logic
program can be characterized. The main thing to note is that properties of the f.o.
notation of a program are unable to overcome the problem. For instance, consider
the program PJi; = {A, B : - A & not C}. The f.o. notation {A, B +- A A -,e} of g>; is
logically equivalent to the f.o. notation {A, C +- A A -,B} (because, (B +- A A -,C) 4 •

(e +- A A -,B) c • (e v -,A v B». It follows that M t and M; are the two minimal

Negation in rule-based database languages 23

models of (the f.o_ notation of) the program ~;. While M\ captures the meaning
of the program ~\, the minimal model that is intended to represent the meaning
of ~; is M; . "What complicates the matter is that the choice of M,/ is apparently
not invariant to logically equivalent transformations of ~" [74].

The criterion applied in order to select M\, respectively M;, among M\ and M;
as describing the semantics of ~\, respectively the semantics of ~;, relies on
properties induced by the syntax of ~\, respectively by the syntax of ~;. Recall
that a clear distinction has been made earlier between logic programming languages
and first order languages. This distinction, which can be cumbersome, is necessary
in order to be able to state in a formally correct fashion that ~\ and ~; are distinct
programs and thus (may) have distinct meanings.

The notion of a supported model has been introduced in [3] as a criterion for
selecting models among minimal models. The very same notion has been indepen
dently introduced in [18] where it is called a causal or justified model.4 In [18], the
motivation for defining supported models is given by the search for a model theoretic
formalization of Clark's negation as failure inference rule [35].

Intuitively, an interpretation M is supported by a logic program ~ if positive
facts true for M can be "produced" from some rule r in ~ and from the positive
and negative facts true for M. An elegant definition of supported model is provided
in [3], which not surprisingly makes use of the immediate consequence operator
T: associated with ~ .

•

Definition 3.16 (Supported model of a logic program). Let ~ be a logic program. Let
M be a Herbrand interpretation. A model M of ~f.o. is a supported model for ~
iff M <:; T';(M).

Remark 3.17. Shepherdson [104] provides the following simple and pertinent
remark:
• M is a model of ~f.o. iff T';(M) £; M and consequently,
• M is a supported model for ~ iff M is a fixpoint of T';.

Example 3.18. The definition is briefly illustrated using the program ~\ of Example
3.14. The models of ~\ are M = {A, B, C}, M\ = {A, C} and M; = {A, B}. The only
supported model of ~\ is M\ which is the model capturing the intended meaning
of ~\. Because there exists no rule in ~\ with head C, M and M; are not supported
for ~1' Note also that the only supported model for ~; = {A, B :- A & not C} is M;
which is the model intended to capture the semantics of ~;. Recall that the two
programs ~1 and ~; have equivalent f.o. notations.

As motivated in [19], the notion of a supported model is not sufficient to capture
the intended meaning of logic programs. Indeed, the notion of a supported model

3 The good model.
4 In the following, we shall use the terminology of [3], that is supported model.

24 N. Bidoit

does not subsume the notion of a minimal model. As a consequence, the "pure"
supported model semantics does not generalize the minimal model (or, equivalently,
the least fixpoint) semantics for positive logic programs. An example follows to
illustrate this remark.

Example 3.19. Consider the logic program!!) = {A :- B, B :- A}. It admits two first
order models, namely M = 0 and M' = {A. B}. Both models are supported models
for !!). On the other hand, the meaning associated with!!) with respect to the minimal
model semantics (or equivalently, with respect to the least fixpoint semantics) is
given by the empty model M.

In [19], the notion of a positivist model is introduced, combining the two notions
of a minimal model and of a supported model. Positivist models of logic programs
are investigated in [19] in the general case, that is, no hierarchical condition on the
syntax of the logic programs of the kind discussed in [3] is introduced.

Definition 3.20 (Positivist model of a logic program). Let!!) be a logic program. Let
M be a Herbrand interpretation. A model M of !!)r o. is a positivist model for !1' iff
M satisfies the following two properties:

(1) M is a minimal model of !!)f.o, , and
(2) M is a supported model for !!).

Remark 3.21. Attention should be paid to the way positivism combines minimalism
and supportedness. In fact, examples are given in [19] which show that the family
of positivist models of a logic program (models which enjoy both minimality among
the f.o. models of !!) and supported ness for !!» is not identifiable with the family
of minimal models among the supported models for !!). One of these examples is
given below.

,

Example 3.22. Let us consider the program !!) = {A : - A, A : - B, A : - not C, C:-

A & not B}. The unique model of g>/o, which is a supported model for !1' is M =
{A, C}. Thus, M is the least supported model of !!). Notice that lU' = {C} is one of
the minimal models of !!)r,o (the other one is {A, B}) and is less than (included in)
M. This entails that !!) admits no positivist model.

The main result of [19] establishes the correspondence between first order models
of the completion of a logic program and the supported models of the program.
Soundness of the negation as failure algorithm [35] is proved with respect to the
positivist models of the program.

Unfortunately, it appears that minimality and supported ness are not always
sufficient criteria for selecting the "good" model of a logic program. The introduction
of rules of the forlIt P(x) : - P(x) in a logic program has the effect of neutralizing
the impact of supported ness on the predicate P.

Negation in rule-based database languages 25

Example 3.23. The program fill2 =fill t u{B:-B} of Example 3.14 gives a simple
illustration of some "undesirable" behavior of the positivist semantics. The f.o.
notation of fill2 is logically equivalent to the f.o. notation of fill). Thus, fill) and fill2
have the same minimal models, namely M) = {A, C} and M; = {A, B}. Both M) and
M; are supported models for fill2. To show that M; = {A, B} is a supported model
for fill2, one makes use of the "ghost rule" B : - B.

Although supportedness does not provide a completely satisfactory criterion for
selecting the pertinent model(s) of a logic program, supportedness should be
regarded as a desirable property of the intended meaning of a logic program because
a supported model "is able to reproduce itself with a certain natural transformation"
[115]. In the current context, the natural transformation is the immediate con
sequence operator.

In [3], the semantical notions of minimality and supported ness are combined
with some syntactical restrictions of a hierarchical nature on the logic programs,
providing a model theoretic semantics for the stratifiable programs (which is presen
ted in Section 7).

Two main goals are pursued when defining the declarative semantics of logic
programs:

(1) interpreting negation (as close as possible) like complementation,
(2) providing, if possible a constructive definition.
The first goal is of a semantic nature while the second one is of a computational

nature. Both should be related to the two fundamental principles of [104]: "Even
if the practicing logic programmer does regard the written text of the program as
its declarative meaning, we feel that in order to be true to the basic aims of logic
programming two fundamental principles should be observed.

(1) The semantics of negation should be clear and easily intelligible. That is, the
naive programmer should be able to understand the full meaning of what he writes.

(2) The syntax should be computable. That is, at least in theory, an automatic
proof procedure should exist. Indeed if the only reason for abandoning the clear
and well-known concept of classical negation is the inefficiency of its implementa
tion, we might not unreasonably ask for a complete proof procedure to be feasibly
implementable. "

In the following sections, we present some contributions to defining the declarative
semantics of logic programs and try to measure them against the above two goals.

4. Fixpoint semantics of ble logic programs

In this section, we focus our attention on the different attempts to exhibit a "good"
class of logic programs. By "good" logic programs is meant logic programs that are
sufficiently simple to raise no discussion about their intended meaning. The problem
is of course to define a class of programs as large as possible.

26 N. Bidoit

In the previous section, we saw that the semantics of a positive program [j) may
be constructively defined by means of the least fixpoint of the immediate consequence
operator associated with [j). It has been suggested that this constructive definition
can be seen as a process of two phases, the first phase being dedicated to the iterative
derivation of positive facts, the second (hidden) phase consisting of the derivation
of the negative facts by complementation.

This view of the fixpoint semantics leads naturally to the idea that, a "safe" way
to add negation is to consider a logic program as an ordered sequence of logic
programs where the use of negation is restricted at each level to apply exclusively
on predicates defined in programs of lower levels. Intuitively, this ordered structure
of logic programs implies a very simple way for "evaluating" its semantics. Starting
from the lowest level program, the least fixpoint semantics gives for each predicate
P defined at each level, the positive facts and the negative facts related to P. So
that if, at some level, the definition of P makes use of the negation of the predicate
Q, the definition of Q belongs to a subprogram of lower level and thus its semantics
has already been "evaluated". This means that the set of negative facts related to
Q is available for the evaluation of the positive facts related to P.

This notion of ordered programs is well known as stratified programs. It is used
first in [30] in order to generalize the class of Hom clause queries (queries expressed
by positive logic program). Stratification becomes popular with the work of [3,91,
94, 111].

In [30], it is shown that positive logic programs express exactly the queries
representable by a fixpoint applied to a positive existential formula (see Section 9
on the expressive power of logic programs). Thus not all first order queries are
expressible as positive logic programs. Ways of adding negation to logic programs
are examined. The first attempt to extend the class of queries specified by positive
logic programs is very simple.

In the alphabet, two classes of predicate symbols are distinguished: terminal
predicates and non-terminal predicates. Using the database terminology, terminal
predicates correspond to relations explicitly stored in the database and non-terminal
predicate symbols correspond to relations intentionally defined by rules. In queries
(logic programs), negation is allowed among the premises of rules as long as it
applies to terminal predicate symbols. This class of queries corresponds to the class
of semi-positive programs [3] defined below.

Definition 4.1 (Semi-positive logic program). A logic program [j) is semi-positive iff
the set of predicate symbols occurring in negative premises of rules in [j) and the
set of predicate symbols occurring in head of non-unit rules in [j) are disjoint.

The logic program [j)1 of Example 3.14 is semi-positive because the proposition
B does not occur in any head of rules. The logic programs [j)2, [j)3 and [j) 4 of Example
3.14 are not semi-positive.

A somewhat more illustrative example is proposed below.

Negation in rule-based database languages 27

Example 4.2. Let us consider the language induced by the constant symbols Mary,
John, Peter, Eva, and by the unary predicate symbols Businessman, Mathematician,
Computerscientist, and AvoidLMath. The following program intends to say that
people who are businessman and not mathematician avoid mathematics. The "rela
tions" Businessman, Mathematician and Computerscientist are defined
"extensively" .

Math =

Businessman (J ohn), Businessman(Mary),

Mathematician(Mary),
Computerscientist(Peter),
Avoids_Math(x) :- Businessman(x) & not Mathematician(x)

The intended semantics of the logic program Math is very easy to exhibit. The
predicates Businessman, Mathematician and Computerscientist are terminal predi
cates_ The intended semantics assigned by Math to these predicates is simply given
directly by the unit rules related to each of them (because these unit rules are
ground). Thus Math defines the three relations:

Businessman

John
Mary

Mathematician

Ma~~ __

Computerscientist

Peter

Now, the relation AvoidLMath defined by Math is the difference between the
relation Businessman and Mathematician, that is:

AvoidLMath

John

First, note that the (f.o. notation of the) logic program Math has two minimal
models: one contains the facts represented above in the relation Businessman,
Mathematician, Computerscientist and AvoidLMath, the other one contains the
facts represented above in the relations Businessman, Mathematician and Computer
scientist plus the fact Mathematician(John). The first of these models (the one that
corresponds to our intention) is a supported model for Math while the second one
•
IS not.

Secondly, note that the immediate consequence operator associated with Math
has a least fixpoint, namely the model corresponding to our intention, and that this
least fixpoint can be "computed" by means of the sequence T~ath ja.

Intuitively, for a semi-positive logic program, predicates that occur in negative
premises of rules have no intentional definition in the program. Thus, intuitively,

28 N. Bidoit

the intended semantics assigned by the program to these predicates is the set of
facts related to these predicates and that belong to the program itself. As a con
sequence, the "evaluation" of negative premises is immediate and does not require
any intermediate "evaluation".

The simplicity of these programs entails that it is "safe" to use the immediate
consequence operator in order to constructively describe the semantics of a semi
positive logic program. Formally,

Lemma 4.3 (Apt et at. [3]). If{J} is a semi-positive program then T;tw is ajixpoint
ofT;.

The notion of stratified logic program is a straightforward generalization of
semi-positive program. Roughly speaking, a stratified logic program is a sequence
of semi-positive logic programs. The definition of stratified logic programs is presen
ted here in a slightly different manner than in [3, 91, 94, 111].

Definition 4.4 (Stratified logic program). Let C be a set of function symbols. A
stratified logic program {J}* is a (possibly infinite) sequence ({J} n, Predn)(n ~ J) such
that:

(1) Pred; ¥- 0 and Pred; and Pred) are pairwise disjoint, for i ¥- j,
(2) {J}; is a semi-positive logic program defined over the language (C, U;=J Pred)
(3) the set of predicate symbols occurring in the head of rules in rJi, is included

in Pred;, i.e. {head(r) IrE {J},} is defined over (C, Pred;).
Each ({J}" Pred;) is called a stratum of {J}*.

Example 4.5. (1) The sequence of semi-positive programs

{J}f = (0, {B})({A, C :- A & not B}, {A, C})

is a stratified logic program.
(2) The sequence of semi-positive programs

{J}f' = ({A, C :- A & not B}, {A, B, C})

is a stratified logic program.
(3) The sequence of semi-positive programs

{J}f = ({A, B:- B}, {A, B})({C :-A & not B}, {C})

is a stratified logic program.

Note that in Definition 4.4, while Pred, are always non-empty sets of predicates,
{J}, may be empty programs. Stratifiable logic programs are simply defined as follows.

Definition 4.6 (Stratifiable logic program). A logic program {J} over (C, Pred) is
stratifiable iff there exists a stratified logic program {J}* = ({J}", Pred")(n;;o J) such that
{J} = U~-J {J}j and Pred = U~J Predj • {J}* is then called a stratification for the logic
program {J}.

Negation in rule-based database languages 29

In [75], stratifiable logic programs are defined in an equivalent way by means of
a level mapping. "A logic program is stratifiable if it has a level mapping such that,
in every program rule r, the level of the predicate symbol of every positive literal
in the body is less than or equal to the level of the predicate symbol of header),
and the level of the predicate symbol of every negative literal in the body is (strictly)
less than the level of the predicate in head(r)."

Infinite stratified logic programs have been introduced for the purpose of the
presentation of locally stratifiable logic programs provided later in this section. Thus
until that presentation, it is understood that we only consider finite stratified
programs.

Given a stratifiable logic program PfJ, it is easy to verify that there always exists
a finite stratified logic program PfJ* "equal" to PfJ.

Example 4.7. (1) The logic program gill of Example 3.14 is semi-positive thus
obviously it is stratifiable. Also PfJf and PfJf' provided in Example 4.5 are stratified
programs "equal" to PfJ t •

(2) Although it is not semi-positive, the logic program gIl2 of Example 3.14, is
stratifiable. Note that the sequence of semi-positive logic programs PfJf given in
Example 4.5 is a stratified logic program "equal" to gIl2'

(3) The logic programs (iJ3 and (iJ 4 of Example 3.14 are not stratifiable.

Note that more than one stratified logic program may be in correspondence with
a single stratifiable logic program.

Given a stratified logic program PfJ* = (gIln, Predn), we abusively refer to PfJ as
U,n_ 1 I/I'j and to Pred as U;_I Predj • With the above notational convention, we have
that:
• given a predicate symbol PfJ in Pred, def(P, PfJ) £; PfJ, for some j, and
• given a rule r in (iJ, and a predicate P that occurs in a negative premise of r,

def(P, gil) £; U;=~ gil).
From the definition, this implies that there exists j < j such that def(P, PfJ) £; I/I'}"
The second point above formally expresses the condition that predicates must be

completely defined "before" they can be used negatively.
Given a stratified program PfJ* = (PfJJ. Pred l), (PfJ2 , Pred2), •• • , (I/I'n' Predn), the

declarative semantics of 1/1' is obviously obtained by iteratively applying the "two
phases" mechanism offered by the immediate consequence operator for constructing
the canonical model of positive logic programs. Intuitively, we have:
• PfJ I is a semi-positive logic program. Predicates occurring in negative premises of

rules in 9»1 do not have intentional definitions in the full program gil. The semantics
of (iJI is perfectly understood and given by the completed Herbrand interpretation
All where pos(AlI) = T~,iw and neg(AlI) =,.(@ - pos(AlI)).

• Now, let us examine the logic program PfJ2 while keeping in mind that the semantics
of 1/1'1 is known. Because predicates occurring negatively in the body of rules of
PfJ2 must have their definition in PfJ I and because the semantics of PfJ I is known,

30 N. Bidoit

intuitively the logic program PP2 can be cleaned up of negative premises, moreover
it can be cleaned up of predicates in Pred,. In order to get rid of negation in PP2,
it suffices to remove from PP2 the rules having some negative premise not satisfied
by Al, and to delete negative premise satisfied by Al,. This comes down to
replacing PP2 by DP(PP2, neg(At,». If one wants to get rid of predicates in Pred"
it suffices to replace PP2 by DP(PP2, Al,). In either case, the remaining program is
a positive logic program whose semantics is perfectly understood.
Another way to convince the reader (if necessary) that negation in PP2 does not

raise problems is to notice that, at this step, predicate symbols in Pred, play the
role of terminal predicate symbols and predicate symbols in Pred2 play the role of
non-terminal symbols.

Loosely speaking, the semantics of the stratified program PP is obtained by iteration
from PP, to {JjJn of the process sketched for PP, and PP2, collecting at each step i the
definition of the predicates in Predi •

Formally, we have:

Definition 4.8 (Iterative jixpoint semantics). Let PP* = (PP" Pred,)(, '" ,,,, n) be a stratified
logic program. The iterative fixpoint of p* is the Herbrand interpretation M~ = Mn
where the sequence M" ... ,Mn is defined by:

In the above definition, the "derivation" of negative facts is once again totally
hidden. However, the reader should be aware that while "computing" the semantics
of stratified programs, deduction of negative facts is not delayed after complete
deduction of positive facts but comes in between production of positive facts for
each stratum of the logic program. Production of negative facts is performed by
complementation at each step. We now propose a toy example to illustrate the
notion of stratifiable program and iterative fixpoint semantics. The example is taken
from [94].

Example 4.9. Consider the logic program:

Businessman(Iacocca),

PP = Physicist(Einstein),

AvoidLMath(x) :- Businessman(x) & not Good_Mathematician(x).

The program {JjJ is stratifiable. One of the stratified programs equal to {JjJ is {JjJ"

{JjJ2 where

{JjJ, = 0 over Pred, = {Good_Mathematician},

{JjJ2 = PP over Pred, u {Businessman, Physicist, AvoidLMath}.

