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Abstract-For the delay-difference equation, z(n+ 1) = f(n, z(n),z(n- p(n))), satisfying z(j) = 
7(j), j belonging to an initial segment, smooth dependence of a solution, z(n, T), with respect to 7, 

is considered. 
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1. INTRODUCTION 

Let W denote the real numbers, Z the integers, and Z+ the nonnegative integers. Given a < b 

in Z, let [a, b] = {a, a + 1,. . . , b}, [a, b) = {a,. . . , b - l}, with (--00, a), [a, +oo), etc., denoting the 

analogous discrete sets. 
For finite difference equations, recent attention has been given to smoothness of solutions (i.e., 

continuity and differentiability), with respect to initial and boundary data specified; for example 

see [l-5], among others. In this paper, we consider the dependence of solutions of delay-difference 

equations upon initial data. That is, for the finite delay-difference equation, 

z(n + 1) = f(n, z(n), z(n - v(n))), 

satisfying the initial conditions, 

n E Z+, (1) 

x(j) = 7-(j), j E [-?$ (2) 

where f(n,Ul,u2) : Z+ x iR2 + R and fU, (n, ~1, ~2) : iZ+ x R2 -+ IR, i = 1,2, are continuous, 

~~Z+,(~:jZ~-t[O,r],and7:[--~,0] -+ IR, we wish to determine the smoothness dependence of 

a solution, Z, upon the initial function T. 
For this analysis, given a solution x(n) of (l), we will make use of the vutiational equation 

along z(n) given by 

t-(n + 1) = fU1 (n, z(n), x(n. - cp(n)))z(n) + fiL2 (n, x(n), x(n - cp(n)))z(n - V(n)). (3) 

The results obtained in this work can be considered as analogues of theorems on the continuous 

dependence of solutions, with respect to initial conditions, for functional differential equations 

by Driver [6], Hale [7], Lakshmikantham and Leela [8], and Melvin [9], as well as theorems on 

smooth dependence for solutions of functional differential equations by Hale [7]. In fact, the 

main motivations for this paper are the recent result by Hale and Ladeira [lo] on differentiability 
of solutions, with respect to delays, for delay-differential equations, and the generalizations in 

[11,12] to differentiability of solutions, with respect to delays and boundary data, for boundary 

value problems for functional differential equations. 
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2. SMOOTHNESS OF SOLUTIONS 

Given 7 : [-r,O] --) IR, let z(n,~) denote a solution of (l), (2) corresponding to 7. It follows 

immediately from the equation that ~(72,~) is the unique solution of (l), (2) on [-T, oo), in the 

obvious sense. Moreover, from the continuity of f and this uniqueness of solutions “to the right,” 

we readily obtain our first result on the continuity of z(n, T) with respect to 7; see [4] for a typical 

argument. 

THEOREM 1. Let T : [-T, 0] --) R. Given 6 > 0 and k E i%+, there exists a ~(E,T, k) > 0 such 

that, if 0 : [-T, 0] -+ B and 

IT(j) - a(j)I < 6 j E [-r701, 

then the unique solution, x(n,u), of (11, (2) corresponding to CT satisfies 

[~(n, 7) - x(n, a)l < 6 on [-r,k]. 

For the main theorem of the paper, given an initial function T : [--T,O] --+ R, we shall identify 

it with its values by 

7 = (7(-T), . . . ,7(o)) = (T+, . . . ,To). 

Having established the continuous dependence of x(n,~) with respect to T, we now show that 

dependence to be smooth, and we also characterize the resulting partial derivatives. 

THEOREM 2. Let x(n) = x(n,~) drte the solution of (I), (2) on Z+xcorresponding to T : 

[-r,O] --t IR. Then, for --T < i L 0, G exists on [--T,cQ), and xi(n) = G(n) is the solution of 

the variational equation (3) along o(n,‘r) on z+ 
2 

and satisfies the initial value, 

G(j) = 
{ 

07 j E [--T, 01 \ Ii), 
1, j=i. 

