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We inveetigats the fellewing problem: Given integer8 m rmd n, find an aeyelie dit@reted graph 
with m edge8 and n wrtieer and two dietinguiehed vettiaa Q and t aueh thrtt the number of 
distinct paths from 8 te t (net necesrrrrtily diB]oint) ir mrrximisxd, ft is Mhown that there e&e 
gueh a graph containing n iiamiltenirn psth, and itlr etruetrvg is inve8ti#8ted, 

We g~ive a complete fislutien te the eag~ (i) me2n=3 Bnd (ii) m=kn=fk(k+l)+r for 
k=l,2,.,., n-i and r=O,1,2, 

I. Introdudon 

A digraph 0 = (V, E) consist8 of a finite set V of vertise~ and a collection E 
of ordered pain of distinct vertices called e&es. A sequence of vertices 
[ Oar VI, 0%. ). . , uk], where (u,_,, Y&E E for i = I, 2,. . . , k iB called a guth from uO 
to uk. Two path8 are &&net if they are not identical eequcnceg of vcrtice8, The 
digraph G is acyclic: if tharc i8 no cloged path [uO, u j, . . . , ok, uo] in G, Finally, G 
in connected if for every pair of distinct vertices x and y there ig a ebtain 
II x = 00. 01, u2, . . . , uk = yl where either (ur+, U&S EZ o; (Us, U&E E for i = 

192 , . . . , k. We aay that an edge (x, y) emanates from x and goes to y, or 
alternatively, it exits from x and it entelra y, A vertex into which no edge enters is 
called a Source ; a vertex from which no edge emanates is called a sink ; a vertex 
with no edge adjacent to it is called isolated. In this paper we deal with acyclic 
digruphs without isolated vertices exclusively, 

Let 0 contain two distinguished vertices s and t. Pefine N(G) to be the 
number of distinct paths in 0 from s to t. Consider the foll?wing problem: Given 
integers m and n, find an acyclic digraph G with m edges and it vertices 
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maximizing the number N(O) of distinct path8 from s to t, We call 0 a mu&turn 
parh grq~h with parameters m and IZ, and we define IV,,,,,, = N(G). Clearly, JV,,,, is 
defined only in the domain t2= 1 em $(n- 1). The number8 N,,, clre af 
interest in the complexity analysis of algorithm8 far generating ~111 admple paths 
between two distinguished verticies in a graph, [I, 73, Another applicafian fallows 
in Section 4, 

Example I.. The digraph P,, has vertices (1,2,3, II , , , n) and edges 

{(i, i + 1) 1 i = 1.2,. * , , n-l}U{~~,i+2)~i=1,2,...,n-2), 

(see Fig. la). Let s = 1 and t = ~1. What is N(S,,)? Every path from 1 to n consists 
of either 

(i) a path from 1 to y1- 2 followed by the edge (n - 2, n), or 
(ii) a path from 1 to vr - 1 followed by the edge (n - 1, n). 

There are N(S”_2) of type (i) and N(&_,) of type (ii); therefore, 

IV@,) = h&S&) + N(Sn_,). 

Adding the trivial cases N(9J = 1 and N(S$) = 1, we obtain the result, 

where F,, is the tz th Fibonacci number. We will call S,, the nth Fibonacci graph. It 
has m = 2n - 3 edges. 

Example 2. The digraph J& has vertices (1,2,3, . . . , n} and edges 

{(i,i+l)(i=1,2,. ..,n--1) 
U{(i,i+2)li=l,2 ,..., n-4ori=n-2}, 

(see Fig. lb). We will call ;8, the nth alrtrost Fi’bonacci graph since it is 
constructed from S,, by deleting the edge (n - 3, tt - 1). It is straight-forward to 



Bhow that, 

2N(!F”_& = 2F”-S. 

In Per1 [4] we inve&Bate feral ca$e~i of maximum path graph8 given only the 
number of edges m, It irr arhown there that for acyclic dipaph@ without parallel 
edges the (almost) Fibonacci graphs are maximum path graphs far (even) add 
number of edges, Hence Nn,2n-3 = NW,,) = F, and Nn,0n_4 = N(A&) = 2F,-,, In 
this paper we will investigate IV,,,,,, and give a complete solution to the cases (i) 
m1s2n-3 and (ii) m=kn-#(k+l)+r for k=l,2,...,n-1 and r=Q,l,2. 

