GENERALIZED FIBONACCI MAXIMUM PATH GRAPHS

Martin Charles GOLUMBIC*
Courant Institute of Mathematical Sciences New York University New York, NY 10012, USA

and

Yehoshua PERL**
Department of Mathematics and Computer Sctence, Bar-Ilan University, Ramat-Gan, Israel

Received 3 April 1978

Revised 10 April 1979

Abstract

We investigate the following problem: Given integers m and n, find an acyelic directed graph with m edges and n vertices and two distinguished vertices s and t such that the number of distinct paths from s to t (not necessarily disjoint) is maximized. It is shown that there exists such a graph containing a Hamiltonian path, and its structure is investigated.

We give a complete solution to the cases (i) $m \leqslant 2 n=3$ und (ii) $m \equiv k n=\frac{1}{2} k(k+1) \neq r$ for $k \equiv 1,2, \ldots, n=1$ and $r \equiv 0,1,2$.

1. Introduction

A digraph $G=(V, E)$ consists of a finite set V of vertices and a collection E of ordered pairs of distinct vertices called edges. A sequence of vertices [$\left.v_{0}, v_{1}, v_{2}, \ldots, v_{k}\right]$, where $\left(v_{i-1}, v_{i}\right) \in E$ for $i=1,2, \ldots, k$ is called a path from v_{0} to v_{k}. Two paths are distinct if they are not identical sequences of vertices. The digraph G is acyclic if there is no closed path $\left[v_{0}, v_{1}, \ldots, v_{k}, v_{0}\right]$ in G. Finally, G is connected if for every pair of distinct vertices x and y there is a chain $\llbracket x=v_{0}, v_{1}, v_{2}, \ldots, v_{k}=y \rrbracket$ where either $\left(v_{i-1}, v_{i}\right) \in E$ or $\left(v_{i}, v_{i-1}\right) \in E$ for $i \equiv$ $1,2, \ldots, k$. We say that an edge (x, y) emanates from x and goes to y, or alternatively, it exits from x and it enters y. A vertex into which no edge enters is called a source; a vertex from which no edge emanates is called a sink; a vertex with no edge adjacent to it is called isolated. In this paper we deal with acyclic digraphs without isolated vertices exclusively.

Let G contain two distinguished vertices s and t. Nefine $N(G)$ to be the number of distinct paths in \boldsymbol{G} from s to t. Consider the following problem: Given integers m and n, find an acyclic digraph G with m edges and n vertices
*The research for this work was carried out while the first author was a visitor at the Weizmann Institute of Science, Rehovot, Israel, and was partially supported by DOE Contract EY-76-C-023077. It was concluded at the Courant Institute under NSF Grant MCS-78-03820.
** This work was partially supported by NSF Grant MCS-73-03408 while the second author was a visitor at the University of Illinois.
maximizing the number $N(G)$ of distinct paths from s to t. We call G a maximum path graph with parameters m and n, and we define $N_{n, m}=N(G)$. Clearly, $N_{n, m}$ is defined only in the domain $n=1 \leqslant m \leqslant \frac{1}{2} n(n=1)$. The numbers $N_{n, m}$ are of interest in the complexity analysis of algorithms for generating all simple paths between two distinguished verticies in a graph, [1, 7]. Another application follows in Section 4.

Example 1. The digraph \mathscr{F}_{n} has vertices $\{1,2,3, \ldots, n\}$ and edges

$$
\{(i, i+1) \mid i=1,2, \ldots, n-1\} \cup\{(i, i+2) \mid i=1,2, \ldots, n-2\}
$$

(see Fig. 1a). Let $s=1$ and $t=n$. What is $N\left(\mathscr{F}_{n}\right)$? Every path from 1 to n consists of either
(i) a path from 1 to $n-2$ followed by the edge ($n-2, n$), or
(ii) a path from 1 to $n-1$ followed by the edge ($n-1, n$).

There are $N\left(\mathscr{F}_{n-2}\right)$ of type (i) and $N\left(\mathscr{F}_{n-1}\right)$ of type (ii); therefore,

$$
N\left(\mathscr{F}_{n}\right)=N\left(\mathscr{F}_{n-2}\right)+N\left(\mathscr{F}_{n-1}\right) .
$$

Adding the trivial cases $N\left(\mathscr{F}_{1}\right)=1$ and $N\left(\mathscr{F}_{2}\right)=1$, we obtain the result,

$$
N\left(\mathscr{F}_{n}\right)=F_{n}
$$

where F_{n} is the nth Fibonacci number. We will call \mathscr{F}_{n} the nth Fibonacci graph. It has $m=2 n-3$ edges.