Negation in rule-based database languages

The iterative fixpoint of (gil), Pred l)(P/l2, Pred2) is M2 where

MI =0, and

31

M2 = {Businessman(Iacocca), Physicist(Einstein), Avoids_Math(Iacocca)}

Another stratified program equal to gil is gil;, gil; where

Businessman,
gil' _ Businessman(Iacocca)

I - Physicist(Einstein)
over Pred; = Physicist,

Good_Mathematician.

g)l2 = {AvoidLMath(x) :- Businessman(x) & not Good_Mathematician(x)}

over Pred; u {AvoidLMath}.

The iterative fixpoint of (g)I;, Pred;)(g)l2' Pred;) is M2 where

M; = {Businessman{Iacocca), Physicist(Einstein}}, and

M; = {Businessman(Iacocca), Physicist(Einstein), AvoidLMath(Iacocca)}.

Recall that more than one stratified logic program may be in correspondence with
a single stratifiable logic program. Thus in order to define the semantics of a
stratifiable logic program, we need first to present the following property.

Theorem 4.10 (Apt et al. [3]). (Independence of the stratification). Let g)I* =

(g)I),Pred)(I""j",n) and g)I*'=(g)lj,Pred~)(I"'j"'m) be two stratified logic programs. If
U;_I g)I = U;:I gil' and U;=l Pre~ = Ujm=1 Pred5 then the iterative fixpoint of g)I* is
equal to the iterative fixpoint of P/l*'.

We are now ready to properly define the iterative fix point semantics for stratifiable
logic programs. The above property justifies the following definition.

Definition 4.11 (Iterative fixpoint semantics of stratijiable logic programs). Let g)I be
a stratifiable logic program. The iterative fixpoint (semantics) of r!l' is the iterative
fixpoint of any of the stratified logic program "equal" to g)I.

Obviously, the iterative fixpoint semantics generalizes the fixpoint semantics for
positive programs (in the sense that the two semantics match for positive logic
programs). It is interesting to note that:

Theorem 4.12 (Apt et al. [3]). Let gil be a stratijiable logic program. Let the Herbrand
interpretation M(j> be the iterative fixpoint of gil.

(1) M(j> is a Herbrand model of P/lf.o.,
(2) M(j> is a minimal model of g)lf.o., and
(3) MfJ> is a supported model of g)I.

32 N. Bido;,

These properties have been exhibited in [3] in order to support the claim that
the iterative fixpoint of PJ> is "natural". The proof of the above results can be found
in [3]. The properties (1) and (2) of Theorem 4.12 entail that the iterative fixpoint
of a stratifiable logic program is a minimal fixpoint of the immediate consequence
operator r; and also a minimal model of Comp(PJ» [104].

Before discussing the limitation of the stratification constraint, note that
stratification enjoys the following property.

Lemma 4.13. Let PJ> be a logic program. It can be checked in polynomial time whether
PJ> is a stratifiable logic program.

Roughly speaking, checking stratifiability of a logic program can be reduced to
checking acyclicity of the precedence graph associated with the program. A poly
nomial algorithm that checks whether a (finite) logic program is stratifiable is
provided in [3].

Stratifiable logic programs appear to be a natural and useful class of logic
programs. Moreover, stratifiable programs are more expressive than positive pro
grams. This last point will be discussed in Section 9. However, it also appears that
stratification is too strong a constraint. Surprisingly, relaxing stratification has been
first motivated by allowing function symbols in logic programs. Although the
"constructive" requirement is not satisfied in such a context, local stratification is
a formally interesting and very natural generalization of stratification. Local
stratification has been introduced by [94]. The following presentation slightly differs
from, but is equivalent to the one in [94].

Definition 4.14 (Locally stratifiable logic program). Let PJ> be a logic program (possibly
with function symbols). PJ> is locally stratifiable iff the propositional logic program
InscPJ> is stratifiable. The iterative fixpoint of PJ> is the lower upper bound of
{M; Ii;;. I} where the M, are defined as in Definition 4.8 for a stratified logic program
equal to InsCPJ>.

Note that here InsCPJ> can be viewed as a propositional program over the Herbrand
base ~. Recall also that propositions are O-ary predicate symbols, thus the definition
of stratified program perfectly applies to the propositional case. Because function
symbols are allowed, InsCPJ> may be an infinite set of rules and the stratifiable logic
program equal to InsCPJ> may be an infinite sequence of propositional semi-positive
logic programs.

Example 4.15. The following well-known logic program defines even numbers. The
language is formed of the constant symbol 0, the I-place function symbol suc and
the unary predicate symbol even.

even(O)
Even_F=

even(suc(x»:-noteven(x)

Negation in rule-based database languages 33

The logic program Even_F is not stratifiable. However, it is locally stratifiable. The
stratified logic program equal to the instantiation of Even_F is the infinite sequence
(Even_F1)(I;;.o) defined by:

Even_Fo = {even(O)} and,

Even_F, = {even(suc'(O» :- not even(suci- 1(0»}, for i> 0,

where suco(O) = 0 and suc'(O) = suc(SUC,-I(O».
The iterative fixpoint of Even_F is the lower upper bound of {{even(O)},

... {even(O), even(suc2(O», ... , even(suc2i (O))}, ... } that is {even(suc2i(O»li~0}.

Lemma 4.16. Let PfJ be a logic program over a language whose function symbols are
constant symbols only. If PfJ is not stratifiable and if no constant symbol occurs in head
of non-unit rules in PfJ then PfJ is not locally stratijiable.

Intuitively speaking, Lemma 4.16 says that a logic program without function
symbols is locally stratifiable if it is already in its instantiated form or almost.

This result shows that the contribution of local stratification is restricted to logic

programs with function symbols. The main limitation of local stratification resides
in the difficulty of checking whether a logic program is locally stratifiable.

Theorem 4.17 (Cholak [33]). Checking whether a logic program (with function sym
bois) is locally stratijiable is undecidable.

Intuitively, checking local stratifiability can be reduced to checking the existence
of an infinite path in a (possibly "infinite") graph. This is implied by the fact that
a logic program PfJ is locally stratifiable iff the priority relation5 associated with pjJ

is noetherian [94] where (A, B) is in the priority relation as soon as there is a path
from B to A going through a negative edge in the precedence graph associated with
the propositional program InscPfJ.

To conclude this section, we present an example of a logic program (without
function symbols), which is not locally stratifiable but has a natural intended
meaning. This example motivates the search for improvements in the definition of
the declarative semantics of logic programs and thus motivates the contents of

Sections 5 and 8.
The example below is reproduced from [17].

Example 4.18. Let us consider a logic program that defines even number for a finite
subset of the natural numbers, say for the natural numbers from 0 to i. The order

5 Formally defined in Section 7.

34 N. Bidoit

on natural numbers is represented by means of a relation SUC (instead of using a
function). The program is then written:

SUC(O, 1),

SUC(1,2),
•
•
•

SUC(i -1, i),

even(O),

even(x) :- SUC(y, x) & not even(y).

The program Even_R is obviously not stratifiable. It is neither locally stratifiable
because its instantiation contains, for instance, the rule even(O) :- SUC(O, 0) & not
even(O). No meaning can be assigned to this program with the tools presented in
this section. However it is clear that this simple program has a clear intended
meaning captured by the following interpretation: {SUC(O,1), SUC(l, 2), ... ,
SUC(i -1, i), even(O), even(2), ... , even(2j)}. Intuitively. the negative recursion
appearing in the instantiation of Even_R is not raising problems because it involves
facts that are obviously "false". For instance, the recursion in even(O):
SUC(O,O) & not even(O) is not "dangerous" because SUC(O,O) is false.

Programs that are unstratifiable are discussed in the next section and in Section
8.

Although the iterative fixpoint semantics, in general, does not apply directly to
loosely stratifiable programs, we insert here a presentation of loose stratification
[26] because. loose stratification and local stratification coincide for function free
logic programs. One of the nice features of loose stratification is that it does not
require to consider the instantiation of programs.

The definition of loose stratification uses a form of precedence graph enriched
with information (unifiers) concerning the condition under which one atom depends
on another one. The graph associated with a program is defined as follows.

Definition 4.19 (Adorned dependency graph). Let PP be a logic program (possibly
with function symbols). Let us put in V a representative of each type of atomic
formulas occurring in PP (for instance, if P(x, y) and P(z, y) occur in PP, they have
the same representant, say P(XIt X2) in V). It is also assumed that, in V, two distinct
atomic formulas have no variables in common.

The adorned dependency graph associated with PP is the directed graph (V, G)
•

where Atl -+ ~gn At2 is an arc in G iff there exists a rule r in :JJ and a most general
unifier T such that:
• AtIT=head(r)T,
• sign is + if At2T occurs positively in prem(r)T,

sign is - if At2T occurs negatively in prem(r)T, and
• U" is the restriction (possibly empty) of T to the variables occurring in Atl and At2.

Loose stratification relies on adorned dependency graph as follows.

Negation in rule-based database languages 35

Definition 4.20 (Loosely stratifiable logic program). A logic program ~ is loosely
stratifiable iff the adorned dependency graph associated with ~ contains no path
Atl ~~~n, At2 ~~~n2 At3 _ • • Atn ~~~nn Atn+1 such that:

(1) there exists i E {I ... n} such that signj = -, and
(2) there exists a unifier 0' which is more general than O'j for each i E {I ... n}

such that Atn+! 0' = Atl 0'.

Example 4.21. (1) Consider the logic program Even_F presented in Example 4.15.
The only arc in the adorned dependency graph associated with Even_F is
Even(s(y» ~[Ylxl Even(x). Thus, because Even(s(x» and Even(x) cannot be
unified, Even_F is loosely stratifiable.

(2) Now consider the logic program Even_R of Example 4.18. The vertices of
the adorned dependency graph associated with Even_R are: Even(O), Even(z),
Suc(x, y), SUC(O, 1), SUC{l, 2), and SUC(i -I, i). We have a positive arc from
Even(z) to Suc(x, y) with unifier [ziy], a negative arc from Even(z) to itself with
empty unifier, etc. The negative arc from Even(z) to itself implies that Even_R is
not loosely stratifiable.

It is claimed in [26] that, for function free logic programs, local stratification and

loose stratification coincide, showing that, for function free logic programs, local
stratification is independent of the Herbrand instantiation of the program.

In the case of programs with functions, it is said that loose stratification relaxes
local stratification. The relationship between loose stratification and local
stratification is not detailed here. It is investigated in [25].

s. Well-founded semantics

This section is devoted to the presentation of the well-founded semantics of logic
programs. The approach chosen here is to leave the programmer totally free of
writing any program he wants but to abandon the idea that "at a minimum, a
semantics for a logic program must supply an assignment of truth values to ground
atomic formulas" [47].

Thus, in this section, no syntactical restriction is required on the logic programs
(one is allowed to write unstratifiable logic program like the program Even_R of
Example 4.18). The meaning of logic programs is captured by means of a partial
truth assignment on the Herbrand base. The declarative semantics of a logic program
may not tell whether a fact is true or whether it is false. Indeed, the concepts
presented in this section are based on three valued logic. In order to avoid the
formal presentation of Kleene's three valued logic [62] that may discourage the
non-specialist reader, we present the approach using fixpoint techniques.

The two proposals presented here can be both motivated by the discussion
provided in Section 3 and more precisely by the part of the discussion exhibiting
the inadequacy of the immediate consequence operator T~ to capture the declarative

36 N. Bidoit

semantics of logic programs with negation. Recall that, loosely speaking, the set
membership immediate consequence operator restores to the empty interpretation
its intuitive natural meaning, that is "no truth value is assigned to facts". However,
as showed in Section 3, the operator T~ suffers from its inability to derive negative
facts.

The two proposals presented here share the following features:
(1) the intended meaning of a logic program is given by a partial interpretation

of the f.o. notation of the program, and
(2) the set membership immediate consequence operator T~ is combined with

another operator whose aim is to overcome the problem of "producing" negative
facts.

The second proposal, the well-founded semantics [115] which is presented here,
can be viewed as a generalization of the first one, the weak well-founded semantics

6

[48]. The operator defined in [115] to generate negative facts is more powerful than
the one defined in [48]. The presentation of these two semantics focuses on the
introduction and definition of these operators called, respectively, weak unfounded
operator and unfounded operator.

5.1. The weak well-founded semantics

Intuitively, the basic idea is to derive negative literals corresponding to facts that
do not have a definition (extensional as well as intentional) in the logic program.
This idea is very natural and simple, however its immediate application leads to a
poor generalization.

Definition 5.1 (The weak unfounded operator). Let ~ be a logic program. The weak
unfounded operator associated with~, denoted by w_U~, is a mapping from Partial
into itself defined by

(B
B E 00, and

w_U~ .i) = -,
'tirE InsL'lJ (head(r) = B==>3LE body(r) and -,LE .i).

Given a logic program ~,the weak unfounded operator w_Up is combined with
the immediate consequence operator T~ to constructively define the semantics of
logic programs. The two operators T~ and w_ U~ are both iteratively applied to
the empty partial interpretation .
• Thus at the first iteration, the set of positive facts Pos. generated by applying T~

to the empty interpretation is the set of positive facts that belong to (Ji. The set
of negative facts N eg l generated by applying w _ U", to the empty partial interpreta
tion is the set of facts having no definition in the instantiation of (Ji ('tI r E
InsL~head(r)=B==>3LEbody(r) and -,LEoJ with oJ=0 entails that there is

6 No particular name is given to the semantics proposed in [48]. The choice of a name here is related
to the organization of the presentation.

Negation in rule-based database languages 37

no rule r in InsCPJ such that head(r) = Band conversely)_ Now given the partial
interpretation .1'] = POSt u Neg] obtained from the first iteration, the program
InsLPJ can be simplified in a natural manner by deleting each rule which has at
least one premise inconsistent with the partial interpretation .1'] and by deleting
in the remaining rules the premises that do belong to the partial interpretation
.1']_ Let us call this set of rules InsL(j)). We have that InsL(j)) = DP«(j), .1')).

• Then, at the second iteration, applying T'F., to the partial interpretation .1'] generates
the set of positive facts that belong to the transformed program InsL(j)), and
applying w _ u,Cj> to the partial interpretation .1') generates the negative facts
corresponding to facts having no definition in InscPJ). And so on
The example below is followed by the formal definition of the weak well-founded

semantics of a logic program.

Example S.2. (1) Consider the logic program (j)] given in Example 3.14. First consider
the empty partial interpretation. Note that B has no definition in (j)]. Thus we have

T~,(0) = {A}, w_ U,Cj>,(0) = {,B}.

Consider now the partial interpretation given by the first step of "derivation", i.e.
,j)={A"B}. Note that DP(PJI>J\)={A,C} and

T~,(,j]) = T~p(~".9',)(0) = {A, C} and

w_U~,(,j)) = w_UDP(gI'\>.9'd(0) = {,B}.

The partial interpretation {A, ,B, C} obtained by the second step of iteration is a
complete interpretation. The weak well-founded semantics of the program PJ] is
given by the completed interpretation {A, ,B, C}.

(2) Consider now the logic program PJ2 given in Example 3.14. First consider
the empty partial interpretation. Note that each proposition occurs in the head of
some rule in (j)2' Then, we have

T~2(0) = {A} and w_ UgI'2(0) = 0.

Consider now the partial interpretation given by the first step of "derivation", i.e .
.1'] = {A}. Note that DP(PJ2 , .1']) = (j)2 and so we have

T~2(,j])={A} and W-UW>2(,j]) =0.

The weak well-founded semantics of the program PJ2 is given by the partial interpreta
tion {A}. Clearly, the weak unfounded operator is unable to detect that the unique
rule B : - B defining B is a "ghost rule" and thus that there is no effective definition
for B in PJ2 •

(3) Consider the program Even_R of Example 4.15. The weak well-founded
semantics of this program happens to coincide with its intended meaning presented
in Example 4.15. Indeed, at the first iteration, w_ U Even_R produces the negative facts
,SUC(O, 0), ,SUC(I, 0) ... , ,SUC(i, i) and the transformation of the instantiation

38 N. Bidoir

of Even_R by DP with these negative facts plus the positive fact even(O) is a logic
program without negative cycles or in other words is a stratifiable logic program.

Example 5.2 illustrates by (3) the ability of the weak wel1-founded semantics to
give a meaning, the intended one, to programs such as Even_R. The example also
illustrates by (2) the weakness of the approach in the sense that introduction in a
program of "ghost rules" of the kind B:- B has a side effect on the semantics
associated with the program.

Example 5.2 also allows one to see the different way by which negative facts are
"derived" according to the iterative fixpoint semantics and according to the weak
well-founded approach.

In the first case, "derivation" of negative facts is guided by the stratified structure
of the program and is performed at each meta-iteration. The main thing to keep in
mind is that in that framework derivation of negative facts is performed by com
plementation and thus it strongly depends on the derivation of positive facts.

In the case of the weak wel1-founded approach, negative facts are generated at
each iteration and this process is guided by the syntax of the program. More
importantly, one should notice that at each iteration, derivation of negative facts is
totally independent of derivation of positive facts. Complementation is not needed
in this framework in order to generate negative facts. This will be formally discussed
later.

Note that a partial interpretation .1 may be inconsistent with the interpretation
obtained by applying w_Ugp to .1. Consider the (positive) logic program {A :- B}
and the partial interpretation g = {,A, B}, then w_V~(g) = {,A, IB} is incon
sistent with .j.

However, it is easy to check that:

Theorem 5.3 (Fitting [48]), Let rrfJ be a logic program. The weak unfounded operator
w_Ugp is monotonic.

Definition 5.4 (Weak well-founded semantics). Let [!/J be a logic program. The weak
well-founded model of rrfJ is the least fixpoint of the operator (T~ u w_ U.~) associated
with [!/J or equivalently, it is the limit of the sequence of partial interpretations
(T~u w_Vgp)ta.

Considering finite logic programs without function symbols leads to the weak
well-founded model of a program by at most w application of (T~u w_V~).

The next remark to make here is that the weak well-founded semantics does not
generalize the fixpoint (or minimal model) semantics for positive logic programs in
the following sense. Although the weak wel1-founded semantics is able to associate
a meaning to all programs and in particular to positive logic programs, the weak
well-founded model of a positive logic program may not be a completed interpreta
tion and thus it may not be isomorphic to the fixpoint semantics of the program.
This is not surprising in view of the fact that originally the weak well-founded model

•

Negation in rule-based database languages 39

of a logic program was defined to be the three-valued minimal model of Clark's
completion of the program. An example follows.

Example 5.5. Consider the positive logic program {A: - A}. Its weak well-founded
model is the partial empty interpretation. Note that the completion of this program
{A () A} neither proves A nor IA. However, the fixpoint semantics of this positive
logic program is the completed interpretation {IA}.

However, for a positive logic program rIP, there exists a natural correspondence
on the one hand, between the positive part pos(.,tt) of its weak well-founded model
Af and the least fixpoint of Tt;, and on the other hand between the negative part
neg(Af) of Af and the greatest fixpoint of Tt;.