PROOF. For --T < i 5 0, let ei = (6_,i,. . . ,&), where 6,, denotes the Kronecker delta. Let 

6 > 0 and k E N be given, and let S > 0 be as in Theorem 1. For 0 < jhl < 6, consider the 

difference quotient, 

z&(n) = $I+‘& 7 + hei) - x(72, T)], n E I-T-, k]. 

Note at first that, 

(4 

Next, we consider the delay-difference equation satisfied by .zih(n) on [O, ICI. Using a telescoping 

sum, we have 

Zih(n + 1) = i [f( n, x(n, 7 + hei), x(n - V(n), 7 + W) - f(n, x(n, T), x(n - 9(n), T))] 

= k [f(n, x(72,7 + hei), x(n - cp(n), 7 + hei)) - f(n, x(n, 7), x(n - v(n), 7 + hei)) 

+ f(n, x(n, T), x(n - v(n), 7- + k)) - f(n, x(n, T), x(n - v(n), T))] . 
Applying the Mean Value Theorem, we obtain 

zih(n + 1) = n, sx(n, T + hei) + (1 - s)z( n, T), x(n - v(n), T + hei)) ds 

x ; [x(72,7 + hei) - X(n, T)]) 

-I- L’ fu, (n, x(n, T), sx(n - v(n), T + hei) + (1 - s)x(n - p(n), T)) ds (5) 

x (k [x(n - p(n), 7 + hei) - x(n - V(n), 7)1) 

= Alh(n, ~)~h(n) + Azh(% ~)%(n - p(n)), 
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where Alh and Azh represent the first and second integrals, respectively, in (5). The continuity 

of fU, , d = 1,2, implies that, 

/i~O&~(n, 7)~ = L(n, z(n, T), xc(n - cp(n), 7))~ 

uniformly on compact subsets of [0, k] x R. 

In conjunction with (4), if we mimic continuous dependence arguments for initial value problems 

for functional differential equations, as in [7], we obtain that 

on [-T, k], where zi(n) is the solution of 

zi(n + 1) = fU, (W x(72, T), x(n - cp(n), T))%(n) + A&(% Z(% 7), z(n - cp(n), 7))zzi(n - 9(n)), 

on [0, k], and satisfies 

4j) = 
0, j E I--T,01 \ {G, 
1, j=i. 

From the definition of zih(n), we conclude g(n) exists, and zi(n) = g(n) on [-r,k]. But 

k E N was arbitrary, and so g(n) exists on [--T, 00) and is the solution of the asserted problem. 
2 

The proof is complete. 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
8. 
9. 

10. 
11. 
12. 

A. Datta and J. Henderson, Differentiation of solutions of difference equations with respect to right focal 
boundary values, Pun Am. Math. J. 2, 1-16 (1992). 
D. Hankerson, An existence and uniqueness theorem for difference equations, SIAM J. Math. Anal. 20, 
1208-1217 (1989). 
J. Henderson, M. Horn and L. Howard, Differentiation of solutions of difference equations with respect to 
boundary values and parameters, (preprint). 
J. Henderson and L. Lee, Continuous dependence and differentiation of solutions of finite difference equations, 
Znt. J. Math. and Math. Sci. 14, 747-756 (1991). 
A.C. Peterson, Existence and uniqueness theorems for nonlinear difference equations, J. Math. Anal. Appl. 
125, 185-191 (1987). 
R.D. Driver, Existence and continuous dependence of solutions of a neutral functional-differential equation, 
Arch. Rat. Me&. Anal. 19, 149-166 (1965). 
J.K. Hale, Theory of Functional Diflerential Equations, Springer-Verlag, New York, (1977). 
V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, Academic Press, New York, (1969). 
W.R. Melvin, Topologies for neutral functional differential equations, J. Diff. Eqs. 13, 24-34 (1973). 
J.K. Hale and L.A.C. Lsdeira, Differentiability with respect to delays, J. Diff. Eqs. 92, 14-26 (1991). 
J. Ehme and J. Henderson, Functional boundary value problems and smoothness of solutions, (preprint). 
J. Ehme, P.W. Eloe and J. Henderson, Differentiability with respect to boundary conditions and deviating 
argument for functional differential systems, Diff. Eqs. and Dyn. Systems (preprint). 