Example 2. The digraph $\mathscr{A}_{\boldsymbol{n}}$ has vertices $\{1,2,3, \ldots, n\}$ and edges

$$
\begin{aligned}
& \{(i, i+1) \mid i=1,2, \ldots, n-1\} \\
& \cup\{(i, i+2) \mid i=1,2, \ldots, n-4 \text { or } i=n-2\},
\end{aligned}
$$

(see Fig. 1b). We will call \mathscr{A}_{n} the nth almost Fibonacci graph since it is constructed from \mathscr{F}_{n} by deleting the edge ($n-3, n-1$). It is straight-forward to

(a) The Fibonacel graph of,

(b) The almost Fibonaeci graph of

Fig. 1 :
show that.

$$
N\left(\mathscr{A} A_{n}\right)=2 N\left(\mathscr{F}_{n-2}\right)=2 F_{n-2} .
$$

In Perl [4] we investigate several cases of maximum path graphs given only the number of edges m. It is shown there that for acyclic digraphs without parallel edges the (almost) Fibonacci graphs are maximum path graphs for (even) odd number of edges. Hence $N_{n, 2 n-3}=N\left(\mathscr{F}_{n}\right)=F_{n}$ and $N_{n, 2 n-4}=N\left(\mathscr{S}_{n}\right)=2 F_{n-2}$. In this paper we will investigate $N_{n, m}$ and give a complete solution to the cases (i) $m \leqslant 2 n-3$ and (ii) $m=k n-\frac{1}{2} k(k+1)+r$ for $k=1,2, \ldots, n-1$ and $r=0,1,2$.

2. The structure of maximum path graphs

We can make certain assumptions about the structure of a maximum path graph \boldsymbol{G} which will be useful in calculating $\boldsymbol{N}(\boldsymbol{G})$. First, we may assume that
every vertex x lies on some path from s to t,
for otherwise we could rename t as t^{\prime} and replace x and the k edges ($k \geqslant 1$) incident on x with a new distinguished vertex t and k new edges from t^{\prime} and any $k-1$ other vertices to t, thus obtaining a graph G^{\prime} with $N\left(G^{\prime}\right) \geqslant N(G)$. In particular, we may assume that G is connected, has only one source s and only one sink t. The second and more powerful assumption is that G can be chosen to have a Hamiltonian path, that is, a path which contains every vertex.

Theorem 1. For all n and m, there exists a maximum path graph \boldsymbol{G} which contains a Hamiltonian path, thus uniquely ordering the vertices.

Proof. Let $\boldsymbol{G}=(V, E)$ be a maximum path graph satisfying (1) with parameters n and m, and let $P=\left[v_{1}, v_{2}, \ldots, v_{k}\right]$ be a path of maximum length in G. (Note that $s=v_{1}$ and $t=v_{k}$. Suppose $k<n$, then we will construct a graph G^{\prime} containing a path of length $k+1$ such that $N\left(G^{\prime}\right) \geqslant N(G)$.
Every path which passes through a vertex not on P is of the form

$$
Q=\left[v_{1}, v_{2}, \ldots, v_{1}, x_{1}, \ldots, t\right]
$$

where $i \geqslant 1$ and x does not lle on P. Choose Q to be the longest such path. (See Fig. 2.) The maximality of P implies that $\left(x, v_{1+1}\right) \in E$, and the maximality of Q implies that there is no path (and hence no edge) in \boldsymbol{O} from: v_{i+1} to x. Define

$$
E^{\prime} \equiv E=\left\{\left(v_{1}, v_{1+1}\right)\right\}+\left\{\left(x, v_{1+1}\right)\right\} .
$$

The aeyelle graph $\boldsymbol{G}^{\prime} \equiv\left(V, B^{\prime}\right)$ has a path of length $k+1$, and $N\left(G^{\prime}\right) \equiv N(G)$ sinee every path in 0 which used (u_{i}, v_{i+1}) ean be rerouted using the new gegment $v_{1} \Rightarrow x \Rightarrow y_{1+1}$, This procedure. caffied out $n=k$ times, will glve 自 maximum path

Fig. 2.
graph with a Hamiltonian path. The Hamiltonian path uniquely orders the vertices, since the graph is acyclic.