Theorem 5.6 (Fitting [48]). Let rIP be a positive logic program. Then for all ordinal a,
(1) Tt;ja = pos« T~ u w_ Uf?>)ja),
(2) Tt;~a =neg«T~u w_U:~)ja).

In fact part (1) of Theorem 5.6 easily follows from Lemma 3.12 which says that
Ti;ja = T~ja. The merit of Theorem 5.6 is to clearly exhibit the fundamental
difference that exists between the fixpoint semantics for positive programs (or the
iterative fixpoint for stratified logic programs) and the weak well-founded semantics.
The difference resides in the way negation is treated. As already underlined, fixpoint
semantics treats negation via complementation whereas the weak well-founded
semantics treats negation via the greatest fixpoint of Tt;. Thus the difference between
these two semantics is simply an instance of the well-known "Herbrand gap"
discussed in [75]. As discussed in [47], the well-founded approach does not solve
the computability problem because while it is known that, for a positive logic
program, the least ordinal a such that Tt;ja is the least fixpoint of Tt; is below w,

the same result does not hold for Tt;~ a and the greatest fixpoint of Tt;. Apt and
Van Emden [4] provide a logic program (with function symholsf whose immediate
consequence operator is not down continuous.

5.2. The well-founded semantics

The well-founded semantics generalizes the weak well-founded semantics in the
following way. The unfounded operator defined in order to generate negative facts
is more powerful than the weak unfounded operator in the sense that the set of
negative facts produced by applying the unfounded operator to a partial interpreta
tion is larger than the set of negative facts obtained by applying the weak unfounded
operator to the same interpretation. An intuitive presentation of the unfounded
operator follows its formal definition.

Definition 5.7 (The unfounded operator). Let rIP be a logic program, let oJ be a partial

7 The program contains the rules: P(a):- P(x) & Q(x), P(s(x)):- P(x), Q(b), Q(s(x)):- Q(x).

40 N. Bidoit

interpretation and [iF be a subset of fJJ. [iF is an unfounded set of ~ with respect to
.J iff, given any f in [iF,

3LE body(r), ,LE.J

(r E InsLr; and head(r) = f) ~ or
3LE body(r), LE [iF

The unfounded operator associated with r;, denoted by U~, is the mapping on
Partial defined by U~(.1» = {,B I B E GUS~ . .9}' where GUS~ . .9 is the greatest unfoun
ded set of r; with respect to .1>.

Unfounded sets are closed under set union which makes the greatest unfounded
set of r; equal to the union of all unfounded sets of r;.

The intuition underlying the notion of unfounded sets with respect to a partial
interpretation is the following. First of all, let us see the partial interpretation .J as
a set of assumptions. Now, given a positive fact A, A belongs to GUS~ . .9 means
that for any rule in r; that could be used in order to derive A (that is, any rule with
head A), attempts to activate the rule entail making some assumption explicitly in
contradiction with the assumptions contained in .J. As such, there is no reason to
believe, under the assumption .J, that A can be derived from r;.

It should be noted that the definition of unfounded sets provided here, as well
as in [15] is an inductive definition. Alternative constructive definitions have recently
been proposed in [17, 96, 112] and shall be presented later in this section.

As for the weak well-founded approach, the unfounded operator U~ is combined
with the immediate consequence operator T~ to "evaluate" (assuming unfounded
sets are defined in a constructive manner) the semantics of logic programs. In the
"evaluation" of the well-founded semantics of the logic program r;, the operators
T~ and U;J> are both iteratively applied to the empty partial interpretation.

The example below is followed by the formal definition of the well-founded
semantics of a logic program.

Example 5.8. (1) Consider the logic program fiJl) given in Example 3.14. Because
the unfounded operator UfI', "subsumes" the weak unfounded operator w _ U~" it
is not surprising to have that the weak well-founded semantics of fiJl 1 given by the
completed interpretation {A, ,B, C} coincides with the well-founded semantics of
fiJl 1 •

T~,(0) = {A}, UfI',(0) = w_ UfI',(0) = {,B},

T~,({A, ,B}) = {A, C}, U~I({A, ,B}) = {,B}.

(2) The well-founded model of the program Even_R of Example 4.18 is also
equal to the weak well-founded model of Even_R. Recall that the logic program
Even_R is unstratifiable.

(3) As for the logic program fiJl2 given in Example 3.14, the well-founded semantics
strictly subsumes the weak unfounded semantics : truth values of the kind True or

Negation in rule-based database languages 41

False are not assigned neither to B nor to C by the weak well-founded semantics;
the well-founded truth values of Band C are respectively false and true.

Note that the greatest unfounded set of {JP2 with respect to the empty interpretation
is {B} and thus, we have

T~2(0) = {A}, U~2(0) = {iB},

T~2({A, iB}) = {A, C}, U~2({A, iB}) = {iB}.

Note that under the well-founded semantics the programs {JPt and {JP2 are equivalent.
This equivalence is natural if one considers the rule B : - B as a "ghost rule", that
is, as a rule adding no information to {JPt.

(4) Consider now the program {JP4 given in Example 3.14. The well-founded model
of {JP4 is a partial model. Note that the greatest unfounded set of {JP4 with respect
to the empty interpretation is the empty set offacts. This implies that the well-founded
model of {JP4 is the empty partial interpretation. In other words, the meaning of {JP4
is defined but "unknown".

We now formally present the well-founded semantics for logic programs.

Theorem 5.9 (VanGelder et al. [115]). Let ~ be a logic program. The unfounded
operator U,,,,, associated with ~ is monotonic.

Definition 5.10 (The well-founded semantics). Let {JP be a logic program. The well
founded model of {JP is the least fixpoint of the operator (T~ u V,,) associated with
{JP or equivalently, it is the limit of the sequence of partial interpretations (T'(;p u

U~)ja.

We now focus our attention on a constructive definition of unfounded sets which
leads to constructive definitions of the well-founded semantics for logic programs.

In [17], the notion of a potentially founded set of facts is introduced which is
the dual of the notion of unfounded sets. As a matter of fact, given a logic program
{JP, a potentially founded set is defined in [17] as the complement (with respect to
the Herbrand base) of the greatest unfounded set of {JP with respect to the empty
partial interpretation. The notion of potentially founded facts is defined below with
respect to partial interpretations (not necessarily empty ones).

Definition 5.11 (Potentially founded set).8 Let ~ be a logic program, let .1 be a
partial interpretation and let ~ be a subset of ~. ~ is a potentially founded set of
~ with respect to .1 iff,

[3rE Insc{JP such that VLEpos(body(r», (LE F, or iL~ .1)]
•

~ head(r) E~.

8 This definition has been proposed in a revised version of [17].

42 N. Bidoit

Intuitively, potentially founded facts are facts that can be derived from the rules
of the program while declaring true all negative premises as soon as these additional
assumptions are not in contradiction with the interpretation .1.

Potentially founded sets of (J' with respect to .1 are closed under intersection. We
are naturally interested in the smallest potentially founded set of (J' with respect to
.'J (intersection of all potentially founded sets of (J' with respect to .1), denoted by
SPFf1>.~ for which [17] provides the following constructive definition.

Lemma 5.12. Let (J' be a logic program and .'J be a partial interpretation. Consider the
sequence (SPFj)(,,,,o) of sets of facts defined by

SPFo = {head(r) 1 r E InsL(J' pos(body(r» = 0 and \f L E body(r)-,Le .1},

SPFi+1 = {head(r) 1 r E InsL(J' pos(body(r» s SPFj and \f LE body(r)-,Le .'J}.

Let us denote SPFoo the first element SPFj of the sequence satisfying SPFj = SPF,+I'
Then SPFf1>.~ = SPFoo •

Another equivalent way to define SPFoo is provided by:
(1) first, consider the logic program (J" obtained by removing from (J' the rules

with at least one premise inconsistent with .1, i.e.

(J'1={rlrElnsL(J' and 3LEbody(r)-,LE.1},

(2) now, consider the positive logic program (J' pos obtained by removing the
negative premises in the rules of (J", i.e.

(J' pos = {r 13 r' E (J" head(r) = head(r') and body(r) = pos(body(r'))}.

Then, SPFoo is simply the least fixpoint of the immediate consequence operator
associated with the positive logic program (J' pos(SPFoo = lfp(T;pJ = lfp(T~pJ).

The notion of potentially founded sets has been introduced as the dual notion
of unfounded sets. The next result confirms that the greatest unfounded set of (J'

with respect to .'J can be defined in terms of the smallest potentially founded set of
(J' with respect to .1 as follows.

Theorem 5.13 (Bidoit and Froidevaux [17]). Let (J' be a logic program and .'J be a
partial interpretation. Then G USf1>.~ = 97J - SPF f1> ~ .

•

A constructive definition of the well-founded model of a logic program follows
immediately from the initial definition of a well-founded model, the theorem above
and the constructive definition of a smallest potentially founded set.

In fact the constructive definitions of a well-founded model proposed in [17, 112,
96] all differ slightly from this straightforward approach. We review below the
proposals in [17, 112].

Negation in rule-based database languages 43

Until now, we have characterized two kinds of (sets of) propositions, namely
unfounded and potentially founded propositions. It is very natural to introduce a
third kind of propositions that are called founded and that intuitively correspond
to facts that can be derived from the rules in a program and the facts in a partial
interpretation without making any additional assumptions.

Definition 5.14 (Founded set). Let tJfJ be a logic program and let .1 be a partial
interpretation. The set of founded facts of tJfJ with respect to .1, denoted by F.</' .. ~ is
defined by F",.~ = Ifp(T~p(", . .9'»'

The constructive definition of a well-founded model provided in [17] is based on:
• on the one hand, the notion of founded facts defined above and the notion of

unfounded facts as defined by Lemma 5.12 and Theorem 5.13 (the particularity
of the approach is that these two notions are restricted to the case of empty partial
interpretation),

• on the other hand, a simple iterative transformation of logic programs that, given
a logic program, constructs an equivalent9 logic program.
The underlying idea is quite simple. Founded facts (respectively, unfounded facts)

of tJfJ with respect to the empty partial interpretation are true (respectively, false)
for tJfJ. More formally, it is shown in [17] that F."".f/IU I.GUSGp.f/I~ At where At is the
well-founded model of tJfJ.

Thus, as soon as we get the sets of founded and unfounded facts of tJfJ with respect
to the empty partial interpretation, the logic program tJfJ can be transformed into a
"simpler" equivalent logic program as follows:
• rules with premise -V (resp. with premise f), where f is a founded fact (resp.

unfounded fact), can be deleted from tJfJ, and
• premises f (resp. -V) where f is founded (resp. unfounded) can be removed

from the rules in tJfJ.
This "simpler" logic program is nothing else than the logic program DP(tJfJ, F.Y>.f/1 U

I.GUS~.I1)' This program is denoted by EFF~ in the following.
If the program EFF~ is not trivial (is not a set of facts), we can iterate the process

by computing the set of founded and unfounded facts of EFF::JP with respect to the
empty interpretation. Thus consider the sequence EFFiJ'~i(i"o) defined by

EFF~tO = tJfJ and EFFiJ'Hi + 1) = EFFEFF"'~i for i > O.

Intuitively, the (i + 1)th element of the sequence contains less rules than the ith
element as well as the rules remaining in the (j + 1)th element of the sequence
contain less premises than the rules in the ith element. Thus, at some point a program
is obtained that contains a minimal number of rules and these rules are "as small
as possible".

In [17], it is shown that:

9 With respect to the well-founded semantics and also with respect to the default semantics presented
in Section 8.

44 N. Bidoit

Theorem 5.15. Let g; be a logic program.
(1) There exists i such that EFF~!i+l=EFF",,!i. Let us denote EFF~!WlO the

logic program EFFij>!i where i is the smallest integer such that EFF~!i + 1 = EFF ~!i.
(2) The well-founded model At of g; is equal to the union of the greatest unfounded

set of EFF~! w with respect of the empty partial interpretation and of the founded set
of EFF~!w with respect to the empty partial interpretation. That is At =

-,.GUSEFF",~w.0 U FEFF",~w.0·

The aim of [17] is to define a class of logic programs larger than the class of
(locally) stratifiable programs and having a "natural" intended meaning. Intuitively,
a "good" logic program is a program which can be transfollued into an equivalent
stratifiable logic program. Formally, effectively stratifiable logic programs are defined

in [17] by:

Definition 5.16 (Effectively stratijiable logic program). Let ;:y; be a logic program
(over a language containing no function symbols other than constant symbols). ;:y;
is effectively stratifiable iff there exists i such that the logic program EFF~! i is
locally stratifiable.

Note that in the definition above EFFij>!i is a finite program and it is equal to
its instantiation. Thus, in this particular case local stratification can be checked in
polynomial time.

The next result formalizes the fact that effectively stratifiable programs have a
natural intended meaning.

Theorem 5.17 (Bidoit and Froidevaux [17]). Let g; be a logic program. The two
following assertions are equivalent:

(1) r;; is effectively stratifiable,
(2) the well-founded model of g; is total (i.e. is a completed interpretation).

The following example aims to illustrate the definition of potentially founded
facts, founded facts, the notion of effective stratification and the related results.

Example S.lS. Let us consider the logic program Even_R presented in Example
4.18. Table 2 shows the smallest potentially founded set, the greatest unfounded set
and the founded set of Even_R with respect to the empty partial interpretation.
Note that the smallest potentially founded set is equal to the least fixpoint of the
immediate consequence operator associated with the positive logic program:

SUC(O, 1), SUC(I, 2), ... , SUC(i -1, i),
Even_R_pos = even(O),

even(x):- SUC(y, x).

\0 This notation does not refer to a greatest fixpoint.

Negation in rule-based database languages 45

Table 2

Potentially founded facts Unfounded facts Founded facts

SUC(O,1) SUC(O,O) SUC(O,I)
SUC(l,2) SUC(O,2) SUC(I,2)
• • • • • • • • •

SUC(i -I, i) SUC(O, i) SUC(i -I, i)
even(O) • • • even(O)
even(l) SUC(i, i)
• • •

even(i)

Actually, the founded set contains the facts in the least fixpoint of the set
membership operator associated with Even_R.
Let us call .i) the partial interpretation formed by the founded and unfounded sets
of Even_R with respect to the empty partial interpretation . .i) can be used in order
to simplify the (instantiation of) the logic program Even_R. The program obtained
•
IS

SUC(O, 1), SUC(I, 2), ... , SUC(i -1, i),
even(O),

even(1) :- not even(O),

even(2) :- not even(1),
• • •

even(i) :- not even(i -1).

Note that the logic program EFF Even_R is stratifiable and thus the logic program
Even_R is effectively stratifiable. The well-founded semantics of Even_R is equal
to the well-founded semantics of EFF Even_R and to the iterative least fix point
semantics of EFF Even_R •

Table 3 gives the smallest potentially founded set, the greatest unfounded set and
the founded set of EFF Even_R with respect to the empty partial. Note that the greatest
unfounded set of EFF Even_R with respect to the empty partial interpretation corre
sponds to the greatest unfounded set of the initial program Even_R with respect to
the partial interpretation .i1 •

The only changes between Tables 2 and 3 is that the fact even(1) has moved from
potentially founded to unfounded. No change is to be noticed in Founded Facts.

Let us call .i2 the partial interpretation formed by the founded and unfounded
facts of EFF Even_R with respect to the empty partial interpretation.

Once again, we can simplify the logic program EFF Even_R using .i2 • The new
logic program has a smallest potentially founded set (respectively, greatest unfoun
ded set) with respect to the empty partial interpretation equal to the preceding ones.
The only change that occurs at this step is the introduction of the fact even(2) in
the Founded Facts.

46 N. Bidoit

Table 3

Potentially founded facts Unfounded facts Founded facts

SUC(O, 1) SUC(O,O) SUC(O, I)
SUC(l,2) SUC(0,2) SUC(I,2)
• • • • • • • • •

SUC(i -I, i) SUC(O, i) SUC(i -I, i)
even(O) • • • even(O)
even(2) SUC(i, i)
• • • even(l)
even(i)

The courageous reader is free to check that iterating the process outlined here
leads to the computation of the well-founded semantics of the logic program Even_R.

The notion of an effectively stratifiable program has been independently proposed
in [96], where it is called a dynamically stratifiable logic program. Indeed, an
interesting constructive definition of a well-founded model is also presented there.

In a different but related context (the methodology of software development in
the framework oflogic programming), [40] defines a condition analogous to effective
stratification through the notion of well-founded semi-proof trees.

The term "dynamic" is particularly appropriate. Stratification and local
stratification are syntactical constraints and can be checked directly on the logic
program. They are independent of the data (facts) contained in the program. On
the contrary, effective (or dynamic) stratification is strongly dependent on the data
in the program: the facts in the program are needed in order to check whether that
program is dynamically stratifiable.

Checking whether a logic program is effectively (or dynamically) stratifiable may
lead, in the worst case, to computing the well-founded model of that program.

The next example illustrates this remark.

Example 5.19. Consider the following logic program:

SUC(O,1),

{JjJ = SUC(1,O),

even(x) :- SUC(y, x) & not even(y).

Note that this program is the program Even_R in which facts about the relation
SUC have been changed. Now, note also that EFFg>~CtJ is the logic program

SUC(O,1),

SUC(1,O),

even(O):- SUC(1, 0) & not even(1),
even(O) :- SUC(O, 1) & not even(O),

Negation in rule-based database languages 47

which is not locally stratifiable. Thus ~ is not effectively stratifiable. As a matter
of fact, the well-founded model of ~ is the partial interpretation {SUC(O, 1),
SUC(l,O), .SUC(O,O), .SUC(1, I)} which gives no truth value to even(O) and
even(1).

We now expose the constructive definition of a well-founded model proposed in
[112]. Interestingly, [112] makes use of the notions of founded set and of its
complement. The particularity of this approach is to consider negative partial
interpretations. A new operator is introduced.

-Definition 5.20. Let ~ be a logic program. The operator Sf'P associated with ~ is
defined from 2,·00 into 2,·00 by Sf'P(.1) = .(00 - Ff'P."» where .1 is a set of negative

literals.

-Intuitively, in [112] the operator Sf'P is used in order to generate the negative part
neg("tl) of the well-founded model "tl of a logic program. An intuitive description -of the behavior of Sf'P is helpful to understand the next definition and result.

Remark 5.21. Let ~ be a logic program and let "tl be the well-founded model of
~. The set of positive facts not occurring (either positively or negatively) in "tl is

denoted by unknown ("tl) = gJ - (pos("tl) u •. neg("tl». Now let us consider a set
of negative literals .1. Two complementary cases are interesting to examine:

(1) Assume that .1 is a subset of neg("tl). Then Su;>(,j) happens to be a superset
of neg("tl) u •. unknown(At).

