
Computer Networks 89 (2015) 90–106

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

The Good, the Bad and the WiFi: Modern AQMs in a residential

setting

Toke Høiland-Jørgensen∗, Per Hurtig, Anna Brunstrom

Department of Mathematics and Computer Science, Karlstad University, 651 88 Karlstad, Sweden

a r t i c l e i n f o

Article history:

Received 16 February 2015

Revised 4 July 2015

Accepted 28 July 2015

Available online 31 July 2015

Keywords:

Active queue management

Fairness queueing

Bufferbloat

Latency

Performance measurement

Wireless networks

a b s t r a c t

Several new active queue management (AQM) and hybrid AQM/fairness queueing algorithms

have been proposed recently. They seek to ensure low queueing delay and high network good-

put without requiring parameter tuning of the algorithms themselves. However, extensive ex-

perimental evaluations of these algorithms are still lacking. This paper evaluates a selection

of bottleneck queue management schemes in a test-bed representative of residential Internet

connections of both symmetrical and asymmetrical bandwidths as well as WiFi. Latency under

load and the performance of VoIP and web traffic patterns are evaluated under steady state

conditions. Furthermore, the impact of the algorithms on fairness between TCP flows with

different RTTs, and also the transient behaviour of the algorithms at flow startup is examined.

The results show that while the AQM algorithms can significantly improve steady state perfor-

mance, they exacerbate TCP flow unfairness. In addition, the evaluated AQMs severely strug-

gle to quickly control queueing latency at flow startup, which can lead to large latency spikes

that hurt the perceived performance. The fairness queueing algorithms almost completely al-

leviate the algorithm performance problems, providing the best balance of low latency and

high throughput in the tested scenarios. However, on WiFi the performance of all the tested

algorithms is hampered by large amounts of queueing in lower layers of the network stack

inducing significant latency outside of the algorithms’ control.

© 2015 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
1. Introduction

Ensuring low latency, and in particular consistently low

latency, in modern computer networks has become increas-

ingly important over the last several years. As more interac-

tive applications are deployed over the general Internet, this

trend can be expected to continue. Several factors can con-

tribute to unnecessary latency (for a survey of such factors,

see [1]); in this paper we focus on the important factor of

excessive queueing delay, particularly when the network is

congested.
∗ Corresponding author. Tel.: +46547001611.

E-mail addresses: toke.hoiland-jorgensen@kau.se (T. Høiland-Jørgensen),

per.hurtig@kau.se (P. Hurtig), anna.brunstrom@kau.se (A. Brunstrom).

http://dx.doi.org/10.1016/j.comnet.2015.07.014

1389-1286/© 2015 The Authors. Published by Elsevier B.V. This is an open access arti

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Recent re-emergence of interest in the problem of

congestion-induced excessive queueing latency has, to a

large extent, been driven by the efforts of the bufferbloat

community [2,3], which has also worked to develop tech-

nical solutions to mitigate it. In short, bufferbloat is a term

used to describe the effect that occurs when a network bot-

tleneck is congested and large buffers fill up and do not drain,

thus inducing a persistent queueing delay that can be much

larger than the path round-trip time. Since the inception of

the bufferbloat community effort, more and more people in

both academia and industry are becoming aware of the prob-

lem; and several novel queue management schemes have

been proposed to combat the problem.

These new queue management schemes seek to pro-

vide both low latency and high goodput, without requiring
cle under the CC BY-NC-ND license

https://core.ac.uk/display/82382397?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.comnet.2015.07.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2015.07.014&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:toke.hoiland-jorgensen@kau.se
mailto:per.hurtig@kau.se
mailto:anna.brunstrom@kau.se
http://dx.doi.org/10.1016/j.comnet.2015.07.014
http://creativecommons.org/licenses/by-nc-nd/4.0/


T. Høiland-Jørgensen et al. / Computer Networks 89 (2015) 90–106 91
the extensive parameter tuning that was needed for earlier

schemes like Random Early Detection (RED) [4]. The schemes

include new active queue management (AQM) algorithms,

such as Controlled Delay (CoDel) [5] and Proportional In-

tegral Controller Enhanced (PIE) [6]. In addition, the older

Adaptive RED (ARED) [7] algorithm has seen revival attempts

for this use.

Most previous evaluations of these algorithms have been

based on simulation studies. We extend this by comparing

more algorithms (seven in total), both pure AQM algorithms

and fairness queueing scheduling algorithms. In addition, we

examine more traffic scenarios and application behaviours.