For the remainder of this paper, we will choose our maximum path graph \boldsymbol{G} to have vertices named $1,2,3, \ldots, n$ and edges set which includes the edges ($i, i+1$) for $i=1,2, \ldots, n-1$. Such a graph will be called a Hamiltonian maximum path graph; it is both a maximum path graph and contains a Hamiltonian path. We denote by $P(i, j)$ the number of distinct paths in G from i to j. Thus, $P(1, n)=$ $N(G), P(i, i)=1$, and $P(i, i+1)=1$. An edge ($i, i+k$) is said to be of level k. We will say that level k is full in G if $(i, i+k)$ is an edge of G for $i=1,2, \ldots, n-k$. By our assumption, level 1 is always full. Thus, our problem becomes the following: After using $n-1$ of our m edges to build the Hamiltonian path, how shall we spend the remainder of the edges in order to maximize the number of paths from vertex 1 to vertex n ? We begin to answer this question in the next section.

3. Generalized Fibonacci graphs

Let G be a Hamiltonian maximum path graph. We say that an edge $e=(i, j)$ properly covers an edge (or nonedge) $e^{\prime}=\left(i^{\prime}, j^{\prime}\right)$ if $i \leqslant i^{\prime}<j^{\prime} \leqslant j$ and $e \neq e^{\prime}$. The distance between two vertices x and $y(x \leqslant y)$ is denoted by $\Delta(x, y)=y-x$.

The generalized Fibonacci number $F_{n}^{(i)}$ is defined recursively as follows:

$$
\begin{aligned}
& F_{1}^{(i)}=1, \\
& F_{h}^{(i)}=\sum_{i=1}^{h-1} F_{i}^{(i)} \quad(h \leqslant j), \\
& F_{h}^{(i)}=\sum_{i=h-i}^{h-1} F_{i}^{(i)} \quad(h>j) .
\end{aligned}
$$

The digraph $\mathscr{F}_{n}^{(k)}$ has vertices $\{1,2,3, \ldots, n\}$ and edges

$$
\{(i, j) \mid 1 \leqslant i<j \leqslant n \text { and }|j-i| \leqslant k\} .
$$

It is straightforward to show that

$$
N\left(\mathscr{F}_{n}^{(k)}\right)=F_{n}^{(k)} .
$$

We call $\mathscr{F}_{n}^{(k)}$ the nth generalized \boldsymbol{k}-Fibonacci graph.

Theorem 2. For all parameters n and m, there exists a Hamiltonian maximum path graph \boldsymbol{G} satisfying the following property: If \boldsymbol{G} has an edge of level \boldsymbol{k}, then for each $l<k$, level l is full.

Proof. By Theorem 1, there exists a Hamiltonian maximum path graph G. If \boldsymbol{G} has an edge e which properly covers a nonedge e^{\prime}, then replacing one with the other does not decrease $P(1, n)$, since any path formerly using e can be rerouted in at least one way via e^{\prime}. Thus, we may assume that no edge of G properly covers a nonedge. Let l_{x} denote the smallest (leftmost) ingoing neighbor of x. Then

$$
\begin{equation*}
P(1, x)=\sum_{i=1_{x}}^{x-1} P(1, i), \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
w \leqslant x \Rightarrow l_{w} \leqslant l_{x} . \tag{3}
\end{equation*}
$$

Suppose G has an edge whose level is strictly higher than some nonedges. We will show that an interchange can be made that does not decrease the number of paths.

Choose a nonedge (a, c) of level j and an edge (b, d) of level k with $j<k$ and c to the left of \boldsymbol{d} (by reversing all edges of \boldsymbol{G} and renaming the vertices if necessary) such that the distance $\Delta(c, d)$ between their right endpoints is smallest possible. (See Fig. 3.) The minimality of $\Delta(c, d)$ implies that

$$
\begin{equation*}
l_{x}=x-j \quad(c<x<d), \tag{4}
\end{equation*}
$$

since an edge (w, x) of level $>j$ would be "closer" than $\Delta(c, d)$ to (a, c) and a nonedge (w, x) of level $\leqslant j$ would be "closer" to (b, d). Furthermore, (4) and (3) imply that

$$
(d-1)-j=l_{d-1} \leqslant l_{d} \leqslant b=d-k \leqslant d-(j+1),
$$

Fig. 3. The three possible configurations. A broke: line indicates a nonedge.
so equality holds throughout; hence $k=j+1$ and

$$
\begin{equation*}
l_{d}=d=(j+1) . \tag{5}
\end{equation*}
$$

Consider the graph G^{\prime} obtained from G by removing (b, d) and adding (a, c). By (4) and (5).