(2) Assume now that .1 is a superset of neg("tl) u •. unknown("tl). Then S,1'(.1)
happens to be a subset of neg("tl).

So, intuitively speaking, the sequence .10 = 0, .11 = Sr;o(.1o), ... , .1i+1 = Sf'P(.1;) -obtained by iteratively applying Sf'P starting with the empty set of negative facts
alternates in the following sense (note that trivially .10 = 0 is a subset of neg("tl»:

(1) each even element of the sequence is an underestimation of neg("tl), and
(2) each odd element of the sequence is an overestimation of neg("tl) u

unknown(At).
Moreover,

(1) the subsequence of even elements of .1;(i;'O) is an increasing sequence, and
(2) the subsequence of odd elements of .1'(i;'O) is a decreasing sequence.

Assume that the sequence stabilizes for 2k, that is .12k +2 =,j2k and .12(k+Il+1 = ,j2k+I'
Then, on the one hand .12k is a (maximal) underestimation of neg("tl) and on the
other hand .12k+1 is a (minimal) overestimation of neg("tl) u •. unknown(At). In
other words, one expects that .12k = neg("tl), .12k +1 = neg("tl) u •. unknown("tl) and
moreover that "tl = .12k u (B - •. .12k+I).

This is formally stated in [112] by:

Definition 5.22 (Alternating jixpoint of a logic program). Let ~ be a logic program.
The alternating fixpoint of ~ is the least fixpoint of the monotonic operator AJI>
defined from 2,00 into 2,·00 by Af'P(,j) = Sf'P (SfJI> (.1» where.1 is a set of negative facts.

48 N. Bidoit

Theorem S.23 (Van Gelder [112]). Let PP be a logic program and let szr be the least
fixpoint of A~. Let d+ = F~,sr. The well-founded model of PP is equal to d- u d+.

The relationship between the alternative operator and the notion of smallest
potentially founded set highlights the relationship between the constructive definition
of well-founded model in [17] and the one in [112].

Lemma 5.24. Let PP be a logic program and .1' be a (negative) partial interpretation.
(1) F.o/',s",,, = SPF~,h and thus . --
(2) A~(,j) = S~(S~(,j)) = GUS~,.9'

It is important to note that although it is hidden in the inductive definition of the
unfounded operator, complementation is needed in order to compute the greatest
unfounded set of PP with respect to .1'. This appears very explicitly in [17] as well
as in [112]. This remark also applies to [96] although indirectly. In [96], the inverse
inclusion is considered between the negative parts of partial interpretations and
thus the least fixpoint which gives the negative part of the well-founded model of
a logic program is computed by iterative application of some operator starting with
the Herbrand Base.

The end of this section is devoted to the minimality and supportedness properties
of the well-founded semantics. Of course, since the well-founded model of a logic
program is a partial model, these properties need to be slightly modified.

Given a logic program PP and a partial interpretation .1' of (the f.o. notation) PP:
(1) .1' is a (partial) minimal model of (the f.o. notation of) PP iff there exists a

model of ppr.o. which is an extension of .1' and a minimal model of ppr.o.,
(2) .1' is a (partial) supported model of PP iff pos(,j) ~ T;(,j).

Then, we have:

Lemma 5.2S. Let r;; be a logic program. Then:
(1) the well-founded model of r;; is a (partial) minimal model of PPf.o.,
(2) the well-founded model ofr;; is a (partial) supported model ofPP, and moreover,
(3) the well-founded model.At ofr;; satisfies the property: pos(.At)~ T~(.M).

6. Inflationary semantics

In this section, we present the inflationary semantics oflogic programs. Inflationary
(or cumulative) fixpoints are investigated in [57] and its application to the definition
of the semantics of logic programs is studied in [8, 66]. The motivation given in [8]
for introducing and studying this semantics as a "new and appealing" semantics
for logic programs with negation is different from the one given in [66].

In [8, 7,9] database transformations, that is database queries and database updates,
are investigated. A variety of database languages, that is query languages and update

Negation in rule-based database languages 49

languages, are proposed and analyzed in detail at a fundamental level. In particular,
different families of languages are characterized_ For instance, the choice of a
non-deterministic semantics versus a deterministic semantics is discussed.

Roughly speaking, in the context of logic programs, deterministic fixpoint seman
tics corresponds to "apply ALL rules" at once, while non-deterministic semantics
corresponds rather to "apply ONE rule" at a time. These two different ways of
"evaluating" logic programs can be illustrated on programs with negation.

Example 6.1. Consider the logic program

(1) Deterministic "evaluation" of the inflationary (cumulative) semantics of (fp:

As usual, let us consider the empty Herbrand interpretation and let us "fire", at
once, all rules that apply, that is all rules whose premises are satisfied by the empty
interpretation. Here, both rules (']) and ('2) have their premise satisfied by the
empty interpretation. This leads, at once, to the two facts A and B. The intermediate
evaluation of the semantics of (fp is {A, B}. Given the set of facts {A, B}, we proceed
in the same way. No facts are produced because neither (']) nor ('2) can be activated.
Thus no fact can be added to the intermediate semantics {A, B}. Thus the determinis
tic inflationary semantics of (fp is given by the Herbrand interpretation {A, B}.

(2) Non-deterministic "evaluation" of the inflationary semantics of (fp: As above,
let us consider the empty interpretation and let us choose, non-deterministically,
one rule of (fp that applies, that is one rule whose premises are satisfied by the empty
interpretation .
• Let us choose the rule ']. The fact produced by,] is A and thus the intermediate

evaluation of the semantics of (fp is {A}. Given the set of facts {A}, we proceed
in the same way. No rule can be activated and thus no fact can be added to the
previous intermediate semantics. Thus a non-deterministic semantics of (fp is given
by the Herbrand interpretation {A} .

• Now let us choose the rule '2' It is easy to check that, in this case, the non
deterministic interpretation "evaluated" is {B} which gives another non-deter
ministic inflationary semantics of (fp.

In [8], connections between procedural database languages and declarative
database languages are exhibited that suggest how explicit control can be used in
conjunction with declarative languages.

Concerning logic programs with negation (Datalog with negation), the inflationary
fixpoint semantics is introduced in [8] as a deterministic, declarative (and strongly
safe) update language.

In [66], the interest taken in inflationary fixpoint semantics is essentially motivated
by exhibiting "compelling complexity-theoretic obstacles" that lead to inefficient

50 N. Bidoit

implementation of classical fixpoint semantics (based on the immediate consequence
operator T~). Let us briefly present these results here.

First of all, a tight correspondence is established between problems in NP and
logic programs with negation. The result in [66] uses the connection between
computability and second order formula established by [46]. Shortly, a database,
that is considered to be a Herbrand interpretation of the language IE in our context,
is NP computable iff it is definable by an existential second order formula over IE.
The first result 11 of [66] implies that:

Theorem 6.2. If M is a NP-computable database, then there exists a logic program @J

with negation such that the immediate consequence operator associated with @J u lU
has a jixpoint.

In conclusion, the existence of a fixpoint for ~ is a NP-complete problem. A
similar connection is established between program and the class US (unique solution)
whose prototypical problem is UNIQUE SAT (given a Boolean formula does it
have a unique satisfying assignment?).

This second result can be summarized by: the existence of a unique fixpoint for
T:;' where @J is a logic program with negation is a US (unique solution) problem.
Uniqueness of fixpoint for r:;. is a desirable situation since obviously it implies the
existence of a least fixpoint for T';.

Thus it is not surprising that the existence of a least fixpoint for ~ is harder
than US. In [66], this problem is shown to range between the class US and the class
FONP (first order with NP-oracles) of problems. This technical result is not detailed
here. We limit ourselves to provide the prototypical FONP problem given in [66].
Given a graph G = (V, E), is there an edge E (x, y) such that if this edge is removed
then the resulting graph is 3-colorable but not Hamiltonian?

Inflationary semantics of logic programs is introduced in [66] as a natural
extension of the standard fixpoint semantics for positive logic programs with the
advantage of overcoming the computational obstacles of standard fixpoint semantics
of logic programs with negation.

A common motivation links both presentations [8,66] which can be summarized
by: developing an extension of Datalog (the language corresponding syntactically
to positive logic programs with the least fixpoint semantics) with increased expressive
power. Indeed, logic programs with inflationary semantics leads to first order+
fixpoint queries [8, 66]. Results on the expressive power of logic programming
languages are provided in Section 9.

Inflationary semantics of logic programs is a natural technical extension of the
classical fixpoint semantics. From this point of view , this apparoach can be compared
with the iterative fixpoint semantics for stratifiable logic programs.

II We do not present Theorem 1 of [66] because it would require to make an explicit separation
between database predicate symbols and non-database predicate symbols.

Negation in rule-based database languages 51

However, whereas the iterative fixpoint semantics is defined for the class of
stratifiable logic programs exclusively and thus is unable to assign a meaning to all
logic programs with negation, inflationary semantics has the advantage that it gives
a meaning to all logic programs. From this point of view, the inflationary approach
can be compared with the well-founded semantics.

The analogy is limited by the following. While the well founded semantics of a
logic program presented in Section 5 is a partial Herbrand interpretation (or a
three-valued interpretation), the inflationary semantics of a logic program is always
a Herbrand interpretation (bivalued interpretation).

Recall that the well founded model of a logic program is a total Herbrand
interpretation iff that program is effectively (or dynamically) stratifiable. Indeed,
the analogy between the well founded semantics and the inflationary semantics
collapses completely when one compares the meaning assigned by each of these
approaches to an effectively stratifiable program.

The main point as we will see later, is that, while the inflationary approach is
concerned with the computational (and thus implementation) and the expressive
power issues, it is not so concerned with the "common sense"12 issue.

We now proceed to the formal presentation of the inflationary semantics of logic
programs_ The operator applied in order to generate new facts is simply the cumula
tive operator obtained from the immediate consequence operator T';. In the follow
ing, this operator is called the inflationary immediate consequence operator. It
should be pointed out that the inflationary immediate consequence operator is
applied to Herbrand interpretations. Thus, we are back in the situation where the
empty interpretation represents an assignment of each truth value of positive facts

to false.

Definition 6.3 (The inflationary immediate consequence operator). Let ~ be a logic
program. The inflationary immediate consequence operator associated with [ffJ,

denoted by InC T';, is the mapping defined on Int by

InC T';(I) = I u T';(I) for I E lot.

The operator InC T'; is not monotonic. It suffices to consider the logic program
{A :- not B} and the two interpretations II = 0 and 12 = {E}. Although 1\ r;;./2•
InC T';(II) = {A} ~ InC T';(I2) = {B}. However, the inflationary immediate con
sequence operator associated with a logic program ~ is inflationary that is:

I r;;. InC T';(I) for I E Int.

This property ensures the existence of a unique fixpoint for InC T'; where ~ is
a logic program (over a language without function symbols other than constant

12 The natural, intended meaning of programs.

52 N. Bidoit

symbols). Moreover, the fixpoint ofInL T; is of the form InL r; j i for some i;;. 0
where the sequence of interpretations (InL T;ji),;;.o is defined as usual.

The inflationary semantics of I!J> is naturally defined by:

Definition 6.4 (The inflationary semantics of logic programs). Let I!J> be a logic
program. The inflationary model of I!J> is the fixpoint of the inflationary immediate
consequence operator InL T; associated with 'lJ', or equivalently, is the limit of the
sequence of interpretations InL r~ i a.

We insist on the fact that the inflationary approach assigns a meaning to all logic
programs.

The definition is illustrated below by some examples which show that at the
opposite of the previously presented approaches, the inflationary semantics of logic
programs is not concerned with the "common sense" meaning of negation. In order
to make easier the comparison between the inflationary semantics and the well
founded semantics, we choose to give the completed interpretation associated with
the inflationary model of each program considered.

Example 6.5. (1) Consider the program 'lJ'. of Example 3.14. Recall that this program
is semi-positive. The inflationary semantics of 'lJ'. is given by the completed interpre
tation {A, ,B, C}.

(2) Consider the logic program 1!J>2= 'lJ'. u{B:- B} of Example 3.14. Recall that
this program is stratifiable. The inflationary semantics of 'lJ' 2 is given by the completed
interpretation {A, ,B, C}. Note that the programs I!J>. and 1!J>2 are equivalent under
the inflationary semantics.

(3) The inflationary semantics of the program 'lJ'3 = {A :- not A} is given by the
completed interpretation {A} which is the unique model of 'lJ'3,o .

(4) The inflationary semantics of the program 'lJ' 4 = {A : - not C, B : - not A, C :
not A & not B} is given by the completed interpretation {A, B, C} which is a model
of 'lJ'4 but neither a minimal model of 'lJ'4 nor a fixpoint of r; .

fo fo 74

(5) Let us now consider the program Even_R of Example 4.18 which is supposed
to define even numbers of a finite set of numbers. The inflationary semantics of this
program is given by the completed interpretation

SUC(O, 1), SUC(1, 2), SUC(2, 3),

,SUC(O, 0), ,SUC(O, 2), ... , ,SUC(i, i),

Even(O), ,Even(1), Even(2), .. " Even(i).

The inflationary semantics of the program Even_R does not correspond to the
intended definition of even numbers.

Note that the logic program Even_R can be easily modified in such a way that
its inflationary semantics corresponds to the definition of even numbers. In order
to do so, we need to introduce a unary predicate Reached that will intuitively be

Negation in rule-based database languages

used to delay the production of certain facts. The modified program follows:

even(O),

Then

SUC(O, 1),

SUC(1,2),
•
•

Even_Inf= .
SUC(i -1, i),

even(x) :- suc(y, x) & not even(y) & reached(y),
reached(x) :- even(x),

reached(x) : - suc(y, x) & reached(y).

InCT~ven_lnf(0) = {even(O), suc(O, 1), SUC(1, 2), ... ,

SUC(i-I, i), reached(O)} = 110

InC T~ven_lnJ(lI) = II U {reached(l)} = 12,

InC T~vednf(I2) = 12 U {even(2), reached(2)} = 13 ,

InC T~vednf(I3) = 12 u {reached(3)} = 14 , ••••

53

The inflationary model of Inf_Even corresponds to the "intended" definition of
even numbers.

Theorem 6.6. Let I/} be a logic program. The inflationary model of I/} is a Herbrand
model of (fJr.o.·

It is simple to note that the inflationary semantics generalizes the standard fixpoint
semantics for positive logic programs. Indeed for a positive logic program (fJ, the
operator Inf- Ti; is inflationary and monotonic and the fixpoint of Inf_ Ti;, is equal
to the least fixed point of Ti;.

The Example 6.5 above shows two things. On the one hand, it shows that the
inflationary model of a logic program is not, in general, a minimal model of (the
f.o. notation of) that logic program. It suffices to look at the logic programs I/} 4 and
Even_R. On the other hand, Example 6.5 also shows that the inflationary model of
a logic program is not, in general, a supported model of that program. Once again,
it suffices to consider the logic programs (fJ 4 and Even_R. The behavior of inflationary
negation steps back from complementation and is uneasy to motivate from an
intuitive point of view.

Finally, Example 6.5 suggests that, although the programmer has to write programs
in a less natural manner (for instance the rules which define even numbers), there
exists a way to express what one intends to define. Indeed, inflationary semantics
has an expressive power strictly higher than the expressive power of stratifiable
programs with iterative fixpoint and equal to the expressive power of well-founded
semantics. The comparative study of the expressive power of logic programming
languages for databases will be developed in detail in Section 9.

54 N. Bidait

7. Model theoretic semantics of stratifiable logic programs

This section is devoted to the model theoretic semantics of stratifiable logic
programs. A number of approaches have been proposed which all provide definitions
equivalent to the iterative fixpoint semantics presented in Section 4.

The first definition presented is based on the notion of minimal and supported
models, and it uses the stratified structure of the program. This first model theoretic
definition is due to [3]. This definition can be "simplified" in the sense that if one
chooses carefully a stratification of the progam, the notion of supportedness is
unnecessary. Thus, the second model theoretic definition proposed here uses the
notion of minimal model and the stratified structure of the program. This second
alternative model theoretic definition is due to [15, 14] and it leads directly to
defining the declarative semantics of stratifiable logic program in tenus of circum
scription [74] and thus in terms of perfect models [94].

Some new notations are required to make the presentation clear.

Notation. Let .st = (Fun, Pred) and .st' = (Fun, Pred') be two languages such that
Pred £; Pred'. Note that the language .st' can be viewed as an extension of the
language.st. Recall that ood (respectively, ood') denotes the Herbrand base associated
with .st (resp . .st'). Because the language .st' is an extension of the language .91,
notice that ood ~ ood" Now let M' be a Herbrand interpretation of .91' (i.e. a subset
of 00,>1')' The Herbrand interpretation M' fl 00.01 of .91 is denoted M(Pred'

7.1. The iterative positivist semantics

The model theoretic alternative definition of a stratifiable logic program proposed
by [3] is based on the notion of positivist models, that is, models statisfying both
minimality and supported ness properties. Recall that in Section 4, it has been shown
that the iterative fixpoint M", of a stratifiable logic program q:; is a minimal model
of q:;r.o. and a supported model for q:;, thus Mg> is a positivist model for q:;. However,
the converse does not hold, that is, given a positivist model M of q:;, this model M
may not be equal to the iterative fixpoint M;J> of ~. In order to define the declarative
semantics of stratifiable logic programs in terms of positivist models, one needs to
make use of the stratified structure of the programs as follows.

Definition 7.1 (The iterative positivist model of a stratified logic program). Let rJJ* =

(~I> Pred,) (~2' Pred2) •• '(~n' Predn) be a stratified logic program. The iterative
positivist model M of ~* is the Herbrand interpretation of (Fun, U;=, PredJ) such

that: for i = 1 ... n, MiU;_,Pred, is a positivist model of (U~=, ~i' U;=, Pred,).

The notion of iterative positivist model provides an alternative definition of the
declarative semantics of stratifiable logic programs.

Negation in rule-based database languages ss

Theorem 7.2. Let r;p be a stratifiable logic program.
(1) [3] Let r;p* be a stratification for r;p. The iterative jixpoint of r;p* is equal to the

iterative positivist model of r;p*, and thus
(2) the iterative jixpoint of r;p is equal to the iterative positivist model of r;p (where

the iterative positivist model of r;p is the iterative positivist model of one of the
stratifications of r;p).

The proof of this result can be found in [3]. Note that because two distinct
stratifications r;p* and r;p*' of a stratified logic program r;p have the same iterative
fixpoint, part (1) of Theorem 7.2 implies that they also share the same iterative
positivist model. This justifies defining the iterative positivist model of r;p as the
iterative positivist model of one of the stratifications of r;p.