Finally, we provide an updated examination of actual running

code (the Linux kernel, version 3.14), which, due to the wide

availability and open nature of the code, can be considered a

real-world reference implementation for the algorithms. For

all experiments, we provide access to the experimental data,

and the tools to replicate them, online.1

We present our analysis in three separate parts: the Good,

the Bad and the WiFi. First, the Good: we compare steady

state behaviour of the algorithms in a mix of traffic scenarios

designed to be representative of a residential Internet set-

ting: measuring latency under load, and real-world applica-

tion performance of VoIP and HTTP applications, with mini-

mal tuning of the algorithms applied. The tested algorithms

perform significantly better than FIFO queueing in these

scenarios.

Second, the Bad: we test the impact of the AQMs on fair-

ness between TCP flows of unequal RTT, and analyse the tran-

sient behaviour of the algorithms when flows start up. We

compare the goodput of four flows with RTTs varying al-

most two orders of magnitude. We find that the AQM algo-

rithms exacerbate the tendency of unfairness between the

TCP flows compared to FIFO queueing. We also look at the

development of measured delay over time when competing

TCP flows start up and start to claim bandwidth at the bot-

tleneck link. This analysis shows that two of the AQM algo-

rithms (PIE and CoDel) have severe issues in quickly control-

ling the induced delay, showing convergence times of several

seconds with very high delay spikes when the flows start up.

Finally, the WiFi: recognising that wireless networks play

an increasing role in modern residential networks, we eval-

uate the algorithms in a setup where a WiFi link constitutes

part of the tested path. We find that the algorithms fail to

limit latency in this scenario, and it is quite clear that more

work is needed to effectively control queueing in wireless

networks.

The analysis of these three aspects of AQM behaviour con-

tributes to a better understanding of residential network be-

haviour. It points to several areas that are in need of further

evaluation and more attention from algorithm developers.

One possible solution that has been deployed with promis-

ing results [8] is fairness queueing, exemplified by algorithms

such as Stochastic Fairness Queueing (SFQ) [9] or the hybrid

AQM/fairness queueing of fq_codel [10]. Hence, we have in-

cluded three such algorithms in our evaluations along with

the AQM algorithms. We find that they give vastly superior

performance when compared with both FIFO queueing and
1 http://www.cs.kau.se/tohojo/good-bad-wifi/.
the tested AQM algorithms, making the case that these types

of algorithms can play an important role in the efforts to con-

trol queueing delay.

The rest of the paper is structured as follows: Section 2

discusses related work. Section 3 presents the experimen-

tal setup and the tested path characteristics, and Section 4

describes the tested algorithms. Section 5 presents the mea-

surements of steady-state behaviour and their results, while

Section 6 does the same for the experiments with fairness

and transient behaviour. Section 7 covers WiFi and finally,

Section 8 concludes the paper and outlines future work.

2. Related work

A large number of AQM algorithms have been proposed

over the last two decades, employing a variety of approaches

to decide when to drop packets; for a comprehensive sur-

vey, see [11]. Similarly, several variants of fairness queueing

have been proposed, e.g. [12–14]. We have limited our atten-

tion to those algorithms proposed as possible remedies to the

bufferbloat problem over the last several years. This section

provides an overview of previous work on evaluating these

algorithms and their effectiveness in combating bufferbloat.

The first evaluations of the AQM algorithms in question

were performed by their inventors, who all publish exten-

sive simulation results comparing their respective algorithms

to earlier work [5–7]. All simulations performed by the al-

gorithm inventors examine queueing delay and throughput

tradeoffs in various straightforward, mainly bulk, traffic sce-

narios. Due to being published at different times and with

different simulation details, the results are not easily com-

parable, but overall, the authors all find that their proposed

algorithms offer tangible improvements over the previously

available algorithms.

In an extensive ns2-based simulation study of AQM per-

formance in a cable modem setting [15], White compares

CoDel, PIE and two hybrid AQM/fairness queueing algo-

rithms, SFQ-CoDel and SFQ-PIE. Various traffic scenarios

were considered, including gaming, web and VoIP traffic as

well as bulk file transfers. The simulations focus specifically

on the DOCSIS cable modem hardware layer, and several of

the algorithms are adjusted to better accommodate this. For

instance, the PIE algorithm has more auto-tuning intervals

added, and the fairness queueing algorithms have the num-

ber of queues decreased. The study finds that all three algo-

rithms offer a marked improvement over FIFO queueing. The

study concludes that PIE offers slightly better latency perfor-

mance than CoDel but has some issues with bulk TCP traf-

fic. Finally, the study finds that SFQ-CoDel and SFQ-PIE offer

very good performance in many cases, but note some issues

in specific scenarios involving many BitTorrent flows.