$$
P^{\prime}(c, x) \equiv F_{\Delta(c, x)+1}^{(1)} \quad(c \leqslant x \leqslant d),
$$

where $P^{\prime}(v, w)$ denotes the number of paths in G^{\prime} from v to w. Therefore.

$$
\begin{array}{ll}
P^{\prime}(1, x) \equiv P(1, x) & (0 \leqslant x<c), \\
P^{\prime}(1, x) \equiv P(1, x)+P(1, a) F_{d(c, x)+1}^{(j)} & (c \leqslant x<d), \\
P^{\prime}(1, d) \equiv \underbrace{P(1, d)}_{\text {Old Paths }}+\underbrace{P(1, a) F_{d(c, d)+1}^{(i)}-\underbrace{P(1, b) .}_{\text {Destroyed Paths }}}_{\text {New Paths }} &
\end{array}
$$

The number of paths from 1 to any vertex to the left of d has not been decreased. If we can say the same for d, then clearly $P^{\prime}(1, y)$ will be greater than or equal to $P(1, y)$ for each vertex y, which will prove the theorem. Thus, since

$$
!=k-j=\Delta(b, d)-\Delta(a, c)=\Delta(c, d)-\Delta(a, b),
$$

it suffices to show that $P(1, b) \leqslant P(1, a) F_{\Delta(a, b)+2}^{(i)}$. We will prove the following stronger claim:

$$
\begin{equation*}
P(1, x) \leqslant P(1, a) \cdot F_{\Delta(a, x)+2}^{(i)} \quad(a \leqslant x<d) . \tag{6}
\end{equation*}
$$

Certainly (6) is true for $x=a$. Using (6) inductively, we have for $a<x<c$,

$$
\begin{aligned}
P(1, x) & \leqslant \sum_{i=i_{a}}^{x-1} P(1, i) \quad[\text { by (2) and (3)] } \\
& =P(1, a)+\sum_{i=a}^{x-1} P(1, i) \quad[b y(2)] \\
& \leqslant P(1, a)\left[1+\sum_{i=a}^{x-1} F_{\Delta(a . i)+2}^{(i)}\right] \quad \text { [by induction] } \\
& =P(1, a) F_{\Delta(a, x)+2}^{(i)}
\end{aligned}
$$

We must still show that the claim is true for $c \leqslant x<d$. Using (4) and the fact that $l_{c}>c-j$ we have for $c \leqslant x<d$.

$$
\begin{aligned}
P(1, x) & =\sum_{i=1,}^{x-1} P(1, i) \leqslant \sum_{1=x-i}^{x-1} P(1, i) \\
& \leqslant P(1, a) \sum_{i=x}^{x-1} F_{d(a, l)+?}^{(i)} \quad \text { [by induction], } \\
& =P(1, a) F_{d(a, x)+2 .}^{(i)}
\end{aligned}
$$

This concludes the proof of Theorem 2.

Theorem 2 considerably reduces the problem of constructing a maximum path graph. We can write m uniquely in the form:

$$
m=r+\sum_{i=1}^{k}(n=i) \equiv r+k n-\frac{1}{2} k(k+1)
$$

where $1 \leqslant k \leqslant n-1$ and $0 \leqslant r<n=k$. We then fill levels 1 through k and (somehow optimally) distribute the remaining r edges in level $k+1$. Exactly how to spend these extra r edges has yet to be shown, however, if $r=0$, then Theorem 2 does give the answer. We state the result, in this special case, in the following corollary.

Corollary 3. Let n, m, and k be postive integers satisfying $m=k n+k(k+1) / 2$, then the nth generalized k-Fibonacci graph $\mathscr{F}_{n}^{(k)}$ is a maximum path graph, that is,

$$
N\left(\mathscr{F}_{n}^{(k)}\right)=N_{n, m} .
$$

If $r \neq 0$, then the situation becomes complicated. We shall show that ihe best place to put one extra edge is at the extreme left [or right], i.e., we add the edge $(1, k+2)$. Let G and G^{\prime} be the graphs obtained by adding the edges $(1, k+2)$ and $(l, l+k+1)$, respectively, to the graph $\mathscr{F}_{n}^{(k)}$, where $1<l<n-k-1$. By symmetry, $\boldsymbol{P}_{1+k+1}=\boldsymbol{P}_{l+k+1}^{\prime}$. By the contribution of the extra edge in G, we obtain

$$
P_{i}=P_{i}^{\prime}+F_{i-k-1}^{(k)} \quad(k+1 \leqslant i \leqslant l+k) .
$$