As a matter of fact, in [3], Definition 7.1 is given in slightly different terms. A
sequence (M;)J",;",n of Herbrand interpretations are defined by:

M J = n {MIM is a supported model of r;pJ} and for 1 ~ i < n,

M i + 1 = n {M 1M is a supported model of U;:~ r;pj and M1Ui_, Pred; = M i },

and the iterative positivist model MiY' of r;p is defined as Mn.
Let us briefly show that Definition 7.1 and the definition in [3] sketched above

are equivalent. First notice that:
Although it has been emphasized in Section 3 that, in general, the family of

positivist models of a logic program r;p cannot be identified with the family of
minimal models among supported models for r;p, for semi-positive logic programs

we have:

Lemma 7.3. If r;p is a semi-positive logic program, then r;p admits a unique positivist
model MiY' and MiY' = n {M I M is a supported model of r;p}.

Lemma 7.3 gives a characterization of a class of logic programs, namely semi
positive logic programs, whose positivist model is the least supported model. In
fact, the proof of Lemma 7.3 follows directly from the results of [3].

7.2. The iterative minimal model

We continue this presentation by showing that with a careful choice of a
stratification, the notion of supported ness is not necessary in order to define the
semantics of stratifiable logic programs.

Recall that the intended meaning of a stratifiable logic program r;p is defined as
the iterative fixpoint (or the iterative positivist model) of some stratification r;p* of
r;p. The choice of a stratification r;p* for r;p is not relevant because all stratifications
of r;p have the same iterative fixpoint (or iterative positivist model).

In the following, we introduce some property of stratifications and utilize this
property in order to assign meaning to stratifiable logic programs.

56 N. Bidoit

Remark 7.4. If ~ is stratifiable then there exists a stratification ~* =

(@II> Pred.) (~2' Pred2) •• '(~n' Predn) for ~ such that:
(I) Def(P, ~) = 0 entails that ~ E Pred., and
(2) ~. is a positive logic program.

Let us briefly show that our remark is correct. Given a random stratification of
@I which may not satisfy the two conditions above, it is easy to construct a
stratification of ~ which does satisfy both conditions. The way one can enforce
condition (1) is obvious. Concerning condition (2) and assuming that ~* =
(~I> Pred.) (@l2 , Pred2) •• '(~n' Predn) is a stratification of @I that does not satisfy
(2), it suffices to split ~. in two programs. The first program @I; is the subset of
positive rules of g)l., the second g)lr is the remaining rules in g)l •• The stratified logic
program obtained by concatenation of g)l; and ~r to (@l20 Pred2) • •• (@In, Pred") is
a stratification of ~ that does satisfy (2).

The first stratum (g)ll> Pred.) of a stratified program satisfying conditions (1) and
(2) may be such that the program g)l. is empty (but this is not a new situation).

In the following, a stratification for @I (resp. a stratified program g>*) satisfying
conditions (1) and (2) is called a strict stratification for g)l (resp. a strictly stratified
program).

Definition 7.5 (Iterative minimal model, Bidoit and Hull [19]). Let ~* = (g)l .. Pred.)
(@l2 , Pred2) • •• (~n' Predn) be a strictly stratified logic program. The iterative minimal
model M of @I is the Herbrand interpretation of (Fun, U;=t Predj) such that for

i = 1. .. n, ~U;PredJ is a minimal model of (U;=t g)lj, U~=t Pred,).

The notion of iterative minimal model of strictly stratified programs provides an
alternative definition of the declarative semantics of stratifiable logic programs.

Theorem 7.6 (Bidoit and Froidevaux [14]). Let ~ be a stratifiable logic program and
let g)l* be a strict stratification for g)l. Then, the iterative jixpoint of f} is equal to the
iterative minimal model of g)l*.

Proofs of the above result can be found in [14].

7.3. Circumscription

The notion of iterative minimal models of strictly stratified logic programs happens
to be a special case of the notion of model of Prioritized Circumscription. The
relationship between Prioritized Circumscription and iterative minimal model has
been shown in [94] through the relationship between Prioritized Circumscription
and perfect models of stratifiable logic programs. Prioritized Circumscription has
been introduced by [83] and further investigated by [73]. The model theoretic
characterization of Prioritized Circumscription is presented below.

Negation in rule-based database languages
•

57

Definition 7.7 (Model of prioritized circumscription). Let d = (Fun, Pred) be a first
order language and $ be a set of first order formulas over d. Let Pred, . .. Predn be
a partition of the set of predicate symbols Pred. A model M of $ is a model of
Prioritized Circumscription of $ with respect to priorities Pred, > ... > Predn iff
for i = 1 ... n,

lWiu;-. Pred, is minimal'3 in the set
N N is a model of $, and

IU;-. Pred, M N
IU;=: PredJ = IU;:: Pred,'

Intuitively, a model of Prioritized Circumscription of $ with respect to Pred, >
... > Predn is a model that "first" minimizes the truth offacts related to the predicates
in Pred" and then, with the interpretation of the facts related to predicates in Pred,
being fixed, minimizes the truth of facts related to the predicates in Pred2 • •••

Definition 7.7. together with the definition of iterative minimal models of strictly
stratified logic programs gives a strong intuition of the way that the declarative
semantics of stratifiable logic programs can be defined in terms of Prioritized

• •• Circumscnptlon.

Theorem 7.8 (przymusinski [94]). Let {f} be a stratifiable logic program and let
P;* = ({f} I> Pred\) ... ({f} n, Predn) be a strict stratification for {f}. Then, the iterative
jixpoint of {f} is equal to the model of Prioritized Circumscription of {f} with respect to
Pred\ > ... > Predn •

Note that a strict stratification for {f} is needed in Theorem 7.8. The proof of this
theorem can be derived from the proof that the perfect model of a stratifiable logic
program is equal to the model of Prioritized Circumscription with respect to
Pred, > ... > Predn [94]. In fact, in the context of logic programs, the notion of a
perfect model is introduced as a conceptually simpler and more natural definition
of model of Prioritized Circumscription.

Before presenting the perfect model semantics of logic programs, it should be
mentioned that the semantics of stratifiable logic programs has also been defined
using another form of circumsciption, namely Pointwise Circumscription [74].

7.4. Perfect model

From a technical point of view, perfect models are defined by deriving from the
syntax of the logic program, a relation, called the priority relation, on the elements
of the Herbrand base. This priority relation is, in turn, used to derive another
relation, called the preferability relation, on the f.o. models of the program. Under
certain condition, the preferability relation is a partial order and a perfect model
is a minimal model with respect to preferability.

The definition of the priority relation is motivated by the two following principles.
(1) The consequent of a rule r should have strictly lower priority (for minimiz

ation) than a negative premise of the rule r.

13 With respect to set inclusion.

58 N. Bidoi,

(2) The consequent of a rule r should have priority not higher than a positive
premise of the rule r.

Let us try to rephrase the first principle. Consider a propositional rule r with
head A and with ---,B in its body. Then one should first minimize the truth of B
(which leads us to prefer the models in which B is false and to select these models
if some exist) and then minimize the truth of A (which leads us to prefer among
the preceding collected models the ones in which A is false). Intuitively, principle
(1) is made in the same spirit as the one used to motivate stratification, that is,
"predicates must be completely defined before they can be used negatively". The
nature of principle (1) is slightly different because it does not express any syntactical
constraint on the program. Anyway, it will be shown that principle (1) leads to
requiring the (local) stratification of the programs.

Definition 7.9 (Dependency and priority relation). Let ~ be a logic program over the
language d. The dependency relation on 00.91 associated with ~, denoted by ~"", is
the transitive closure of the binary relation

{(A, B)lrE InsLP, head(r)=A and BEpos(prem(r»u---,.neg(prem(r))}.

The priority relation on 9lJd associated with ~,denoted by <~, is the binary relation
(<"qp 0 ~'lP) U (:S;;qp 0 <"'lP) where

<~ = {(A, B) IrE InsLP, header) = A and BE neg(prem(r))}

and

Rei 0 Rei' = {(A, B) I (A, C) E Rei and (C, B) E Ren,

with Rei and Rei' binary relations. 14

Intuitively, while considering the precedence graph associated with ~, we have:
A ~ 9" B if there exists a path from B to A and A < 9" B if there exists a path from B
to A going through a negative edge.

The priority relation among ground atomic formulas is used to induce a relation
on the models of the program as follows.

Definition 7.10 (Preferability relation and perfect model of a logic program). Let ~
be a logic program. The preferability relation on the set of f.o. models of ~f.o.
associated with ~, denoted <"" is defined by

M<i¥'N iff M~N and VAEM-N,3BEN-M A<i¥'B.

A model M of ~f.o. is a perfect model of ~ iff there exists no model N of ~f.o. such
that N <i¥'M.

14 The operation 0 defined here is similar to the relational database join operation.

Negation in rule·based database languages 59

One should notice that preferability may only hold between distinct models of
the program and thus is antirefiexive by definition.

As it is shown in [94], not all logic programs can be assigned a meaning under
the perfect model semantics. In other words, a logic program may not have a perfect
model. An example is given below of such a logic program.

Example 7.11. Let us consider the propositional logic program ~ = {A:-not B,
B:-notA}. Then, we have: A:S:;gI>B, B:S:;gI>A and A<gI>B, B<gI>A. ~ has three f.o.
models, namely M) = {A}, M2 = {B} and M3 = {A, B}. Thus, M) <gI>M3 , M2 < gl>M3 ,

M) <gI>M2 and M2 < gl>M). Each model of ~ has a preferred model, thus ~ has no
perfect model.

However, it should be noted that:

Lemma 7.12. A logic program ~ has at most one perfect model.

A class of logic programs having a perfect model has been exhibited in [94].
Unsurprisingly, we have:

Theorem 7.13 (Przymusinski [94]). If ~ is a locally stratifiable logic program then ~
has a unique perfect model.

The proof of this theorem utilizes the fact that, if < fJ' is noetherian (i.e. if there
exits no infinite increasing sequence) then the priority relation < fJ' and the preferabil·
ity relation <fJ' are (strict) partial orders. As a matter of fact, local stratification

entails that <fJ' is noetherian.
It should be emphasized here that local stratification is a sufficient condition for

the existence of a perfect model. However, a logic program may not be stratifiable
and still have a perfect model. This is illustrated by the following example.

Example 7.14. Let us consider the propositional program ~ = {A :- not A}. We
simply have that A:s:; g>A and A < g>A. Anyway, because the preferability relation is
antirefiexive, the unique f.o. model M = {A} of ~ is a perfect model. Note that ~

is not stratifiable.

Now let us consider the class UnstracPerfect of logic programs that are
unstratifiable but still have a perfect model. Intuitively, this class is "small" which
can be explained by the fact that the definition of a perfect model closely follows
the definition of stratification. Again from a very intuitive point of view, programs
in UnstraCPerfect contain recursive negation in a very restrictive form, that is, of
the form A <gI>A.

As a matter of fact, the class UnstracPerfect does not include dynamically
stratifiable logic programs (which are unstratifiable at the same time). This remark

60 N. Bidoit

can be illustrated by considering the logic program Even_R of Example 4.18. Recall
that Even_R is not locally stratifiable. It can be easily checked that none of the
models of Even_R is perfect.

The need for an extension of the notion of a perfect model has been strongly felt
and a first attempt to provide such an extension has been proposed in [92]. More
recently, a major and interesting extension has been investigated in [96] which leads
us to redefine the well-founded semantics.

To conclude this section, let us now examine the perfect model semantics with
respect to minimality and supportedness. In [94], it is shown that:

Theorem 7.15 (przymusinski [94]). A perfect model of a logic program rJ' is a minimal
model (with respect to set inclusion) of !/PIa ..

As a consequence, in order to show that a model is perfect, it suffices to show
that there exists no minimal model preferable to it.

While perfect models enjoy the minimal model property, a perfect model of a
logic program !/P may not be a supported model of !/P. Consider the program !/P of
Example 7.14 above. Notice that the perfect model ~1 of this program is not a
supported model of !/P. Notice also that this program is not stratifiable.

Of course, perfect models of locally stratifiable programs enjoy supportedness.
This directly follows from the equivalence between perfect model semantics and
iterative fixpoint semantics for the class of stratifiable logic programs established
by [94] and from the equivalence between perfect model semantics and default
model semantics for the larger class of locally stratifiable logic programs established
by [14].

Theorem 7.16 (przymusinski [94]). Let!/P be a stratifiable logic program. Then, the
iterative jixpoint of!/P is equal to the perfect model of!/P.

It should be mentioned that the notion of a perfect model has been defined and
investigated for disjunctive logic programs (with negation). A disjunctive rule is a
rule whose head is a disjunction of positive literal.

In order to define perfect models of disjunctive logic programs, a third principle
is added to the two principles stated at the beginning of this subsection:

(3) Predicates occurring in the head of a given rule should have the same priority.
Thus in Definition 7.9 the dependency relation associated with !/P needs to be

completed by the couples (A, B) where A and B are in the head of some rule in
!/P. The definition of perfect model is unchanged.

The notion of stratified programs is also slightly generalized in order to deal with
disjunctive programs. Intuitively, it is required that predicates (or positive facts)
occurring in the head of a given rule should belong to the same stratum. Of course
stratification ensures the existence of at least one perfect model for disjunctive logic
program. A disjunctive logic program may have more than one perfect model.

We limit ourself to presenting an example.

Negation in rule· based database languages 61

Example 7.17 (Przymusinski [94]). Let us consider the following disjunctive logic
program:

Happy =

HaL Vacation(Jones),
Goto_Australia(x) v Goto_Europe(x) :- Has_ Vacation(x),
Unhappy(x) : - not Goto_Australia(x),
Unhappy(x) :- not Goto_Europe(x).

Perfect models of a disjunctive logic program are among the minimal models of
that program. Here the f.o. notation of Happy has three minimal models, namely:

M J = {HaL Vacation(Jones), Goto_Australia(Jones), Unhappy(Jones)},

M2 = {Has_ Vacation(Jones), Goto_Europe(Jones), Unhappy(Jones)},

M3 = {HaL Vacation(Jones), Goto_Australia(Jones), Goto_Europe(Jones).}

Because Unhappy < Happy Goto_Australia and Unhappy < Happy Goto_Europe, we
have:

Moreover, the two models M\ and M2 are not comparable. It follows that these
two models, M J and M 2 , are the perfect models of Happy. Finally, it is quite easy
to check that the disjunctive program Happy is stratifiable.

8. Default and stable semantics

In this section, we shall discuss two equivalent approaches for defining the
declarative semantics of logic programs which are both based on non-monotonic
logic. The first approach, called default semantics was proposed in [15, 14] and is
based on Reiter's Default logic [98]. The second approach, called stable semantics
was proposed in [51, 53] and is based on Moore's Autoepistemic logic [87], which
in its turn is based on ideas from [39].

First of all, the reader should be informed that there is nothing very deep in the
fact that the stable model semantics and the default model semantics for logic
programs are equivalent. This is a straightforward consequence of the equivalence
between Autoepistemic logic and Default logic in generaL The equivalence has been
recently exhibited in [64].

The two approaches follow a quite classical process. A systematic translation of
logic programs into default/ autoepistemic theories is provided. (This resembles
Clark's completion approach where a first order theory is associated to a logic
program.) Then the semantics of logic programs is defined in terms of the
default/ autoepistemic translation of the programs, that is in terms of
"extension"/"stable expansion" of the translations. Since our purpose is not a
review of non-monotonic logics, we do not detail the foundations of default logic

62 N. Bidait

and autoepistemic logic. Neither do we give details on the translations of the
programs into the respective formalism. Such presentations have been provided in
[15, 14] concerning the default logic approach and in [51, 53] concerning the
autoepistemic approach.

We limit ourself to a brief intuitive presentation of the motivations which lead
to investigate default logic for defining the declarative semantics of logic programs.
The motivations leading to the use of autoepistemic logic are very similar.

Default logic has been introduced by Reiter [98] in order to formalize default
reasoning. Default reasoning is a fundamental component of common sense reason
ing and it is a form of non-monotonic reasoning. Default logic allows one to reason
about real world situations whose descriptions may be incomplete and provides a
way to infer more than what these descriptions allows. These additional inferences
are determined by special rules called default rules. Default rules have premises
(properties that need to be "proved" in order to activate the rules), justifications
(properties that need only to be consistent with all the properties that can be inferred)
and of course a consequence.

Indeed, the Closed World Assumption [97] is an instance of default reasoning.
Making the Closed World Assumption corresponds to the choice of describing real
world situations in an incomplete manner: only positive (true) information is
specified. From a database point of view, this choice can be motivated by "common
sense". For instance in order to define a property, it seems more natural, to give
the list of entities satisfying the property than to give both the list of entities satisfying
the property and the list of entities that fails to satisfy the property. Thus the Closed
World Assumption simplifies tremendously the representation of data.

Now, while data description is "incomplete", the Closed World Assumption
entails a second fundamental principle: complete knowledge of the world situation
described is assumed. Intuitively, this means that, although the definition of a
property is limited to the list of entities satisfying it, one should be able to say for
any entity whether the property holds. It is probably unnecessary to recall that first
order logic does not allow one to infer negative facts from a set of positive facts
for example. This is where default logic (and default rules) intervene: in order to
be able to derive negative information from the incomplete description, one resorts
to default rules, called CWA-default rules, of the form: if it is consistent to assume
that an entity does nOf satisfy a property, then infer that this entity does not satisfy
the property.

When properties are specified by rules rather than extensively, CW A-default rules
are obviously still needed and rules having negative premises have the status of
default rules, or in other words, negative premises are treated like justifications.

The use of default logic for defining the declarative semantics of logic programs
has been first investigated in [18, 19] where positive disjunctive programs are
considered. It is shown there that this approach is equivalent to the Generalized
Closed World Assumption [84]. The use of default logic has been extended to logic
programs with negation in [15].

Negation in rule.based database languages 63

For the sake of simplicity, we prefer to give, in the current paper, a definition of
stable/ default models that does not require the introduction of autoepistemic logic
or default logic. A unique formalism is adopted for this presentation. We shall just
ask the reader to keep in mind that the notion of a stable model and the notion of
a default model originate from ideas developed for non-monotonic and common
sense reasoning [39, 98] and from the observation that the Closed World Assumption
is a form of default reasoning.

We proceed now to the formal presentation of the stable/ default semantics of
logic programs. First we need to draw the reader's attention to the fact that the
stable/ default semantics of a logic program is given by some model of (the first
order notation of) the program and that models are required to be represented by
completed Herbrand interpretation.

Definition 8.1 (Stable/ default model of logic programs). Let {J} be a logic program.
A stable/default model of {J} is a completed model "tl such that pos("tl) = T'/,("tl).

From the point of view of default logic, if we want to motivate the definition of
a stable/ default model, we would say that a default model "tl of a logic program
is a model whose negative part neg("tl) leads to compute (by means of T~) a set
of positive facts pos("tl) consistent with "tl. Indeed, "T~("tl) is a superset of pos("tl)"
means that positive facts have been produced by T'/, which are in contradiction
with neg("tl). Now, "T'/,("tl) is a subset of pos("tl)" means that the CWA is not
taken into account because the complement of T'/,("tl) is a superset of (and is
inconsistent with) neg("tl).