Khademi et al. [16] have performed an experimental eval-

uation of CoDel, PIE and ARED in a Linux testbed. The ex-

periments focus on examining the algorithms at a range of

parameter settings and measure bulk TCP transfers and the

queueing delay experienced by the packets of the bulk TCP

flows themselves. The paper concludes that ARED is compa-

rable to PIE and CoDel in performance.

Rao et al. [17] perform an analysis of the CoDel algorithm

combined with a simulation study that compares it to the

http://www.cs.kau.se/tohojo/good-bad-wifi/


92 T. Høiland-Jørgensen et al. / Computer Networks 89 (2015) 90–106
SFQ-CoDel algorithm. The paper concludes that SFQ-CoDel

for many scenarios outperforms plain CoDel.

Järvinen and Kojo [18] perform a simulation study com-

paring PIE and CoDel to their own modified RED variant

called HRED, focusing on transient load behaviour. They con-

clude that the CoDel algorithm does not scale with load,

that PIE performs worse generally, but scales better, and that

the HRED algorithm performs and scales better at transient

loads.

Cai et al. [19] employ fairness queueing to alleviate

throughput unfairness between stations in a wireless net-

work by applying it in a centrally controlled shaper. They find

that this scheme can significantly reduce unfairness.

Finally, Park et al. [20] perform a simulation study of

CoDel on a wireless access point and concludes that, correctly

configured, it can lower latency while keeping throughput

high.

Our work expands on the above by (a) including more

tested algorithms, also incorporating a variety of fairness

queueing algorithms; by (b) testing a wider variety of traf-

fic scenarios, in particular incorporating realistic application

behaviour and looking at fairness issues and transient be-

haviour; and by (c) performing comprehensive, carefully de-

signed tests of real-world implementations of the algorithms

on actual networking hardware, while making the full data

set and implementation available for scrutiny. We believe

that together these factors make our evaluation an important

contribution towards understanding the behaviour of mod-

ern queue management algorithms. In particular, we believe

it is important to evaluate the algorithms in real-world im-

plementations, to obtain a realistic view of their behaviour

free from the idealisations imposed by purely simulation-

based studies.

3. Experimental methodology

The experiments compare the selected queue manage-

ment schemes in a variety of realistic scenarios mimicking a

residential Internet connection setting. This section presents

the setup and methodology used to test the algorithms.

The tests are run in a controlled environment consisting of

five regular desktop computers, as shown in Fig. 1. The com-

puters are equipped with Intel 82571EB Ethernet controllers,

and networked together in a daisy-chain configuration. This

corresponds to a common dumbbell scenario, with the indi-

vidual flows established between the endpoint nodes serv-

ing as multiple senders. The middle machine adds latency

by employing the dummynet emulation framework [21]. The
Client

Ethernet

Bottleneck router

Latency ind

Fig. 1. Physical te
bottleneck routers employ software rate limiting (through

the tbf rate limiter [22]) to achieve the desired bottleneck

speeds. A separate control network is used to configure the

test devices and orchestrate tests. All five computers run

Debian Wheezy. The latency inducer runs the stock kernel

(version 3.2) with the dummynet module added, while the

others have had the kernel replaced with a vanilla kernel ver-

sion 3.14.4. For the WiFi tests, a wireless link is added to the

testbed (see Section 7).

The test setup is designed to correspond to a residential

Internet connection scenario. All tests are run with the bot-

tleneck in three configurations: a symmetrical link at 100

Mbps, a symmetrical link at 10 Mbps, and an asymmetrical

link with 10/1 Mbps download/upload speeds. The base RTT

is set to 50 ms, corresponding to a mid-range Internet la-

tency. All TCP goodput values are measured at the application

level; the bandwidth utilisation of the flows that measure la-

tency is not counted.

The test computers are set up to avoid the most common

testing pitfalls, as documented by the bufferbloat community

in a best practice document [23]. This means that all hard-

ware offload features are turned off, the kernel Byte Queue

Limits have been set to a maximum of one packet and the

kernel is compiled with the highest possible clock tick fre-

quency (1000 Hz). All of these adjustments serve to eliminate

sources of latency and queueing other than those induced

by the algorithms themselves, for instance by preventing the

network driver and hardware from queueing packets outside

the control of the queue management algorithms. We have

chosen this best-case configuration for our tests, because

the object of interest is the behaviour of the algorithms

themselves, not the interactions between different layers of

the operating system network stack and/or hardware. While

turning off offloads and lowering the Byte Queue Limit set-

tings can in some cases adversely affect achievable through-

put, we have verified that our testbed has sufficient computa-

tional resources that this is not an issue at the speeds we are

testing. All tests are run with both the CUBIC and New Reno

TCP congestion control algorithms, but the results are only

included here with the (for Linux) default CUBIC algorithm.