Hence,

$$
P_{i}>P_{i}^{\prime} \quad(l+k+2 \leqslant i \leqslant n) .
$$

Furthermore,

$$
N(G)=F_{n}^{(k)}+F_{n-k-1}^{(k)} .
$$

In the case $r=2$ it can be shown similarly that the best place to put the two extra edges is one at the extreme right and one at the extreme left and, for such a graph G, we obtain

$$
N(G)=F_{n}^{(k)}+2 F_{n-k-1}^{(k)}+F_{1-2 k-2}^{(k)}
$$

Let G be a (Hamiltonian) maximum path graph with n vertices and $m=$ $(n-1)+r$ edges where $0<r \leqslant n-2$, i.e., G has r edges of level 2 and has level 1 full. It is easy to describe the structure of G. If $t=n-1-r$, th $\sim \mathcal{G}$ is constriacted by concatenating in series exactly t Fibonacci graphs $\mathscr{F}_{s_{1}}, \mathscr{F}_{s}, \ldots, \mathscr{F}_{s i}$, It foilows that

$$
N(G)=F_{s_{1}} F_{s_{2}} \cdots F_{\mathrm{s}_{1}} \text { and } \sum_{1=1}^{1} s_{1}=n+t-1 .
$$

Fig. 4. Some maximum path graphs of level 2.
The order in which the $\mathscr{F}_{s_{i}}$ occur is immaterial. The following result can be shown [2]:

Theorem 4. Let m and n be positive integers such that $m=(n-1)+r$ where $0=r \leqslant n-2$. Then,

$$
N_{n, m}= \begin{cases}2^{+} & \text {if } r \leqslant \frac{1}{2}(n-1), \\ 2^{n-2-r} F_{2 r-n+4} & \text { if } r>\frac{1}{2}(n-1) .\end{cases}
$$

Figure 4 shows the maximum path graphs for $n \equiv 12, m \equiv 14$ and for $n=12$, $m \equiv 18$.

4. An application

Consider a network with two cost functions for the edges, for example, distance and fare. The lengit of a path is an ordered pair representing the respective sums of the two cost functions along the path. A path connecting two distinguished vertices is a shortest path if there exists no other such path with one component stric 4 ly smaller and the other smaller or equal. For algorithms for finding shortest paths in a network with two cost functions see $[3,5,8]$.
 an edge $(i, i \neq 1), i \equiv 1,2, \ldots, n=1$, is assigned $\left(1 \neq 2^{-3 i+1}, 1=2^{-3 i+1}\right)$ and an edge $(i, i+2), i \equiv 1,2, \ldots, n=2$, is assigned $\left(2+2^{-3,}, 2=2^{-2 i}\right)$. Then clearly every path in \mathscr{F}_{n} connecting 1 and n is a shortest path. Hence the maximum number of paths is a bound for the number of shortest paths in such networks, and this is required in the complexity analysis of the algorit m s descrihed above.

References

[1] G.H. Danielson, On finding the simple paths and circuits in a graph, IEEE TRANS Circuit Theory CT-1S (1968) 294-295.
[2] M.C. Golumbic and Y. Perl, Generalized Fibonacci graphs, Research Report, Weizmann Institute of Science, Rehovot, Israel, 1977.
[3] H.C. Joksch, The shortest route problem with constraints, J. of Math. Analysis and Applications 14 (1966) 191-197.
[4] Y. Perl, Maximum path graphs, Technical Report, Department of Mathematics and Computer Science, Bar-Ilan University, Ramat-Gan, Israel, 1976.
[5] Y. Perl, Shortest paths in a network with two cost functions, Information Technology, Proceedings of the JCIT Third Conference, Jerusalem, 1978 (North-Holland, Amsterdam, 1978) 211-215.
[6] Y. Perl and S. Zaks, Deficient generalized Fibonacci maximum path graphs, Technical Report, Department of Computer Science, University of Illinois at Urbana-Champaign. 1978.
[7] N.J.A. Sloane, On finding the paths through a network. Bell Syst. J. 51 (1972) 379-390.
[8] E. Yucaoglu, Solution algorithms for sesctirce and route constrained shortest path problems in time dependent transportation networks, Ph.D. Thesis, Stanford University, 1973.