2. The structure of mruohnum path graphs 

We can make certain assumptions about the structure of a maximum path graph 
G which will be useful in calculating N(G). First, we may assume that 

every vertex K lies on some path from s to t, (I) 

for otherwise we could rename t as t’ and replace x and the k edges (k 2 1) 
incident on x with a new distinguished vertex t and k new edges from t’ and any 
k - 1 other vertices to t, thus obtaining a graph G’ with N(G’)a N(G). In 
particular, we may assume that G is connected, teas only one source s and only one 
sink t. The second and more powerful assumption is that G can be chosen to have 
a Hamiltonian path, that is, a path which contains every vertex. 

Theorem 1. For all n and m, there exists a maximum path graph G which contains 
a Hamiltonian path, thus uniquely ordering the vertices. 
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Fig. 2. 

graph with a Hamiltonian path. The Hamiltonian path uniquely orders the 
vertices, since the graph is acyclic. 

For the remainder of this paper, we will choose our maximum path graph G to 
have vertices named 1,2,3, . , . , n and edges set which includes the edges (i, i + 1) 
for i = 1,2,. . . , n - 1. Such a graph will be called a Hamiltonian maximum path 
gruph ; it is both a maximum path graph and contains a Hamiltonian path. We 
denote by P(i, i) the number of distinct paths in G from i to j. Thus, P( 1, n) = 
N( G ), P(i, i) = 1, and P(i, i + 1) = 1. An edge (i, i + k) is said to be of level k. We 
will say that level k is full in G if (i, i + k) is an edge of G for i = 1,2, . . . , n - k. 
By our assumption, level 1 is always full. Thus, our problem becomes the 
following: After using n - 1 of our m edges to build the Hamiltonian path, how 
shall we spend the remainder of the edges in order to 
paths from vertex 1 to vertex n? We begin to answer 
section. 

maximize the number of 
this question in the next 

3. Generalized Fibonacci graphs 

Let G be a Hamiltonian maximum path graph. We say that an edge e = (i, j) 
properly covers an edge (or nonedge) e’ = (i’, j’) if i s i’ <j’s j and e # e’. The 
distance between two vertices x and y (X s y) is denoted by A(x, y) = y -xx. 

The generalized Fibonacci number pi’ is defined recursively as follows: 

F’:“= 1 
, 

h-l 

Fyz c @) (h dj), 
is 1 
. 
h-l 

Ffhib C ej) 
(h > i)- 

i =h-j 

The digraph S(,“) has vertices {1,2,3, . . . , n} and edges 

{(i,j)I lsi<jsrz and lj-i)dc}. 

It is straightforward to show that 

N($Vk’) = F(k) 
n n l 

Wc call SLk’ the nth generalized k-F’iboncacci graph. 
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Theorem 2, For, all parameters n and m, there exists a Hamiltonian maximum path 
graph G satisfyirg the following property; If G has an edge of level k, then for each 
I < k, level I is full. 

Proof. By Theorem 1, there exists a Hamiltonian maximum path graph G. If G 
has an edge e which properly covers a nonedge e’, then replacing one with the 
other does not decrease P( 1, n), since any path formerly using e can be rerouted 
in at least one way via e’. Thus, we may assume that no edge of G properly covers 
a nonedge. Let IX denote the smallest (leftmost) ingoing neighbor of X. Then 

P(1, x) = y’P(l, i), 9) 
i =I, 

and 

Suppose G has an edge whose level is strictly higher than some nonedges. We will 
show that an interchange can be made that does not decrease the number of 
paths. 

Choose a nonedge (a, c) of level j and an edge (b, d) of level k with j < k and c 
to the left of d (by reversing all edges of G and renaming the vertices if necessary) 
such 
(See 

that the distance A(c, d) between their right endpoints is smallest possible. 
Fig. 3.) The minimality of A(c, d) implies that 

&=x-j (ccxcd), (4) 

since an edge (w, x) of level >j would be “closer” than A (c, d) to (a, c) and a 
nonedge (w, x) of level ~1 would be “closer” to (b, d). Furthermore, (4) and (3) 
imply that 

0 . 
e-b-, 

1 
# 0 \ 

8 \ 

0 b c d a c b d 

Fig. 3. The three possible configurations. A brokr:! line indicates a nonedge. 