The tested queue management schemes are installed

before the bottleneck link, in both the upstream and

downstream directions. In a real residential setting this

corresponds to service providers having the algorithms

installed at their head end termination equipment, as well

as in customer equipment. Many devices deployed in service

provider networks do not run Linux, and so availability of

an algorithm implementation in Linux does not necessarily
Server

Rate limited bottleneck

Bottleneck router

ucer

st setup.



T. Høiland-Jørgensen et al. / Computer Networks 89 (2015) 90–106 93

Table 1

Qdisc parameters. Parameters that are kernel defaults are

shown in italics. Some values are omitted here for brevity;

see the published dataset and configuration scripts for de-

tails.

Parameter 1 Mbps 10 Mbps 100 Mbps

pfifo_fast

txqueuelen 127 127 1000

ARED

min 1514 12500 125000

bandwidth 1 Mbps 10 Mbps 100 Mbps

max 3028 – –

PIE

target 20 ms 20 ms 20 ms

tupdate 30 ms 30 ms 30 ms

limit 1000 1000 1000

CoDel

target 13 ms 5 ms 5 ms

interval 100 ms 100 ms 100 ms

limit 1000 1000 1000

SFQ

limit 127 127 1000

fq_codel

target 13 ms 5 ms 5 ms

interval 100 ms 100 ms 100 ms

limit 10240 10240 10240

fq_nocodel

limit 127 127 1000

interval 100 s 100 s 100 s
translate directly to deployability today. However, since we

are interested in assessing the potential benefits the algo-

rithms can provide if deployed, we believe that testing in a

scenario that grants the algorithms as much control of the

bottleneck queues as possible is the right thing to do. We

hope this can help make the case for implementing smarter

queue management at the customer-facing side of opera-

tor networks. Until such implementations appear, Linux pro-

vides an intermediate queueing device that allows down-

stream shaping in the home gateway, which can help get

queueing under control (with some limitations) [24].

The benchmarking tools used for the performance tests

are the Netperf tool [25] for TCP traffic, the D-ITG tool [26] for

generating VoIP streams and the cURL library for web tests

[27]. The tests are run by means of a testing harness, Flent

[28], which is available as open source software.

4. Tested algorithms

Seven queue management schemes, or qdiscs in Linux

vocabulary, have been selected, including the default FIFO

queueing mechanism. These represent algorithms that seek

to function well with their default parameters at a wide

variety of operating conditions in Internet scale networks.

While the parameter sensitivity of the algorithms is impor-

tant, studies of this have been performed elsewhere (in e.g.

[16]). Additionally, we believe performance at the default pa-

rameter setting is an important part of a queueing mecha-

nism’s overall performance (the difficulty of configuring RED

has been cited as a major reason for its limited deployment

[5]). For this reason, we focus on comparing the algorithm

behaviours to each other with their default parameters. The

drafts describing both the new AQMs (CoDel and PIE) include

parameter settings known to work well in a wide variety of

cases, and these values are also the defaults in the Linux im-

plementation. We keep these defaults except where our test

scenario is known to stray from the default operating range,

or where no defaults exist.

All algorithms whose sole dropping mechanism is queue

overflow (i.e. the pure packet schedulers), we have config-

ured to have the same total queue length. This ensures that

the scheduling behaviour is tested, rather than just the ef-

fects of different queue lengths. The lowest default value for

these algorithms is used as the queue length, which is the

SFQ default of 127 packets. This value is used at 1 and 10

Mbps; at 100 Mbps a longer queue size is required for TCP to

fill the pipe. Thus, the queue size is increased to 1000 packets

(the pfifo_fast default) at 100 Mbps.

Being available in mainline Linux, all the tested algo-

rithms are available on a wide variety of platforms, and have

been tested on a wide variety of hardware. In particular, they

are part of the OpenWrt embedded router project, showing

that running them on low-powered devices is quite feasible.

The algorithm parameters are summarised in Table 1 and

the rest of this section describes each algorithm in turn.

