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We investigate the following problem: Given integers m and n, find an acyclic directed graph
with m edges and n vertices and two distinguished vertices s and ¢ such that the number of
distinct paths from s to ¢t (not necessarily disjoint) is maximized. It is shown that there exists
such a graph containing a Hamiltonian path, and its structure is investigated.

We give a complete solution to the cases () m<2n-3 and (i) m=kn=3k(k +1)+r for
k=12,....n=1and r=0,1,2,

1. Introduction

A digraph G =(V, E) consists of a finite set V of vertices and a collection E
of ordered pairs of distinct vertices called edges. A sequence of vertices
[vo. V10 020+ .. 0 ] where (v, v)eEfori=1,2,...,k is called a path from v,
to v.. Two paths are distinct if they are not identical sequences of vertices. The
digraph G is acyclic if there is no closed path [v,, v,,..., U, Uo] in G. Finally, G
is connected if for every pair of distinct vertices x and y there is a chain
Ix=vo vy, v5..., 0. =y] where either (v,_,,v)€eE o (v,v_,)€E for i=
1,2,...,k. We say that an edge (x,v) emanates from x and goes to y, or
alternatively, it exits from x and it enteis y. A vertex into which no edge enters is
called a source; a vertex from which no edge emanates is called a sink; a vertex
with no edge adjacent to it is called isolaied. In this paper we deal with acyclic
digraphs without isolated vertices exclusively.

Let G contain two distinguished vertices s and t. Nefine N(G) to be the
number of distinct paths in G from s to t. Consider the tollnwing problem: Given
integers m and n, find an acyclic digraph G with m edges and n vertices
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maximizing the number N(G) of distinct paths from s to t. We call G a maximum
path graph with parameters m and n, and we define N,,,, = N(G). Clearly, N,,,,, is
defined only in the domain n—1=m=in(n-1). The numbers N,, are of
interest in the complexity analysis of algorithms for generating all simple paths
between two distinguished verticies in a graph, [1, 7]. Another application follows
in Section 4.

Example 1. The digraph %, has vertices {1,2,3,...,n} and edges
{Gi+D]i=12,...,n=-10U{Gi+2)]|i=1,2,...,n-2},

(see Fig. 1a). Let s =1 and t =n. What is N(%,)? Every path from 1 to n consists
of either

(i) a path from 1 to n—2 followed by the edge (n—2, n), or
(ii) a path from 1 to n—1 followed by the edge (n—1, n).
There are N(%,_,) of type (i) and N(%,_,) of type (ii); therefore,
lv(gn) = N(gn—2)+N(gn~l)-
Adding the trivial cases N(%,)=1 and N(%,)=1, we obtain the result,
N(%,)=F,

where F, is the nth Fibonacci number. We will call &, the nth Fibonacci graph. It
has m =2n -3 edges.

Example 2. The digraph &, has vertices {1,2,3,...,n} and edges

{Gii+D]i=1,2,...,n—1}
U{G,i+2)]i=1,2,...,n—4ori=n-2},

(see Fig. 1b). We will call #, the nth almost Fibonacci graph since it is
constructed from %, by deleting the edge (n —3,n—1). It is straight-forward to

(b) The almost Fibonacei graph of;

Fig. 1.
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show that,
N(d,)=2N(&,_,)=2F, ,.

In Perl [4] we investigate several cases of maximum path graphs given only the
number of edges m. It is shown there that for acyclic digraphs without parallel
edges the (almost) Fibonacci graphs are maximum path graphs for (even) odd
number of edges. Hence N, ;,-3=N(#,)=F, and N,,,-+=N(o4,)=2F, 5 In
this paper we will investigate N, and give a complete solution to the cases (i)
m=<2n-3 and (i) m=kn—-3ik(k+1)+r for k=1,2,...,n—1 and r=0,1,2.

2. The structure of maximum path graphs

We can make certain assumptions about the structure of a maximum path graph
G which will be useful in calculating N(G). First, we may assume that

every vertex x lies on some path from s to ¢, 1

for otherwise we could rename t as t' and replace x and the k edges (k=1)
incident on x with a new distinguished vertex ¢ and k new edges from t' and any
k —1 other vertices to ¢, thus obtaining a graph G' with N(G')=N(G). In
particular, we may assume that G is connected, has only one source s and only one
sink t. The second and more powerful assumption is that G can be chosen to have
a Hamiltonian path, that is, a path which contains every vertex.

Theorem 1. For all n and m, there exists a maximum path graph G which contains
a Hamiltonian path, thus uniquely ordering the vertices.