The definition above can be rewritten as follows.

Lemma 8.2. The completed interpretation "tl is a stable/ default model of the logic
•

program {J} iff there exists i;;;:: 0 such that "tl ="tll where the sequence ("tlI)(O,,"i) is

defined by

"tl0 = neg("tl),

Note that the sequence ("tli)(O"'i) defined above always converges even when "tl
is not a stable/ default model of {J}. It is an increasing sequence of sets of literals
thus, its limit is a subset, not necessarily consistent, of gJ U l.gJ. (For instance if
we consider the logic program {A: - not B} and the completed interpretation "tl =

{,A"B}, the limit of the sequence associated with {J} and "tl is the inconsistent
set of facts {lA, A, IB}. Thus a stable/ default model is characterized by the fact
that the limit of the sequence is a completed interpretation.

In [53], the definition of a stable model is given in a slightly different and less
concise form. The proof of the equivalence of Gelfond's definition and the above
definition can be found in [17].

64 N. Bidoit

Example 8.3. Consider the logic program Even_R presented in Example 4.18 and
the completed interpretation M corresponding to the intended meaning of that
program (this intended completed interpretation has already been characterized as
the well-founded model of Even_R). It is rather immediate to check that "tt

2 = "tt.

Thus .M is a stable/ default model of Even_R. In this particular case, "tt is the unique
stable/ default model of ~.

An interesting characterization of the stable/default model has been recently
proposed in [112]. This characterization is based on:

(1) the use of the dual representation of Herbrand interpretation as a set of
positive facts, that is, a Herbrand interpretation is represented by the set of negative
facts corresponding to the ground atomic formulas false in this interpretation. -(2) the use of the operator Sf!> presented in Section 5.

Theorem 8.4. A completed model .M of fPf.o. is a stable/ default model of the logic -program fP iff neg(.M) is a jixpoint of Sf!>.

The proof is immediate from the definitions of a stable model and from the -definition of Sf!>,
As discussed in [14, 16, 17, 53] and as suggested by the above remark, not all

logic programs can be assigned a meaning under the stable/ default model semantics.
In fact, there are two kinds of programs to which the stable/ default model semantics
is not applicable. The first kind are the programs that have no stable/ default model.
These programs are called inconsistent. The second kind are the logic programs
that do have more than one stable/ default model. These programs are called
ambiguous. Very simple programs are presented below to illustrate the phenomenon.

Example 8.S. (1) Let us first consider the logic program ~ = {A:- not A}. Recall
that this program has a unique f.o. model given by the completed interpretation
{A}. A e T~({A}), thus ~ has no stable/ default model.

(2) Consider now the program fP = {A :- not B, B:- not A}. This program has
three f.o. models, namely "ttl = {A, ,B}, .M2 = {,A, B} and "tt3 = {A, B}. Note that
pos(.M t) = {A} = T~(.Mt) and pos(.M2) = {B} = T~(.M2)' while POS("tl3) = {A, B} ¢

T~(.M3) = 0. Thus ~ has two stable/ default models.

The interest of the stable/default model semantics lies in its applicability to a
class of logic programs which is wider than the class of (locally) stratifiable logic
programs. Note that the unstratifiable logic program Even_R has a unique
stable/ default model. The class of locally stratifiable logic programs is included in
the class of logic programs having a unique stable/ default model. The stable/ default
model semantics generalizes the standard semantics of positive logic programs and
the iterative fixpoint semantics of stratifiable logic programs.

Negation in rule-based database languages 65

Theorem 8.6 (Bidoit and Froidevaux [14], Gelfond and Lifschitz [53]).
(1) If g} is a locally stratifiable logic program then g} has a unique stable/ default

model.
(2) If g} is a stratifiable logic program then the (unique) stable/ default model of

g} is equal to the completion of the iterative fixpoint of fl>.

(3) Ifg} is a locally stratifiable logic program then the (unique) stable/ default model

of g} is equal to the completion of the perfect model of g}.

The logic program Even_R given in Example 4.15 and which defines even numbers,
illustrates the applicability of the stable/ default semantics to unstratifiable logic
programs. This example also gives an indication of the relation between the
stable/ default model semantics and the well-founded semantics. The unique
stable/ default model of the program Even_R is equal to its well-founded model.

A particular effort has been put into characterizing the class of logic programs
that do have a unique stable/ default model. Indeed, only subclasses have been
exhibited and the following result shows that the problem is a difficult one.

Theorem 8.7 (Bidoit and Froidevaux [17]). Determining whether a propositional logic

program has a stable/ default model is a NP-complete problem.

The largest class of programs so far shown to have a unique stable/ default model
is the class of effectively (or dynamically) stratifiable logic programs.

Theorem 8.8 (Bidoit and Froidevaux [17]). Iffl> is effectively stratifiable then fl> has

a unique stable/default model.

Recall that checking whether a program is effectively (or dynamically) stratifiable
can be done in polynomial time (in the size of the total number of premises in the
program) and in the worst case, requires to compute the entire well-founded model
of the program.

Although effective stratification ensures the existence and uniqueness· of a
stable/ default model, clearly it is not a necessary condition. The program given in
the following example provides a logic program which is not effectively stratifiable
and which has a unique stable/ default model.

Example 8.9. Consider the logic program g} 4 == {A : - not e, B: - not A, e:
not A & not B} of Example 3.14. It is immediate to check that EFF~4 == ~4 thus
because g} 4 is not stratifiable, it is not effectively stratifiable. However, g} 4 has a
unique stable/default model, namely the completed interpretation {A, ,B, ,e}
which as a matter of fact corresponds to the unique fixpoint of T~4. Note that the
well-founded model of g}4 is the empty partial interpretation (which can be inter
preted as "the well-founded semantics is not able to assign a meaning to the program
g}4").

66 N. Bidoir

Recall that effective stratification characterizes exactly the class of logic programs
whose well-founded model is a completed interpretation (a 2-valued model). In fact
there exists a strong relationship between the stable/default model semantics and
the well-founded semantics.

Theorem 8.10 (Bidoit and Froidevaux [17], VanGelder et al. [115]).
(1) If the well-founded model At of 'lP is total (i.e. is a completed interpretation)

then At is the (unique) stable/default model of 'lP.
(2) If'lP has a unique stable/default model At then the well-founded model of'lP is

included in At.

Note that the converse of statement (2) does not hold simply because a logic
program always has a well-founded model (possibly empty) whereas it may not
have a stable/ default model.

Finally, it is also worth noticing that:

Theorem 8.11 (Bidoit and Froidevaux [14], Gelfond and Lifschitz [53]). Let 'lP be

a logic program and let At be astable/default model of'lP. Then:

(1) At is a minimal model of 'lPr.o., and

(2) At is a supported model of'lP.

Recall here that positivist (minimal and supported) models of a logic program
'lP are fixpoints of T~. Thus the theorem above just says that stable/ default models
of 'lP are particular fixpoints of the immediate consequence operator T~ associated
with 'lP.

To conclude this section, note that the notion of a default model has been defined
for disjunctive logic programs. The extended notion of stratification has been used
to characterize a class of disjunctive logic programs having (at least) a default
model. Unsurprisingly, it has been shown in [14] that the default model semantics
and the perfect model semantics coincide for the class of stratifiable disjunctive
logic programs.

9. On the expressive power of rule-based query languages

The focus of this section is on the expressive power of the various logic program
ming semantics defined throughout the paper. In this section, logic programs are
viewed as specifying queries and each semantics (iterative fixpoint, well-founded
semantics, inflationary semantics) defines a distinct query language.

The problem of defining a "natural" semantics of negation cannot be separated
from the problem of defining sufficiently expressive query languages. Recall indeed
that the introduction of negation in logic programs has been motivated by the
inability of positive logic programs to define, for instance, the complement of the
transitive closure. The problem of providing a suitable semantics of negation has

Negation in rule-based database languages 67

retained most of the researcher's attention, concentrating on the "natural" aspects
of the proposed semantics and neglecting the expressive power aspect. It is only
recently that the expressive power of these languages has been studied in more
detail [2, 8, 7, 66, 63, 112].

9.1. Minimal background

Querying occupies a central place in the history of database technology and
constitutes by itself a domain. The literature [37, 11, 28, 29, 32, 61, 110] offers a
large place to the theory of database queries.

For the purpose of the presentation, we briefly present classes of computable
database queries. The following well-known database query languages are briefly
described: First Order queries (FO) [37], Fixpoint queries (FP) [29] and Inflationary
Fixpoint queries (IFP) [57].

Intuitively, a query defines a mapping from the set of instances of a (input)
database schema into the set of instances of a (output) database schema. The
restriction that the output database schema be a single relation schema is frequently
stated but not significant for the discussion. A database schema is a pair (D, fJl)
where D is a finite set of values and fJl is a finite set of predicate symbols. An
instance of a database schema (D, gz) is simply a finite relational structure (D, I)
where 1 is an "interpretation" of the predicate symbols in PJi (the reader can see 1
as a Herbrand interpretation where the constant symbols are the elements of the
domain D and where no other function symbols are allowed).

The two major questions to examine are:
• What does it mean to be a "reasonable" query?
• What queries are expressible in a given query language? (and, are all reasonable

queries expressible in the language?)
Clearly, a query cannot be an arbitrary mapping. A computable query [28] should

satisfy the following basic features:
(1) it is a partial recursive function p, and
(2) p should map isomorphic input database instances to isomorphic output

database instances in order to preserve symmetry among the elements in the database
and in order to avoid considering queries whose answer would depend on the
implementation of relation instances as ordered sets. Also this allows one to avoid
queries inventing values.

A first order query is represented by an expression of the form {x I <I> (x)} where
<I> is a first order formula on the language constructed from the predicate symbols
in the database schema. Given an input database instance (D, 1), the output relation
instance produced by the first order query {x I <I> (x)} is the set of facts OULp(c) such
that <I>(C) is satisfied by (D, 1).

In the following, the first order query language is denoted FO.
In the database community, first order queries have a favored place and the

expressive power of database query languages are often measured with respect to
the expressive power of FO. The notion of complete query language is indeed

68 N. Bidoit

defined in terms of "as expressive as Fa". The relational algebra is an instance of
a complete database query language since it is as expressive as FO [37].

Note that FO defines a strict subclass of computable queries. First order queries
are, of course, computable queries. However, it is easy to note that all computable
queries are not in Fa. The well-known transitive closure query is an instance of a
computable query which is not definable by a FO query.

A natural way to increase the expressive power of FO is to add a fixpoint construct.
Let P be a predicate symbol not in the database schema (a variable predicate
symbol) and let c/J(x) be a f.o. formula for P (the arity of P is assumed to match
the length of x).

We say that c/J(x) is positive for P iff each occurrence of P in c/J is under an even
number of negation.

We say that c/J(x) is monotone for P iff given two input databases (D, I) and
(D,I') which only differs on P in such a way that 1 on P is included in I' on P,
then the answer of the f.o. query {x I c/J(x)} on (D, I) is included in the answer of
the f.o. query {x I c/J(x)} on (D, 1').

The fact that the formula c/J(x) for P is positive entails that it is monotone and
the monotonicity of c/J(x) entails that the equation P(x) 4) c/J(x) has a least fixpoint
on any instance database over the schema containing the predicate symbols in c/J
except P.

The least fixpoint of c/J(x) on (D, I) is the instance database ouLP (over the
schema containing the predicate symbol P) where ouLP is classically defined by
ouLP = U;:l OULp', and

(1) ouLpo = 0, and
(2) OULP)+l is the output instance produced by applying the f.o. query c/J(x) on

(D,luouLp)).
Informally, a constructor fp is introduced which, applied to a predicate P and a

formula c/J where c/J is positive for P, constructs the least fixpoint of the formula
(P(x) 0 c/J(x)). This construction is denoted by fp[P, c/J(x)].

Then jixpoint formulas are obtained from the first order constructors and the
fixpoint constructor fp. Ajixpoint query is an expression of the form {x I c/J(x)} where
c/J(x) is a fixpoint formula.

For example, assume that the arcs of a graph are represented by the binary
predicate symbol Arc. The transitive closure of the graph is expressed by the fixpoint
query {(x, y) I fp[tc_Arc, c/J(x, y)]} where

c/J(x, y) is the positive formula Arc(x, y) v 3z (tc_Arc(x, z) 1\ Arc(z, y)).

In the following the fixpoint query language is denoted by FP. As a matter of
fact, FP is a strict subclass of computable queries. It is noted in [32] that: "One
capability missing from fixpoint queries is that of counting. For example fixpoint
queries cannot tell if the size of a relation is even or odd ... ". It should be stressed
here that the complement of a fixpoint query can be expressed itself as a fixpoint
(because finite domains are considered) [59].

Negation in rule-based database languages 69

Other query languages can be defined using fixpoints. The first "extension" that
one can consider is obtained by allowing the application of the fixpoint construct
not only to positive formulas (formulas in which the variable predicate symbol
occurs only under even number of negations) but to monotonic formulas in general.
Although there exists some monotonic first order formula which is not equivalent
to any positive first order formula [5], it turns out that adding the fixpoint construct
to the first order constructs on monotonic formulas yields the same class of queries
as FP (because finite domains are considered) [57]. The problem arising here is
that monotonicity is not a decidable property.

The second "extension" consists in allowing any formula (monotonic or not) and
adding the inflationary construct to the usual first order constructs. Thus, given an
input database instance (D, I), the output relation instance produced by ifp[P, «/J(x)]
is the set of facts ouLp = U~1 ouLp, where:

(1) oULPo=0 and
(2) OULp,+1 is the union of ouLpj and of the output relation produced by applying

the query «/J(x) on (D, luouLp,).
If the formula «/J(x) is monotone, its least fixpoint coincides with its inflationary
fixpoint.

The query language obtained by adding the inflationary fixpoint construct to the
first order constructs is denoted by IFP.

Although IFP seems more general than FP because any formula is allowed, once
again it turns out that IFP = FP (because finite domains are considered) [57].

9.2. Expressive power of rule based languages for databases

In the following, logic programs denote queries_ This is done by partitioning the
set of predicate symbols into two sets:

(1) a set of "EOB" predicate symbols which intuitively correspond to relation
instances stored in the database, and

(2) a set of "lOB" predicate symbols which are defined by the (non-unit) rules
of the program.

Given a logic program I!P, it is assumed that the EOB predicate symbols occurs
only in the body of rules. One of the lOB predicate symbols P is distinguished and
roughly speaking is used to collect the answers of the query specified by I!P. We say
that rJ> is a logic program for P.

Now, given a logic program I!P for P and a (input) database instance (D, I), the
output relation database (D, J) produced by I!P with respect to the" x" -semantics
is defined in a natural way: (D, J) is the restriction on the predicate symbol P of
the "x"-fixpoint (or "x "-model) of the logic program l!Pul.

For the well-founded semantics, because the well-founded model of a logic
program is a partial Herbrand model and thus contains positive and negative literals,
the restriction on the predicate P of the well-founded model of I!P u 1 designates
the positive portion of the literals related to the predicate symbol P.

70 N. Bidoil

For example the logic program expressing the transitive closure of a graph where
the arcs are represented by the EDB predicate symbol Arc is the logic program
TC_ARC for the predicate tc_Arc and it contains the two following rules:
• tc_Arc(x, y) :- Arc(x, y),
• tc_Arc(x, y) : - Arc(x, z) & tc_Arc(z, y).

Assume that the database graph contains the following arcs Arc(a, b), Arc(b, a)
and Arc(c, a). The answer to the query specified by TC_ARC for tc_Arc with respect
to the least fixpoint semantics (or with respect to the iterative fixpoint semantics or
the well-founded semantics or the inflationary semantics) is the restriction on tc_Arc
of the least fixpoint (or of the iterative fixpoint, or the positive part of the well
founded model, or of the inflationary fixpoint) of the program obtained by adding
the facts Arc(a, b), Arc(b, a) and Arc(c, a) to the two above rules, that is
{tc_Arc(a, b), tc_Arc(b, a), tc_Arc(c, a), tc_Arc(a, a), tc_Arc(b, b), tc_Arc(c, b)}.

A logic programming query language (or rule based query language) is character
ized by the type of rules allowed (positive rules, stratifiable programs) and also by
the semantics considered. In the following, we consider the following query
languages.
• Datalog is the query language obtained by considering positive logic programs

together with the standard least fixpoint semantics presented in Section 3.
• Datalog~~:, is the query language obtained by considering stratifiable logic pro

grams together with the (standard) iterative fixpoint semantics presented in Section
4 (or any other semantics presented in the paper with the exception of the
inflationary semantics).

• Datalog~~fl_f is the query language obtained by considering logic programs
(without any syntactical restriction) together with the well-founded semantics
presented in Section 5.

• Datalogi:.fiB is the query language obtained by considering logic programs (without
any syntactical restriction) together with the inflationary semantics presented in
Section 6.
It is quite easy to note that:

Lemma 9.1. FO and Datalog are not comparable.

Simply:
• The complement of a relation with respect to another relation cannot be expressed

by a Datalog query. However such a query can be expressed for instance in the
relational algebra using the set difference. Since the relational algebra as the same
expressive power as FO, such a query is a first order query.

• The transitive closure cannot be expressed by a FO query. This has already been
highlighted. However such a query can be expressed by a positive logic program.
Note that the class of conjunctive queries (which are obtained by removing

negation -, and universal quantification 'tJ from the first order construct in FO) is
a strict subclass of Datalog (and of course of FO).

Negation in rule-based database languages 71

Theorem 9.2. Datalog is a strict subclass of FP.

This last result is a consequence of the fact that a Datalog query can be shown
to be equivalent to a fixpoint query where the fixpoint construct is applied on a
first order formula containing no universal quantification or negation [30, 105].
Thus Datalog queries cannot express FO queries including universal quantification
or negation.

Intuitively, it is clear that Datalog~~:t has more expressive power than FO and
Datalog. An example of a query which can be expressed in Datalog~~:t but is not
definable in FO or Datalog is the complement of the transitive closure of a graph.
This query is expressed by the stratifiable logic program COMP_ TC_ARC for
comp_tc_Arc whose first stratum is the program TC_ARC and whose second stratum
is formed by the unique simple rule

comp_tc_Arc(x, y) : - not tc_Arc(x, y).

Indeed, the iterative fixpoint of a stratifiable logic program is a .:i: relation [63].

Thus:

Lemma 9.3. FO and Datalog are strict subclasses of Datalog~~:t.

However, it has been shown in [63] that Datalog~~:t cannot express all FP queries.
In particular, it cannot express fixpoint queries involving fix points over universal
quantifiers.