4.1. pfifo_fast

The pfifo_fast qdisc is the current default in Linux and

consists of a three-tier priority queue with simple FIFO se-

mantics. In the tests only one priority is used, so the qdisc

can be viewed as a simple FIFO queue.
4.2. ARED

ARED is a dynamic configuration scheme for the RED AQM

algorithm. It adjusts the RED max dropping probability based

on the observed queue length, around a target point mid-

way between the configured minimum and maximum queue

sizes.

Following the configuration guidelines given in [7], the

minimum queue size is set to half the target delay (queue-

ing time being converted to a queue size by the link speed)

and the max queue size is set to three times the minimum

queue size. This makes the algorithm control point oscillate

around the target delay size midway between the two values.

A target delay of 20 ms is used, corresponding to the default

for the PIE algorithm, which features a similar probabilistic

drop scheme. However, at 1 Mbps, this would result in un-

achievable target queue size lengths of less than one maxi-

mum transmission unit (MTU). To avoid this, at 1 Mbps the

minimum and maximum queue size parameters are set to

one and two MTUs respectively.

4.3. PIE

PIE is based on a traditional proportional integral

controller design. It infers queueing delay from the instan-

taneous queue occupancy and the egress rate. The drop

probability is then adjusted periodically (at a configurable

interval defaulting to 30 ms) from the variations in the

queueing delay over time, combined with a configured

target delay, which defaults to 20 ms.

When PIE updates the drop probability, it does so based

on the instantaneous estimated queueing delay and how it



94 T. Høiland-Jørgensen et al. / Computer Networks 89 (2015) 90–106

2 When an overflow condition is detected, fq_codel linearly searches all

available queues to find the longest one from which to drop a packet. This

has a large impact, mainly by using up a lot of CPU cache. The implemen-

tors found this to have acceptable performance as long as it is used as a

fallback mechanism to avoid overflow rather than as the main drop mech-

anism. Thus, changing the implementation to a more efficient drop mecha-

nism would be advisable for a deployment scenario.
compares to the reference delay parameter and to the previ-

ously measured delay, respectively. Two parameters, α and

β , control the weighing between the impact of these two

differences on the calculated drop probability. PIE contains

an auto-tuning feature which adjusts the values of α and β
based on the measured level of congestion (expressed by the

drop probability), setting the parameters higher when the

network is more congested; this makes the algorithm react

faster when the congestion level is higher. The Linux imple-

mentation has three levels of this auto-tuning, while more

have been added in the version of PIE incorporated in the

DOCSIS standard [29].

4.4. CoDel

CoDel seeks to minimise delay by directly measuring the

time packets spend in the controlled queue. If this time ex-

ceeds a configured target for longer than a configured inter-

val, packets are dropped at a rate computed by the interval

divided by the square root of the number of previous drops,

until the queueing delay sinks below target again. The previ-

ous drop rate is then saved and the algorithm will start drop-

ping again at the same level as before if it re-enters the drop

state within a short time after having left it.

While the default values of 5 ms for target and 100 ms for

interval are cited by the authors to work well for a large range

of Internet-scale bandwidths and RTTs, one known exception

in the current implementation is when the minimum attain-

able queueing time (i.e., the transmission time of one packet)

is higher than the target. In this instance, target should be set

to the queueing time of one packet; thus, for the 1 Mbps tests,

CoDel’s target is raised to 13 ms.

4.5. SFQ

SFQ is a fairness queueing algorithm that employs a hash-

ing mechanism to divide packets into sub-queues, which are

then served in a round-robin manner. By default, packets are

hashed on the 5-tuple defined by the source and destination

IP addresses, the layer 4 port numbers (if available) and the

IP protocol number, salted with a random value chosen at

startup. The number of hash buckets (and thus the maximum

number of active sub-queues) is configurable and defaults to

1024.

4.6. fq_codel

The fq_codel algorithm [10] is a hybrid algorithm consist-

ing of a flow queueing scheduler which employs the CoDel

AQM on each sub-queue. The flow queueing mechanism is a

subtle optimisation of fairness queueing for sparse flows: A

sub-queue will be temporarily prioritised when packets first

arrive for it, and once it empties, a sub-queue will be cleared

from the router state. This means that queues for which pack-

ets arrive at a sufficiently slow rate for the queue to drain

completely between each new arrival, will perpetually stay

in this state of prioritisation. The exact rate for this to happen

depends on load, traffic and link characteristics, but in prac-

tice it means that many packets which impact overall interac-

tivity (such as TCP connection negotiation and DNS lookups)

get priority, leading to reduced overall application latency.
Additionally, fq_codel uses a deficit round–robin scheme

when dequeuing packets from the sub-queues. This allows

a queue with small packets to dequeue several packets each

time a queue with big packets dequeues one, thus approxi-

mating byte-based fairness rather than packet-based fairness

between queues. The granularity of the deficit mechanism

can be set by a quantum parameter which defaults to one

MTU.