Proof. Let G =(V, E) be a maximum path graph satisfying (1) with parameters n
and m, and let P=[v,, v,, ..., v, ] be a path of maximum length in G. (Note that
s =0, and ¢ =v,.) Suppose k <n, then we will construct a graph G’ containing a
path of length k +1 such that N(G")=N(G).

Every path which passes through a vertex not on P is of the form

Q=[U“Ug;uuv.,x,u.,t]

where 1 =1 and x does not le on P. Choose Q to be the longest such path. (See
Flg, 2.) The maximality of P implles that (x, v,,,)€ E, and the maximality of Q
implles that there Is no path (and henee no edge) in O from v, to x. Define

E'=E={(v, v, . )} +{x 0. )k

The aeyelie graph G' = (V, E') has a path of length k +1, and N(G') = N(G) sinee
every path In G whieh used (v, v,,,) ean be rerouted using the new segment
v, = ¥ = t,,,. This procedure. earrled out n =k times, wiil give a maximum path
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graph with a Hamiltonian path. The Hamiltonian path uniquely orders the
vertices, since the graph is acyclic.

For the remainder of this paper, we will choose our maximum path graph G to
have vertices named 1,2, 3,..., n and edges set which includes the edges (i, i +1)
fori=1,2,...,n—1. Such a graph will be called a Hamiltonian maximum path
graph; it is both a maximum path graph and contains a Hamiltonian path. We
denote by P(i, j) the number of distinct paths in G from i to j. Thus, P(1,n)=
N(G), P(i,i)=1, and P(i,i+1)=1. An edge (i, i + k) is said to be of level k. We
will say that level k is full in G if (i,i+k) is an edge of G fori=1,2,...,n—k.
By our assumption, level 1 is always full. Thus, our problem becomes the
following: After using n—1 of our m edges to build the Hamiltonian path, how
shall we spend the remainder of the edges in order to maximize the number of

paths from vertex 1 to vertex n? We begin to answer this question in the next
section.

3. Generalized Fibonacci graphs

Let G be a Hamiltonian maximum path graph. We say that an edge e = (i, j)
properly covers an edge (or nonedge) e'=(i',j') if i<i’'<j'<j and e#e'. The
distance between two vertices x and y (x<vy) is denoted by A(x,y)=y—x.

The generalized Fibonacci number F¥’ is defined recursively as follows:

() = 1
FP=1,
h-1

P=YEP (hs))

i=1

h—1
W= Y F  (h>))

i=h-j
The digraph F& has vertices {1,2,3,...,n} and edges
{Gi.h|1si<j<nand|j—i|<k}.
It is straightforward to show that
N(F)=F®,
We call F* the nth generalized k-Fibonacci graph.
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Theorem 2. For all parameters n and m, there exists a Hamiltonian maximum paih
graph G satisfving the following property: If G has an edge of level k, then for each
I<k, level l is full.

Proof. By Theorem 1, there exists a Hamiltonian maximum path graph G. If G
has an edge e which properly covers a nonedge e, then replacing one with the
other does not decrease P(1, n), since any path formerly using e can be rerouted
in at least one way via e'. Thus, we may assume that no edge of G properly covers
a nonedge. Let [, denote the smallest (leftmost) ingoing neighbor of x. Then

x—1
P(1,x)= Y P(Q1,i), 02)

i=l

and
wsx > L, =<l. (3)

Suppose G has an edge whose level is strictly higher than some nonedges. We will
show that an interchange can be made that does not decrease the number of
paths.

Choose a nonedge (a, c) of level j and an edge (b, d) of level k with j<k and ¢
to the left of d (by reversing all edges of G and renaming the vertices if necessary)
such that the distance A(c, d) between their right endpoints is smallest possible.
(See Fig. 3.) The minimality of A(c, d) implies that

lL=x—j (c<x<d), 4)

since an edge (w, x) of level >j would be “closer” than A(c,d) to (a,c) and a
nonedge (w, x) of level <f would be “closer” to (b, d). Furthermore, (4) and (3)
imply that

d-D—-j=li_sljsb=d-k=<d—(j+1),

Q czb d

L—minimum—ol
i e
” /\/’\ /’ \\ /.\
L L AN
a

a c b d

] ]

Fig. 3. The three possible configurations. A brok«: line indicates a nonedge.
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so equality holds throughout; hence k =j+1 and
l“éd =(i+1). (5)

Consider the graph G' obtained from G by removing (b, d) and adding (a, ¢).
By (4) and (5),

Ple,x)=Fln (csx=d),

where P'(v, w) denotes the number of paths in G' from v to w. Therefore,

P'(1,x)=P(1, x) (0=sx<¢),
P'(1,x)=P(1,x)+P(1l, a)F{\. c)+1 (c=sx<d),
P'(1.d)=P(,d)+P(1, a)F{\. .,«1~ P, b),