Theorem 9.4 (Kolaitis [63], Dahlaus [38]). Datalog~~:t is a strict subclass of FP.

A FP query which is not expressible in Datalog~~:t is exhibited in [63]: it uses
the "game tree" structures of [30]. We prefer to present here a simpler example
that has been utilized in [8] for another purpose.

Once again consider a graph whose arcs are represented by the binary predicate
symbol Arc(x, y). A node of the graph is a good one if all its incoming arcs originate
from other good nodes. The query "finds all good nodes in the graph" is expressed
by the following FP query fp[Good, cI>(x)] where

cI>(x) is the first order formula (Vy Arc(y, x) ... Good(y)).

There exists no stratifiable logic program which expresses this query.
Indeed, the separation of FP and Datalog~~:t is tight because every formula of

fixpoint logic over a vocabulary having unary predicate symbols only is equivalent
to a first order formula on finite structure.

Apt and Blair [2] provides a study of the recursion theoretic complexity of the
iterative fixpoint of stratifiable logic programs. This study is carried on in the context

72 N. Bidai,

of finitely generated Herbrand universe (at leat one function symbol in the language).
The main result is that:

Theorem 9.S (Apt and Blair [2]).
(1) If {JP is a stratified logic program with n strata, then the iterative fixpoint of <!J

· . ~o d IS In" n an

(2) For each n ~ 1 there exists a stratified logic program {JP with n strata whose

iterative fixpoint is I~-complete.

The next language to be examined here is of course Datalog~~fl.f. This language
allows more general forms of logic programs, indeed any logic program. Therefore,
one can expect Datalog ~~'I.f to be more expressive than Datalog~~!,.

In [112], a transformation of FP queries into Datalog~~'I.f queries is provided.
Conversely, the existence of a representation of Datalog~~".f queries by FP queries
is proved. This yields the following interesting result.

Theorem 9.6 (VanGelder [112]). FP and Datalog~~tf have the same expressive power

(for finite domain).

To illustrate this result, we present below the logic program for good_node which
expresses the "good node" query (with respect to the positive part of the well-founded
semantics for logic programs). In order to express this query, a new predicate bad(x)
is introduced. The program is very simple. It consists of the two following rules:
• good_node(x):- not bad(x),
• bad(x) :- Arc(x, y) & not good_node(y).

We emphasize the restriction to the positive part of the well-founded model of
programs in the above result.

In fact, given a graph I (for instance consider the graph given by Arc(a, b),
Arc(b, c), Arc(c, a) and Arc(d, e»:

• The logic program {JP used to compute the answer of the "good node" query and
obtained by adding I to the two above rules is not necessarily dynamically
stratifiable and,

•. As a consequence, its well-founded model is not total (i.e. is not maximally
consistent) which means that the "truth" of some facts (for instance here, the
truth of good_node(a» remains unknown.

• More precisely, let us consider the completed answer" to the "good node"
query, the restriction of the well-founded model of {JP to the facts (positive and
negative) related to the predicate symbol good_node is not equal to J.
Here ,,= {good_node(d), good_node(e), -,good_node(a), -,good_node(b),
-,good_node(c)} and although the positive part pose,,) of " is included in the
well-founded model of {JP, J itself is not included in the well-founded model of
{JP. The well-founded model of {JP contains none of the negative facts in J.

• This leads also to the fact that the rules of {JP fail to express the "good node"
query with respect to the stable/ default semantics. It suffices to note that for our

Negation in rule· based database languages 73

example @> u {Arc(a, b), Arc(b, c), Arc(c, a), Arc(d, e)} has no stable/ default model.
The above discussion comes as an illustration for the remark from [112]: "This
suggests the general rule that the alternating fixpoint partial model [i.e. the well·
founded model] captures the negation of positive existential closures (such as the
transitive closure), but not the negation of positive universal closures."

As for Datalog~~fl.f' the Datalog:;,~g query language allows any logic program to
specify query. Although inflationary models of logic programs are less "natural"
than well-founded models, a prime advantage of Datalogr;,~g lies in its expressive
power.

Theorem 9.7 (Abiteboul and Vianu [8], Kolaitis and Papadimitriou [66]). Datalog:;,~g
and IFP (= FP) have the same expressive power.

We reproduce here the logic program of[8] that is used to illustrate the simulation
of IFP (= FP) by Datalog:;,~g. The following logic program for good_node(x) does
express the "good nodes" query (with respect to the inflationary semantics for logic
programs).
• bado(x) : - Arc(x, y) & good(y),

• Co,

• good_node(x) :- not bado(x) & Co,

• good_node(x) :- result(x, t),
• good(x, t) :- good_node(x) & good_node(t) & not old(t),
• old(x):- good_node(x),
• bad(x, t) :- Arc(y, x) & old(t) & not good(y, t),

• c(t):- old(t),
• result(x, t) : - not bad(x, t) & c(t).

As explained in [8], the above inflationary logic program is designed in order to
simulate the consecutive iterations of the IFP formula ifp[Good, 4>(x)] where

4>(x) is the first order formula ('fly Arc(y,x)~Good(y».

To conclude this section, note that none of the logic programming languages
presented here can express all computable queries defined as the largest set of
"reasonable" queries. Query languages able to express all computable queries are
studied in [28]. More recently the problem is addressed in [7,9] in a larger
framework. Although a presentation of these languages is out of the scope of this
paper, the interested reader should find interesting discussions and results in [7, 8,
9, 32].

10. Concluding remarks

Many aspects and developments of "rule based languages" have not been dis
cussed in the paper which nevertheless are of prime importance.

74 N. Bidoit

In this section, we first motivate our choice not to present the Clark's completion
approach to defining the declarative semantics of logic programs with negation.
Then, we focus our attention on a very important aspect of logic programming with
negation, namely the evaluation procedure of logic programs with negation. Finally,
we say a few words on the extensions of Datalog (in other words the extensions of
positive logic programs) which do not involve (only) adding negation in the premise
of program rules.

10.1. (Why not) Clark's completion

The paper includes neither a presentation nor a comparative discussion of Clark's
completion. Let us briefly explain this choice. While Clark's completion is a funda
mentally important contribution to logic programming, the completion approach
focuses essentially on the following specific problem.

A procedural semantics of logic programs with negation is given by means of the
negation as failure resolution procedure (SLDNF) in [35]. SLDNF is a top-down
evaluation procedure. It is an intuitively simple extension of SLD-resolution which
consists in defining the notion of a proof of a negative elementary goal as the failure
to obtain a proof of the corresponding positive goal. More precisely, the notion of
failure is the reverse notion of success and goal +- not Q succeeds if the goal +- Q
finitely fails while the goal +- not Q finitely fails if the goal +- Q succeeds.

SLDNF is an ineffective evaluation procedure because it is a non-detenllinistic
procedure and a sound implementation of SLDNF would require a depth first search
strategy. Not all queries may be processed by SLDNF. The impossibility of handling
"floundering queries" (negative goals with variables) is a very difficult problem as
well as a very important limitation of SLONF.

Prolog [34, 65, 102] implements a restrictive form of SLDNF in the sense that
Prolog's proofs have a specific form determined by a fixed selection rule on literals
and by a depth first search strategy on rules.

One of the main problems which retains the attention of the logic programming
community is to provide a declarative semantics of logic programs in order to
"validate" the procedural SLDNF semantics. This is testified by the vast number
of papers addressing this problem [e.g., 35, 48, 68, 76, 77, 75, 90].

By a semantics which validates SLONF, is meant a semantics leading to establish
the soundness and completeness results. Intuitively, soundness establishes that
answers obtained by SLDNF evaluation of a query on a logic program are satisfiable
by or derivable from the declarative meaning associated with the program. Complete
ness is the reverse notion. Completeness states that answers satisfiable by or derivable
from the declarative meaning of a logic program can be retrieved by SLONF
evaluation. Soundness together with completeness assure a total correspondence
between the declarative meaning and the procedural meaning of logic programs.
Clark's completion is the main approach investigated for this purpose.

Given a logic program ~, its completion Comp(~) is constructed by considering
a new predicate symbol = for equality, and by considering the first order theory

Negation in rule-based database languages 75

containing the equality axioms plus the completed definition of each predicate
symbol. Intuitively, the completed definition of a predicate symbol is obtained by
replacing the symbol :- ("if") by the logical equivalence (~ ("iff") in the program
rules_ When a predicate P has no occurrence in the program, the universal closure
of -,P(x) is introduced in Comp(9Jl)_

The first obstacle concerning soundness and completeness results of SLDNF with
respect to completion is that Comp(9Jl) may be an inconsistent theory. If Comp(9Jl)
is inconsistent then anything can be derived from Comp(PJI). In particular anything
that can be computed by SLDNF can be derived from Comp(9Jl). Hence soundness
is trivial and meaningless in this case. On the other hand, it is quite clear that if a
query succeeds, it cannot fail at the same time and vice versa. Thus it is rather
obvious that SLDNF is not complete (for logic programs with inconsistent

Comp(PJI».
This obstacle cannot be neglected because the problem of deciding whether

Comp(PJI) is consistent is recursively undecidable.
For consistent (with respect to Comp) logic programs, SLDNF is sound. For

establishing completeness, it is not sufficient to avoid inconsistent programs, it is
necessary to introduce some other restrictions, but this time on the type of queries
(programs) considered. This is essentially due to the fact that even for a logic
program PJI with Comp(PJI) consistent, it may arise that a query Q neither succeeds
nor fails (but has an infinite evaluation tree) and at the same time Q may be a
logical consequence of Comp(PJI).

Restrictions such as hierarchy and allowedness are introduced in order to overcome
that kind of problem and in order to establish the (weak) completeness result.

The "weak" correspondence between the SLDNF procedural semantics of pro
grams and the completion of programs suffers from the following drawback. The
completion approach tends to embody, at a declarative level, the undesirable features
of SLD NF. At the declarative level, the non-termination of the evaluation of a query
Q on a program PJI is conveyed by the non-derivability of Q and the non-derivability
of -,Q from Comp(PJI).

It is commonly asserted that when one writes a logic program 9Jl what one really
has in mind is Comp(PJI). For instance, if one states that "If I come then I will
bring a cake" what one really means is "I will bring a cake iff I come". As it is
nicely discussed in [104], this point of view of the programmer's intention is
justifiable in simple cases but gets less easy to apprehend when the program is more
involved and in particular when the program contains recursive rules.

It is interesting to report here an important result established recently by Kunen
[69]. Intuitively, this result says that the transitive closure of a relation is not definable
by the completion semantics (and cannot be computed by SLDNF). This result
strengthens the remark of [111] that "the usual rules to define transitive closure of
a directed graph did not yield the value false on pairs of nodes not in the transitive
closure." Before presenting an example illustrating this remark, recall that, in the
context of a database, rule based languages have been looked at in order to specify

76 N. Bidoi,

more expressive query languages and specifically to provide languages able to
express transitive closure queries.

Consider a simple graph. The existence of an arc between two nodes a and b in
the graph is represented by asserting Arc(a, b). The usual rules to define the transitive
closure tc_Arc of the relation Arc are:

(a) tc_Arc(x,y):- Arc(x,y),

(b) tc_Arc(x, y) : - Arc(x, z) & tc_Arc(z, y).

Assume that we have the following arcs in the graph: Arc(a, b), Arc(b, a),
Arc(c, a). Let us consider the query +- tc_Arc(a, c).

(1) The SLDNF evaluation of the query +- tc_Arc(a, c) enters an infinite loop
and fails to provide an answer:

(i) The goal tc_Arc(a, c) unifies with the head of rule (b) and, the first new
goal +- Arc(a, z) & tc_Arc(z, c) is obtained.

(ii) The first literal Arc(a, z) of the goal +- Arc(a, z) & tc_Arc(z, c) unifies with
the fact Arc(a, b) and the second new goal generated is +- tc_Arc(b, c).

(iii) The goal+-tc_Arc(b, c) unifies with the head of rule (b) and the new goal
+- Arc(b, z) & tc_Arc(z, c) is obtained.

(iv) The first literal Arc(b, z) of the newly obtained goal +- Arc(b, z) & tc_Arc(z, c)
unifies with the fact Arc(b, a) and it follows that+-tc_Arc(a, c) is the next
goal to be examined. This happens to be the initial goal +- tc_Arc(a, c).

(2) The completed definition of the predicate symbol tc_Arc defined by the rules
(a) and (b) is the following first order formula:

tc_Arc(x, y) (~ (Arc(x, y) v (3z (Arc(x, z) 1\ tc_Arc(z, y»».

Neither tc_Arc(a, c) nor ,Arc(a, c) are logical consequences of the completion of
the program.

(3) (Bottom-Up Evaluation) Let us evaluate the query +- tc_Arc(a, c) in a bottom
up fashion. Simply, the following facts related to the predicate tc_Arc are generated:

tc_Arc(a, b), tc_Arc(b, a), tLArC(C, a),

tc_Arc(a, a), tc_Arc(b, b), tc_Arc(c, b).

The fact tc_Arc(a, c) is not among the generated facts thus the naive bottom-up
evaluation of+-tc_Arc(a, c) returns the answer NO (,tc_Arc(a, c».

(4) The least (Herbrand) model of the program satisfies ,tc_Arc(a, c).

In conclusion, for the class of positive programs, the above examples and dis
cussion show that, from the database point of view; 5 the completion approach is
unsatisfactory. Declarative semantics of logic programs defined in terms of the
logical consequences of Comp(~) or in terms of 2-valued models of Comp(~) as
well as in terms of 3-valued models of Comp(~) all reflect these shortcoming.
Taking the risk to be brutal, we will say that, from the database point of view,

15 We insist: from the database point of view.

Negation in rule-based database languages 77

"interesting" results for logic programs with negation are unlikely to be obtained
using this approach.

Clark's completion and the works related to it are presented and discussed in
detail in [35, 104, 75, 48, 47, 68, 69].

10.2. Evaluation procedures

The previous section on Clark's completion approach and SLDNF introduces
the presentation of evaluation procedures for logic programs with negation. The
purpose of the paper was essentially to discuss the declarative aspects of rule-based
languages with negation. The procedural semantics of logic programs with negation
is nevertheless equally important. One could even find it awkward to dissociate
these two aspects. On the one hand, in order to be able to use a given declarative
semantics, a corresponding procedural semantics is necessary. On the other hand,
it seems unreasonable to define the computation of programs without knowing what
should be computed.

There has been much research into rule-based query evaluation during the past
ten years. Most of this work has concentrated on evaluating recursive queries, that
is queries specified by positive logic programs. The underlying declarative semantics
considered in this context is the minimal model (or least fixpoint) semantics. Various
strategies have been proposed which are reviewed in [23]. In general function
symbols other than constants are ruled out. Restrictions on the programs considered
are made in order to avoid having infinite answers to compute (the use of evaluable
predicates combined with free variables in the head of rules which does not appear
in the body is a source of unsafeness). The major characteristics of these procedures
are: top-down versus bottom-up, and recursive versus iterative. Among the evaluation
procedures proposed, let us quote the naive evaluation procedure which is a
bottom-up iterative strategy and is a direct "implementation" of the immediate
consequence operator, QSQR [113, 114] which is one of the most interesting
top-down recursive strategy, the Magic Sets, Counting and Reverse Counting [22,
24, 107] which belong to the class of optimization strategies.

Concerning stratifiable logic programs and the iterative fix point semantics, most
of the procedures designed for positive logic programs can be easily extended. This
is not really surprising, because a stratifiable logic program is a sequence of
semi-positive logic programs.

In [3], the notion of "interpreter" is formally defined for logic programs. Problems
such as ambiguity and non-computability are identified. Essentially, the contribution
of [3] is twofold. It shows that, if there exists an interpreter for a stratifiable logic
program, then it "computes" the iterative fixpoint model of that program (interpreter
of a stratifiable logic program is not ambiguous). The existence of an interpreter
for stratifiable logic programs is proved, the computability of the interpreter is
guaranteed for stratifiable logic programs without function symbols other than
constants.

78 N. Bido;,

przymusinski [95] introduces SLS-resolution (Linear Resolution with Selection
function for Stratified Programs) as a natural generalization of SLD-resolution from
the class of positive logic programs to the class of stratifiable logic programs.
SLS-resolution is a modification of SLDNF-resolution. In this framework, the
declarative semantics of logic programs is given by the class of all (not necessarily
Herbrand) perfect model models of programs [95]. Considering non-Herbrand
models is motivated by the principle that "positive information not derivable from
the f.o. notation of a program should not be either derivable from the declarative
semantics assigned to the program". Note that for SLS-resolution, an infinite branch
of an SLS-resolution is regarded as failed. As usual, a goal (query) is failed if each
branch of an SLS-tree is (not necessarily finitely) failed. As stated in [95], SLS
resolution can be considered as an "ideal" sound and complete evaluation procedure
for stratifiable logic programs, but it is not effective. Let us have a brief look at
some "effective approximations" of SLS-resolution.

Kemp and Topor [67] propose an extension ofVieille's QSQRjSLD for stratifiable
logic programs. Roughly speaking, the extension is "straightforward" and consists
in forcing the complete evaluation of sub queries issued from negative (ground)
subgoals. The contribution of [67] is to provide an effective query evaluation
procedure which is sound and complete.

In the same spirit, let us quote [106] which proposes an extension of OLD
resolution with tabulation [109].

Bry [26] proposes an extension of the Generalized Magic Set optimization strategy
in order to deal with (loosely) stratifiable logic programs.

Procedural semantics for unstratifiable is still under study. przymusinski [96]
extends SLS-resolution [95] from the class of stratifiable programs (under the
iterative fixpoint model semantics) to the class of all programs (under the well
founded semantics).

Independently, [101] provides a procedural semantics for well-founded programs,
called global SLS-resolution, which extends SLS-resolution [95]. As discussed in
[101], there are three sources of the non-effectiveness in global SLS-resolution:
infinite branches are treated as failed, the SLP-tree for a goal may have an infinite
number of branches and if a goal is indeterminate, global SLS-resolution will recurse
infinitely through negation.

Ross [101] suggests that developing an effective top-down procedure should
provide some fOfm of loop checking to handle the above mentioned problems.
Legay [71] started to investigate this direction and proposes an extension of QSQR
[113,114]. Intuitively, QSQR is modified in order to compute in a top-down manner
founded and potentially founded facts. The loop checking principle of QSQR (a
stack of subqueries) "traps" negative recursion in the same way as it "traps" positive
recursion. This method does not avoid the problem of floundering queries and logic
programs are restricted to those in which variables in head of rules and in negative
premises occur in positive premises.

Negation in rule.based database languages 79

10.3. Other extensions of Datalog

Extending Datalog (in other words, extending positive logic programs) is not
limited to adding negation in the premise of program rules. Interesting extensions,
motivated by various database concepts such as complex objects, updates and
incomplete information, have been investigated.