4.7. fq_nocodel

The term ‘fq_nocodel’ is used to refer to the fq_codel algo-

rithm configured so as to effectively disable the CoDel AQM

(by setting the CoDel target parameter to be 100 s). This con-

figuration is included to examine the performance of the flow

queueing mechanism of fq_codel, without having the CoDel

algorithm operate on each queue. Since the queue overflow

behaviour of fq_codel is very CPU-intensive,2 this operating

mode is not viable for deployment, but can be used in a con-

trolled testbed environment with suitably over-provisioned

CPU resources for the configured bandwidth.

5. The Good: steady-state behaviour

Steady-state behaviour is the most commonly assessed

characteristic of queue management algorithms, and this is

also the subject area of most analytical models (e.g. [30]).

In this section we present three experiments examining the

steady-state behaviour of the tested algorithms: one that

looks at algorithm behaviour under synthetically generated

load, and two that test the impact of algorithms on perfor-

mance of real-world application traffic. Each of the steady-

state tests is run for 140 s (to minimise the impact of tran-

sient behaviour at flow start-up time) and repeated 30 times.

5.1. The real-time response under load test

The real-time response under load (RRUL) test was de-

veloped by the bufferbloat community [31] specifically to

stress-test networks and weed out undesirable behaviour.

It consists of running four concurrent TCP flows in each di-

rection, while simultaneously measuring latency using both

UDP and ICMP packets. The goal is to saturate the connec-

tion fully, and the metrics of interest are TCP goodput, and

the extra latency induced under load. The latter we define

as the average observed latency under a full test run, minus

the base path RTT. The RRUL test is also used as background

traffic for the other steady-state tests below.

5.1.1. RRUL results

The results for the RRUL test are shown in Fig. 2 as

latency-goodput ellipsis graphs. The use of this type of graph

was pioneered for visualising bandwidth/latency tradeoffs by



T. Høiland-Jørgensen et al. / Computer Networks 89 (2015) 90–106 95

01020304050607080
Mean induced latency (ms)

82

84

86

88

90

92

94

96

M
ea

n 
T

C
P

 g
oo

dp
ut

 (
M

bi
t/

s)

pfifo_fast

ared

pie

codel

sfq

fq_nocodel

fq_codel

(a) 100/100 Mbps link speed, one direction shown.

020406080100
Mean induced latency (ms)

8.8

8.9

9.0

9.1

9.2

9.3

9.4

9.5

9.6

M
ea

n 
T

C
P

 g
oo

dp
ut

 (
M

bi
t/

s)

pfifo_fast

ared

pie codel

sfq

fq_nocodel

fq_codel

(b) 10/10 Mbps link speed, one direction shown.

050100150200250300
Mean induced latency (ms)

0

2

4

6

8

10

M
ea

n 
T

C
P

 g
oo

dp
ut

 (
M

bi
t/

s)

pfifo_fast

pfifo_fast

ared

ared

pie

pie

codel

codel

sfq

sfq

fq_nocodel

fq_nocodel

fq_codel

fq_codel

(c) 10/1 Mbps link speed, both directions shown.

Fig. 2. (a and b) The RRUL test results, showing the median values and

1-σ ellipses of the per-test-run mean goodput and mean induced latency.

(c) As (a and b), but showing both upstream and downstream traffic, re-using

the same latency values.
Winstein in [32], and deliberately flips the latency axis to

make better values be “up and to the right”. For the 10/1

Mbps link, in Fig. 2c, both upstream and downstream be-

haviours are shown on the same plot, reusing the same la-

tency values for both. The results show that the default FIFO

queue predictably gives a high induced latency, but with high

goodput. An exception is on the asymmetrical 10/1 Mbps

link, where the downstream goodput suffers slightly. This is

due to ACKs being dropped in the upstream direction, pre-

venting the downstream flows from fully utilising the avail-

able bandwidth, and the behaviour is consistent with previ-

ous studies of TCP on asymmetric links [33]. The same effect

is apparent for the ARED AQM, which achieves an even lower

goodput, but at the same time it achieves a lower latency.