Old Paths New Paths Destroyed Paths

The number of paths from 1 to any vertex to the left of d has not been decreased.
If we can say the same for d, then clearly P'(1, y) will be greater than or equal to
P(1, y) for each vertex y, which will prove the theorem. Thus, since

t=k—j=A(b,d)—-4(a, c)=A(c,d)—-A(a, b),

it suffices to show that P(1, b)<P(l, a)F§l. 2. We will prove the following
stronger claim:

P(l’ x)$P(1, a)'FX:a,x)+2 (aSX<d)- (6)

Certainly (6) is true for x = a. Using (6) inductively, we have for a <x <c¢,

x—1
P(1,x)< Y P(1,i)  [by(2) and (3)],
i='u

x—1
=P(1,a)+ Y P(1,i)  [by (2],

i=a

x~—1
< P(1, a)[l +) Fi{},,_i,+2] [by induction],

=P(1, a)F{i,, o142
We must still show that the claim is true for ¢ <x <d. Using (4) and the fact that
l.>c~j we have for c<x<d,

x -1 -1
P(L,x)= Y P(L,i)s Y P(L,i)
i=l,

{=x-f
x—1
<P(l,a) Y Fuin [by induction],
f=x-f

= P(1, a)F(A':u.xH-Z'

This concludes the proof of Theorem 2.
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Theorem 2 considerably reduces the problem of constructing a maximum
path graph. We can write m uniquely in the form:

k
m=r+ Y (n=i)=r+kn=jk(k+1)
=1

where 1sk=n-1 and 0=r<n-=k, We then fill levels 1 through k and (some-
how optimally) distribute the remaining r edges in level k +1. Exactly how to
spend these extra r edges has yet to be shown, however, if r =0, then Theorem 2
does give the answer. We state the result, in this special case, in the following
corollary,

Corollary 3. Let n, m, and k be postive integers satisfying m = kn + k(k +1)/2, then
the nth generalized k-Fibonacci graph ' is a maximum path graph, that is,

N(F) = N, e

If r#0, then the situation becomes complicated. We shall show that ihe best
place to put one extra edge is at the extreme left [or right], i.e., we add the edge
(1, k +2). Let G and G’ be the graphs obtained by adding the edges (1, k +2) and
(I, I+ k +1), respectively, to the graph F&, where 1<l<n—k—1. By symmetry,
Pi.1+1 = Pl By the contribution of the extra edge in G, we obtain

P,=P,+F¥, _, (k+1<i<l+k).
Hence,

P,>P. (I+k+2<i<n).
Furthermore,

N(G)=FP+F¥,_,.

In the case r=2 it can be shown similarly that the best place to put the tvo
extra edges is one at the extreme right and one at the extreme left and, for suct: a
graph G, we obtain

N(G)=FF '*f2F=n"—)k—1 +F 2.

Let G be a (Hamiltonian) maximum path graph with n vertices and m =
(n—1)+r edges where 0<r=<n-2, i.e., G has r edges of level 2 and has level 1
full. It is easy to describe the structure of GG. If t=n—-1-r, then G is constiicted
by concatenating in series exactly ¢ Fibonacci graphs F.,.%,,..., 7, Itfoilows
that

N(G)=F,F,-++F, and Y s=n+t-1.

1
=1
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Fig. 4. Some maximum path graphs of level 2.

The order in which the &, occur is immaterial. The following result can be shown

[2):

Theorem 4. Let m and n be positive integers such that m=(n—1)+r where
0« r<n-2. Then,

. { ' if rei(n-1),
Hait 25|—2—"F2r‘"*4 [f r>%(n - l)n

Figure 4 shows the maximum path graphs for n =12, m =14 and for n =12,
m=18,

4. An application

Consider a network with two cost functions for the edges, for example, distance
and fare. The length of a path is an ordered pair representing the respective sums
of the two cost functions along the path, A path connecting two distinguished
vertices is a shortest path if there exists no other such path with one component
strictly smaller and the other smaller or equal. For algorithms for finding shortest
paths in a network with two cost functions see [3, §. 8],

Suppose the edges of the Fibonacci graph &, are assigned two costs as follows:
anedge (hi+1),1=1,2,...,n=1,is assigned (1 +27%*', 1 =273*1) and an edge
(Li+2),1=1,2,....n=2, is assigned (2+27%,2-2"%), Then clearly every path
in F, connecting 1 and n is a shortest path, Hence the maximum number of paths
s a bound for the number of shortest paths in such networks, and this is required
in the complexity analysis of the algorit:ms described above.
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