SOI equality holds throughout; hence Cc = /=I= 1 and 

I(, =d -(j=t= 1). co 
Consider the graph CS’ oktaincd from 0 by removing (b, di) and adding (u, e), 

IQ (4) and (S), 

where P’(tl, w ) denotes the number of paths in 0’ from II to we Therefore, 

P’(l,x)=P(l,x) 

P’(1. x)= P(1, x)+1)(1, C1)P#,,,j.+, 

P’(1, d) = P!Yl&dl+ P(1, u)F&,&+, 
7 

Old Paths New Paths Destroyed Paths 

The number of paths from 1 to any vertex to the left of d has not been decreased, 
If we con say the same for d, then clearly P’( 1, y ) will be greater than or equal to 
P( 1, y) for each vertex y, which will prove the theorem, Thus, since 

z=k--j=A(b,d)-A(a,c)=A(c,d)-A(a,b), 

it suffices to show that P&b) 6 P( 1, u)F’!~&,~~+~. We will prove the following 
stronger claim: 

P(1, x)G’(l, a)+‘:;,,,,+, (asxcd). (6) 

Certainly (6) is true for x = a. Using (6) inductively, we have for Q < x < C, 
x-l 

P(1, x)s C P(1, i) [by (2) and (3)l, 
i = I,, 

x-l 

=P(l,a)+ CP(l,i) Iby (2)19 
i=a 

[ 

x-l 

c P(1, a) 1 + 1 Fiia i)+z . 
3 

[by induction], 
i=u 

= P( 1, aF’&. x)+2e 

We must still show that the claim is true for c s x cd. Using (4) and the fact that 
IC’>c--j we have for c~x<d, 

x -1. t-l 

fW,xb CP(l,i)s C P&i) 
i =_ 1 * 1 =X-l 

k-1 

e fYL d c FY!;,,,,l+? [by induction], 
I-w-1 

= PC u)F~;cr,r),2. 

Tluis concludes the proof of Theorem 2. 
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Theorem 2 considerably reduces the problem 
path graph, We can write m uniquely in the form: 

of constructing % maximum 

k 

m==r+ ~(n-=i)==r+krt-#(k+l) 

< n = k, We then fill levels 1 through k and (some- 
maining r edges in level k + 1, Exactly how to 

spend theBe extra r edges has yet to be shown, however, if r = 0, then Theorem 2 
does give the answer, We state the result, in this special case, in the following 
corollary, 

COr0lky 3. Let n, m, r4nd k he postive integers satisfying m = kn + k(k + 1)/2, then 
the 0th generaked k4lbonacci graph SFIp’ is a maximum path graph, that is, 

N(!Ff’) = N”,,,, 

If r # 0, then the situation becomes complicated. We shall show that Che best 
place to put one extra edge is at the extreme left [or right], i.e., we add the edge 
( 1, k + 2). Let G and G’ be the graphs obtained by adding the edges (1, k + 2) and 
(I, I + k + l), respectively, to the graph SLk’, where l<l<n-k-l. By symmetry, 

P I+k+l = P;+k+l. By the contribution of the extra edge in G, we obtain 

Pi = P:+flk_‘,-* (k+l<isZ+k). 

Furthermore, 

In the case t = 2 it can be shown similarly that the best place to put the two 
extra edges is one at the extreme right and one at the extreme left and, for such a 
graph G, we obtain 

Let G be a (Hamiltonian) maximum path graph with n vertices and m - 
(n - l)+r edges where O<r+. e n - 2, i.e., G has I edges of level 2 and has level 1 
full, It is easy to describe the structure of G, If t = n - 1 - r, th,n G is constiflcted 
by concatenating in series exactly t Fibonacci graphs &,, FS,, . . . , &,. It hilows 

that 
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t- ==--- -- 
1 2 3 4 5 6 7 6 9 10 11 12 

Fig. 4. Some maximum path graphs of level 2. 

The order in which the Ss, occur is immaterial, The following result can be shown 

PI . 1 
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