All the AQMs achieve lower queueing delay than FIFO

queueing, and the newer AQMs fare better goodput-wise at

the low bandwidth. The difference between the steady-state

behaviours of the three AQMs can be explained as follows:

ARED and PIE are both designed to control the average queue

length around a set point. ARED controls the drop probabil-

ity based on how the average queue length deviates from the

desired set-point, scaling the drop probability rapidly as the

queue fluctuates in a rather narrow interval around the tar-

get. This causes it to be fairly aggressive, achieving low de-

lays, but at a cost in throughput. This is particularly apparent

at 1 Mbps, where the size of the interval is a single packet.

PIE, on the other hand, adjusts its drop probability based

on both the queue’s deviation from the set-point and the pre-

vious delay values, and the drop probability is adjusted less

often. Together, this leads to a smoother oscillation around

the target, and a less aggressive behaviour. At 100 Mbps,

however, PIE shows a more aggressive drop behaviour than at

lower bandwidths. This is most likely due to the fact that the

built-in auto-tuning of PIE (which scales the drop probabil-

ity adjustment parameters α and β with the observed drop

probability) is too narrow in scope. The auto-tuning consists

of a lookup table for drop probabilities in ranges starting

from 0.1%, with lower drop probabilities resulting in a slower

adjustment. However, everything below 0.1% is treated the

same, and since the steady-state drop probability of a 100

Mbps link is markedly lower than 0.1%, this results in the

algorithm reacting more aggressively than it does at lower

bandwidths.

Finally, CoDel uses its target parameter as a lower bound

on how much latency to tolerate before reacting by dropping

packets. This means that the set-point does not function as

an average around which to control the queues, as the other

algorithms do. Instead, the queue is controlled to an average

somewhat above the target. The auto-tuning of the interval

from the drop count then serves to find the right drop rate,

and CoDel oscillates in and out of drop mode in the steady

state. This leads to a steady-state performance midway be-

tween ARED and PIE (excluding the 100 Mbps PIE behaviour),

as seen from the figure.

The highest goodput of all the configured queue manage-

ment schemes, however, is achieved by the AQM-less fair-

ness queueing algorithms, with fq_codel lagging a tiny bit

behind. This indicates that with the flow isolation offered

by fairness queueing, additional drop signals from an AQM

hurt throughput with no gain in terms of lower queueing de-

lay for competing flows. However, this is offset by the fact



96 T. Høiland-Jørgensen et al. / Computer Networks 89 (2015) 90–106

3 The test pages are henceforth referred to as ‘Google’ and ‘Huffpost’, re-

spectively.
that fq_codel keeps the TCP window significantly smaller

than fq_nocodel, meaning that the TCP flows themselves ex-

perience less queueing latency. This can be important for

interactive applications that also transfer enough data to in-

duce queueing, such as screen sharing applications or adap-

tive rate video streaming.

At 100 Mbps link speed, all three fairness queueing al-

gorithms show comparable (and very close to zero) induced

latency. However, at the lower bandwidths where the time

to transmit single packets can be noticeable, it is clearly

seen how it is beneficial that the flow queueing mechanism

prioritises the sparse flows measuring latency, resulting in

practically zero induced latency. The high variance of the

fq_nocodel algorithm at the lowest speed results from a hash

collision between a latency measurement flow and a data

flow, resulting in one of the test runs exhibiting high latency.

5.2. VoIP test

The VoIP test seeks to assess the performance of voice

traffic running over a bottleneck managed by each of the

queue management schemes. This is done by generating syn-

thetic VoIP-like traffic (an isochronous UDP flow at 64 kbps)

in the upstream direction, and measuring the end-to-end

one-way delay and packet loss rate. The test is performed

with one competing TCP flow in the same direction as the

VoIP flow, as well as with the full RRUL test as background

traffic on the link.

5.2.1. VoIP results

The results for the VoIP tests are shown in Fig. 3. The

graphs show the CDF of the one-way delay samples of the

VoIP traffic with a 200 ms sampling interval. The accompany-

ing TCP goodput results are omitted for brevity, but the rela-

tive goodput for each algorithm mirror those from the RRUL

test discussed above. For latency, the results mirror those of

the RRUL tests: new AQM algorithms give a marked improve-

ment over FIFO queueing, but with their respective latency

values varying depending on the link bandwidth and cross

traffic. And as before, the fairness queueing gives the best

latency results. However, it is interesting to note that the

effects of hash collisions in the queue assignments are ap-

parent in the RRUL results at 1 Mbps, heavily influencing the

performance of SFQ and fq_nocodel. CoDel and PIE also show

a long tail of delay values at 1 and 10 Mbps for RRUL, corre-

sponding to the transient delay (see Section 6.2).