In the context of complex object adding sets to rule-based query languages has
been investigated by introducing special predicates, data functions or special con
structor like groupings [6, 10, 70]. The language COL [6], for instance, integrates
sets, data functions and negation; its semantics is based on minimal model; because
of sets and data functions, some COL programs may have more than one minimal
model; a notion of stratification is used; finally negation can be simulated using
data functions.

Adding tuple deletion has been recently investigated by allowing negative con
sequences in program rules providing an update oriented extension of Datalog
[7,42].

References

[1] S. Abiteboul and N. Bidoit, Non first normal form relations: an algebra allowing data restructuring,
Comput. System Sci. 33(3) (1986) 361-393.

[2] K.R. Apt and H.A. Blair, Arithmetic classification of perfect models of stratified programs,
Technical Report TR·88·09, University of Texas at Austin, 1988.

[3] K.R. Apt, H. Blair and A. Walker, Towards a theory of declarative knowledge, in: Proc. Workshop
on the Foundations of Deductive Databases and Logic Programming (1986) 546-628; also in [85].

[4] K.R. Apt and M.H. Van Emden, Contributions to the theory of logic programming, ACM 29(3)
(1982) 841-862.

[5] M. Ajtai and Y. Gurevich, Monotone versus Positive, ACM 34(4) (1987) 1004-1015.
[6] S. Abiteboul and S. Grumbach, COL: a logic-based language for complex objects, in: Internat.

Con/. on Extending Data Base Technology (1988) 271-293.
[7] S. Abiteboul and V. Vianu, Datalog extensions for database queries and updates, Technical Report

900, INRIA, 1988; to appear in J. Comput. System Sci.
[8] S. Abiteboul and V. Vianu, Procedural and declarative database update languages, in: Symp. on

Principles of Database Systems, ACM SIGACT·SIGMOD-SIGART (1988) 240-250; to appear in
J. Comput. System Sci.

[9] S. Abiteboul and V. Vianu, Fixpoint extensions of first order logic and Datalog·like languages,
in: Proc. In ternat. Con/. on Logic in Computer Science (IEEE, 1989) 71-79.

[10] C. Beeri et aI., Sets and Negation in a Logic Database Language (LOLl), in: Symp. on Principles
of Database Systems, ACM SIGACT·SIGMOD (1987) 21-37.

[11] F. Bancilhon, On the completeness of query languages for relational data base, in: Symp. Mathemati·
cal Foundations of Computer Science (Springer, Berlin, 1978).

[12] F. Bancilhon, Object oriented database systems, in: Symp. on Principles of Database Systems, ACM
SIGACT·SIGMOD·SIGART (1988).

[13] 1. Banerjee, H.T. Chou, J.G. Garza, W. Kim, D. Woelk, N. Ballou and H.-J. Kim, Data model
issues for object oriented applications, in: ACM Transactions on Database System (1987).

[14] N. Bidoit and C. Froidevaux, General logic databases and programs: default logic semantics and
stratification, Technical Report, LRI, 1987; to appear in J. Inform. and Comput.

[15] N. Bidoit and C. Froidevaux, Minimalism subsumes default logic and circumscription, in: Proc.
Con/. on Logic in Computer Science (IEEE, 1987) 89-97.

80 N. Bidoit

[16] N. Bidoit and C. Froidevaux, More on stratified default theories, in: Proc. European Con! on
Artificial Intelligence (1988) 492-494.

[17] N. Bidoit and C. Froidevaux, Negation by default and unstratifiable logic programs, Technical
Report 437, LRI, 1988; to appear in a special issue of Theoret. Comput. SCI. on Research in
Deductive Databases.

[18] N. Bidoit and R. Hull, Positivism versus minimalism in deductive databases, in: Symp. on Principles

of Database Systems, ACM SIGACT-SIGMOD-SIGART (1986) 123-132.
[19] N. Bidoit and R. Hull, Minimalism, justification and non-monotonicity in deductive databases,

Compu/. System Sci. 38(2) (1989) 290-325.
[20] N. Bidoit, Negation in rule based database languages: a survey (1989).
[21] H.A. Blair, The undecidability of the two completeness notions for negation as failure in logic

programming, in: Ed. Van Canegen, ed., Proc. First Logic Programming Con! (1982) 163-168.
[22] F. Bancilhon, D. Maier, Y. Sagiv and J. Ullman, Magic sets and other strange ways to implement

logic programs, in: Symp. on Principles of Database Systems, ACM SIGMOD-SIGACT (1986) .
•

[23] F. Bancilhon and R. Ramakrishnan, An amateur's introduction to recursive query-processmg
strategies, in: Con! on Management of Data, ACM SIGMOD (1986) 16-52.

[24] c. Beeri and R. Ramakrishnan, On the power of magic, in: Symp. on Principles of Database Systems,
ACM STGACT-SIGMOD-SIGART (1987) 269-283.

[25] F. Bry, Logic programming as constructivism: a formalization and its application to databases,
Technical Report, IR-KB-58, ECRC, 1988.

[26] F. Bry, Logic programming as constructivism: a formalization and its application to databases,
in: Symp. on Principles of Database Systems (ACM, 1989).

[27] G. Bossu and P. Siegel, Saturation, non-monotonic reasoning and the closed world assumption,
Artificial Intelligence 25 (1985) 13-63.

[28] A. Chandra and D. Harel, Computable queries for relational data bases, Comput. System Sci. 25(2)
(1980) 156-178.

[29] A. Chandra and D. Harel, Structure and complexity of relational queries, Comput. System Sci.
25(1) (1982) 99-128.

[30] A. Chandra and D. Harel, Horn clause queries and generalizations, Logic Programming 2(1) (1985)
1-15.

[31] D. Chan, Constructive negation based on the completed database, in: Proc. Tntemat. Con! on
Logic Programming (1988) 111-125.

[32] A.K. Chandra, Theory of database languages, in: Symp. on Principles of Database Systems, ACM
SIGACT-SIGMOD-STGART (1988) 1-9.

[33] P. Cholak, Post correspondence problem and Prolog programs, Technical Report, Univ. of Wise.,
Madison, 1988.

[34] A. Colmerauer, H. Kanoui, R. Pasero and P. Roussel, Un systeme de Communication Homme
Machine en Fran~ais, Technical Report, Univ. d'Aix-Marseille II, Marseille, 1973.

[35] K.L. Clark, Negation as failure, in: H. Gallaire and J. Minker, eds., Logic and Database (Plenum
Press, New York, 1978) 293-322.

[36] E.F. Codd, A relational model of data forlarge shared data banks, Comm. ACM 13 (1970) 377-387.
[37] E.F. Codd, Relational completeness of database sublanguages, in: Data Base Systems (1972).
[38] E. Dahlaus, Skolem normal forms concerning the least fixpoint, in: E. Borger, ed., Computation

Theory and Logic (1987); also in Lecture Notes in Computer Science 270 (Springer, Berlin) 101-106.
[39] D. McDermott and J. Doyle, Non monotonic logic I, Artificial Intelligence J3 (1980) 41-72.
[40] P. Deransart and G. Ferrand, A methodological view of logic programming with negation, in:

Actes du 8eme Seminaire de Programmation en Logique de Tregastel (1989).
[41] W.F. Dowling and J. Gallier, Linear time algorithms for testing the satisfiability of propositional

Hom formulae, Logic Programming 3 (1984) 267-284.
[42] C. de Maindreville and E. Simon, Modelling a production rule language for deductive databases,

in: Con! on Very Large Data Bases (1988).
[43] M. Davis and H. Putnam, A computing procedure for quantification theory, ACM 7 (1960) 201-215.
[44] M.H. Van Emden and R.A. Kowalski, The semantics of predicate logic as a programming language,

ACM 23(4) (1976) 733-742.
[45] H.B. Enderton, A Mathematical Introduction to Logic (Academic Press, New York, 1972).

•

Negation in rule-based database languages 81

[46] R. Fagin, Generalized first-order spectra and polynomial time recognizable sets, in: R. Karp, ed.,
Proc. Conf on Complexity of Computations, SIAM-AMS (1974) 43-73.

[47] M. Fitting and M. Ben-Jacob, Stratified and three-valued logic programming semantics, in: Proc.
Internat. Conf on Logic Programming (1988) 1055-1069.

[48] M. Fittmg, A Kripke-Kleene semantics for logic programs, Logic Programming 4 (1985) 295-312.
[49] M. Falaschi, G. Levi, M. Martelli and C. Palamidessi, A new declarative semantics for logic

languages, in: Proc. Internat. Conf on Logic Programming (1988) 993-1005.
[50] J. Gallier, Logic For Computer Science Foundations of Automatic Theorem Proving (Harper and

Row, New York, 1986).
[51] M. Gelfond, On stratified autoepistemic theories, in: Proc. AAAI (1987) 207-211.
[52] D. Van Gucht and P.c. Fischer, Some classes of multilevel relational structures, in: Symp. on

Principles of Database Systems, ACM SIGACT-SIGMOD (1986).
[53] M. Gelfond and V. Lifschitz, The stable model semantics for logic programs, in: Proc. Internat.

Conf on Logic Programming (1988) 1070-1080.
[54] H. Gallaire and J. Minker, eds., Logic and Data Bases (Plenum Press, New York, 1978).
[55] H. Gallaire, J. Minker and J-M. Nicolas, Logic and databases: a deductive approach, Comput.

Surv. (1984) 151-185.
[56] D.M. Gabbay and M.J. Sergot, Negation as inconsistency, Logic Programming 3(1) (1986) 1-36.
[57] Y. Gurevich and S. Shelah, Fixed point extensions of first order logic, in: Proc. 26th Symp. on

Foundations of Computer Science (1986) 346-353.
[58] R. Hull and R. King, Semantic data modelling: survey, applications and research issues, ACM

Comput. Surv. 19(3) (1987) 201-260.
[59] N. Immerman, Relational queries computable in polynomial time, Inform. and Control 68 (1986)

86-104.
[60] J. Jaffar, J. L. Lassez and MJ. Maher, Some issues and trends in the semantics oflogic programming,

in: Shapiro, ed., Proc. In ternat. Con! on Logic Programming (1986); also in Lecture Notes in
Computer Science 225 (Springer, Berlin, 1986) 223-240.

[61] P. Kanellakis, Elements of relational theory, in: J. van Leeuwen, ed., Handbook of Theoretical
Computer Science, Vol. B (Elsevier Science Publishers, Amsterdam, 1990) 1073-1156.

[62] S.c. Kleene, Introduction to Metamathematics (Van Nostrand, New York, 1952).
[63] P. Kolaitis, The expressive power of stratified logic programs, submitted to Inform. and Comput.
[64] S. Konolige, On the relation between default and autoepistemic logic, Artificial Intelligence 35(3)

(1988) 343-382.
[65] R.A. Kowalski, Predicate logic as a programming language, Inform. Process. 74 (1974) 574-579.
[66] P. Kolaitis and C. Papadimitriou, Why not negation by fixpoint, in: Proc. Symp. on Principles of

Database Systems, ACM, SIGACT-SIGMOD-SIGART (1988) 231-239.
[67] D. Kemp and R. Topor, Completeness of a top-down query evaluation procedure for stratified

databases, in: Proc. Internat. Conf on Logic Programming (1988) 178-194.
[68] K. Kunen, Negation in logic programming, Logic Programming 4 (1987) 289-308.
[69] K. Kunen, Some remarks on the completed database, in: Proc. Internal. Con! on Logic Programming

(1988) 978-992.
[70] G.M. Kuper, Logic programming with sets, in: Symp. on Principle of Database Systems, ACM,

SIGACT-SIGMOD (1988).
[71] P. Legay, Evaluation de requete en Datalog avec negation, Rapport de DEA d'Informatique, LRI,

Universite Paris XI, 1989.
[72] V. Lifschitz, Closed world databases and circumscription, Artificial Intelligence 27 (1985) 229-235.
[73] V. Lifschitz, Computing circumscription, in: Proc. Internat. Joint Conf on Artificial Intelligence

(1985) 121-127.
[74] V. Lifschitz, On the declarative semantics of logic programs with negation, in: Proc. Workshop on

the Foundations of Deductive Databases and Logic Programming (1986) 420-432; also in [85].
[75] J.W. Lloyd, Foundation of Logic Programming (Springer, Berlin, 1987).
[76] J.L. Lassez and M.J. Maher, Closures and fairness in semantics of programming logic, Theoret.

Comput. Sci. 29 (1984) 167-184.
[77] J.L. Lassez and M.J. Maher, Optimal fixedpoints of logic programs, Theoret. Comput. Sci. 39 (1985)

15-25.

82 N. Bidoit

[78] J. Lobo, J. Minker and A. Rajaseka, Weak completion theory for non-Hom programs, in: Proc.
Internat. Con! on Logic Programming (1988) 828-842.

[79] J.L. Lassez, V.L. Nguyen and EA. Son enberg, Fixed point theorems and semantics: a folk tail,
Inform. Lett. 14(3) (1984) 167-184.

[80] J.W. Lloyd and R.W. Topor, A basis for deductive data base systems, Logic Programming 1 (1985)
93-IIO.

[81] J. W. Lloyd and R.W. Topor, A basis for deductive data base systems II, Logic Programming 3
(1986) 55-68.

[82] J. M. Maher, Equivalence of logic programs, in: Proc. Internat. Con! on Logic Programming (1986);
also in Lecture Notes in Computer Science 115 (Springer, Berlin) 410-424.

[83] J. McCarthy, Circumscription a form of nonmonotonic reasoning, Artificial Intelligence 13(1)
(1980) 27-39.

[84] J. Minker, On indefinite databases and the closed world assumption, in: Proc. 6th Con! on
Automated Deduction (1982); also in Lecture Notes in Computer Science 138 (Springer, Berlin)
292-308.

[85] J. Minker, ed., Foundations of Deductive Databases and Logic Programming (Morgan Kaufmann,
1988).

[86] J. Minker, Perspectives in deductive databases, Logic Programming 5(1) (1988) 33-60.
[87] R.C. Moore, Semantics considerations on non-monotonic logic, Artificial Intelligence 15 (1985)

75-94.
[88] D. Maier, J. Stein, A. Otis and A. Purdy, Development of an object-oriented management system,

in: ACM OOPSALA (1988).
[89] A. Marek and M. Truszczynski, Autoepistemic logic, Technical Report, University of Kentucky,

1988.
[90] A. Mycroft, Logic program and many-valued logic, in: STACS (1984); also in Lecture Notes in

Computer Science 166 (Springer, Berlin) 274-286.
[91] S.A. Naqvi, A logic for negation in database systems, in: Proc. Workshop on Foundations of

Deductive Databases and Logic Programming (1986) 378-387.
[92] T. przymusinska and H. przymusinski, Weakly perfect model semantics for logic programs, in:

Proc. Internat. Con! on Logic Programming (1988) 1106-\120.
[93] T. Przymusinska and H. Przymusinski, Semantic issues in deductive databases and logic programs,

invited survey article to appear in: A. Barerji, ed., Sourcebook on the Formal Approaches in Artificial
Intelligence (North-Holland, Amsterdam, 1989).

[94] T. Przymusinska, On the semantics of stratified deductive databases, in: Proc. Workshop on the
Foundations of Deductive Databases and Logic Programming (1986) 43~-443; also in [85].

[95] T. Przymusinska, Perfect model semantics, in: Proc. In ternat. Con! on Logic Programming (1988)
1081-1096.

[96] T. przymusinska, Every logic program has a natural stratification and an iterated fixed point model,
in: Symp. on Principles of Database Systems, ACM, SIGACT-SIGMOD-SIGART (1989) \1-21.

[97] R. Reiter, On closed world data bases, in: H. Gallaire and J. Minker, eds., Logic and Data Bases
(Plenum Press, New York, 1978) 55-76.

[98] R. Reiter, A logic for default reasoning, Artificial Intelligence 13(1) (1980) 80-132.
[99] R. Reiter, Towards a reconstruction of relational database theory, in: M.L. Brodie, J.L. Mylopoulos

and J.W. Schmidt, eds., On Conceptual Modelling (Springer-Verlag, New York, 1984) 163-189.
[100] M.A. Roth, H.F. Korth and A. Silberschatz, Extended algebra and calculus for nested relational

databases, ACM Trans. Database Systems 13(4) (1988) 389-417.
[10l] A. Ross, A procedural semantics for well founded negation in logic programs, in: Symp. on

Principles of Database Systems (ACM, 1989) 22-33.
[102] P. Roussel, PROLOG: Manuel de Reference et d' Utilisation (Groupe d'Intelligence Artificielle,

Marseille, 1975).
[103] T. Sato, Negation and semantics of Prolog programs, in: Proc. First Internat. Con! on Logic

Programming (1982) 169-174.
[104] J. Shepherdson, Negation in logic programming, in: J. Minker, ed., Foundations of Deductive

Databases and Logic Programming (Morgan Kaufmann, 1988) 19-88.
[105] O. Shmueli, Decidability and expressiveness aspects of logic queries, in: Symp. on Principles of

Database Systems, ACM SIGACT-SIGMOD-SIGART (1987) 237-249.

Negation in rule-based database languages 83

[106] H. Seki and H. Itoh, A query evaluation procedure for stratified programs under the extended
CWA, in: Proc. Internat. Con! on Logic Programming (1988) 196-211.

[107] D. Sacca and C. Zaniolo, On the implementation of a simple class of logic queries for databases,
in: Symp. on Principles of Database Systems, ACM SIGMOD-SIGACT (1986).

[108] A. Tarski, A lattice theoretical fixpoint theorem and its application, Pacific 1. Math. 5 (1955) 285-309.
[109] H. Tamaki and T. Sato, OLD resolution with tabulation, in: Internat. Con! on Logic Programmmg

(1986) 84-98.
[110] 1.0. Ullman, Principles of Database and Knowledge Base Systems (Computer Science Press, 1988).
[Il 1] A. Van Gelder, Negation as failure using tight derivation for general logic programs, in: Proc.

Third IEEE Symp. on Logic Programming (1986) 137-146; also in [85].
[1l2] A. Van Gelder, The alternating fixpoint of logic programs with negation, in: Symp. on Principles

of Database Systems, ACM SIGACT-SIGMOD-SIGART (1989) 1-10.
[1l3] L. Vieille, Recursive axioms in deductive databases: the query-subquery approach, in: Internat.

Con! on Expert Database Systems (1986) 179-193.
[1l4] L. Vieille, A database-complete proof procedure based on SLD-resolution, in: Internat. Con! on

Logic Programming (1987) 74-103.
[1l5] A. Van Gelder, K. Ross and 1.S. Schlipf, Unfounded sets and well-founded semantics for general

logic programs, in: Symp. on Principles of Database Systems, ACM SIGACT-SIGMOD-SIGART
(1988) 221-230.