Loss statistics are shown in Table 2. From these, it is quite

apparent that the AQMs would render a VoIP conversation

completely hopeless at 1 Mbps, even with only a single com-

peting flow. With RRUL as cross traffic it is even worse, with

the FIFO queueing also showing high loss rates. Additionally,

ARED shows loss in excess of 25%, explaining its very low

delay values. For all tests, the flow isolation of the fairness

queueing algorithms effectively protect the VoIP flows from

loss, with the exception of SFQ and fq_codel at 1 Mbps with

RRUL as cross-traffic. This can be explained by the fact that at

this speed, the time to transmit a packet is a significant com-

ponent of the latency, adding enough delay for the VoIP flow

to build a bit of queue and hence suffer loss.
5.3. Web test

The web test measures the web browsing performance of

a user accessing the web through a bottleneck equipped with

the tested queue management schemes.

To retrieve a web site, web browsers commonly first

lookup the site host name, then retrieve the main HTML doc-

ument, and finally retrieve all the resources associated with

the document over several concurrent connections. Since

web browsers continue to evolve at a rapid pace, and so con-

stitute somewhat of a moving target, we have chosen to fo-

cus on this network-centric behaviour as a way to approx-

imate real web behaviour. We simply define the page fetch

time as the total time to retrieve all objects of each web site.

This metric also has the added benefit of being reproducible

without relying on a specific implementation of a particular

browser or rendering engine. We have chosen the well-tested

and widely used cURL library [27] as the basis for our test

client [34], which mimics this fetching behaviour in a repro-

ducible way (a feature we were not able to find in any existing

web benchmarking tools).

Two web pages of different sizes are mirrored on the test

server: the Google front page (56 kB data in a total of three

requests) and the front page of the Huffington Post web site

(3 MB in a total of 110 requests).3 We believe these two sites

are well-suited to represent opposite ends of the web scale:

a small interactive page and a large and complex site with

many elements to be fetched.

The tested web site is repeatedly fetched throughout the

duration of the test run. The metric of interest is the page

fetch time mentioned above. The test is run both with the

RRUL test as background traffic, and with a single TCP flow

in the upstream direction, competing with the HTTP requests

going to the web server. The latter is included to show the im-

portance of having timely delivery of the HTTP requests, and

how failure to achieve this can negatively impact the entire

web browsing performance.

5.3.1. Web results

The results for the web tests are shown in Figs. 4 and 5.

For each test run, the average fetch time is computed, and

the mean and standard deviation of these averages over the

test repetitions are displayed on the result graphs.

The results show that managing delay greatly impacts

web browsing performance in a positive way. However, one

exception is the ARED algorithm at low bandwidths: here,

performance is both highly variable and sometimes even

worse than the FIFO queue. This is caused by a too aggres-

sive drop behaviour, which causes SYN packets in the HTTP

requests to be lost, requiring retransmission. This effect is

most pronounced on the simpler Google page, where the to-

tal fetch time is more affected by timely delivery of the HTTP

request.

SYN losses are also the reason that the FIFO queue shows

worse behaviour with a single TCP flow as cross traffic than

with the full RRUL test. We attribute this to the fact that with

the RRUL test, a lot of the queue space in the upstream direc-

tion is occupied by small ACK packets, which take less time



T. Høiland-Jørgensen et al. / Computer Networks 89 (2015) 90–106 97

pfifo_fast ared pie codel sfq fq_nocodel fq_codel

0 10 20 30 40 50 60 70
Induced one-way delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

(a) 1 stream, 100/100 Mbps.

0 10 20 30 40 50 60 70 80 90
Induced one-way delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty
(b) RRUL, 100/100 Mbps.

0 20 40 60 80 100 120 140
Induced one-way delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

(c) 1 stream, 10/10 Mbps.

0 20 40 60 80 100
Induced one-way delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e 
pr

ob
ab

ili
ty

(d) RRUL, 10/10 Mbps.

0 100 200 300 400 500 600 700 800
Induced one-way delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

(e) 1 stream, 10/1 Mbps.

0 50 100 150 200 250 300 350
Induced one-way delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

(f) RRUL, 10/1 Mbps.

Fig. 3. VoIP tests results. The CDF plots show the distribution of induced one-way delay over all samples from the VoIP streams.



98 T. Høiland-Jørgensen et al. / Computer Networks 89 (2015) 90–106

Table 2

VoIP average packet loss over all test runs. A ‘–’ indicates no

packet loss.

1 Mbps (%) 10 Mbps (%) 100 Mbps (%)

1 stream cross traffic

pfifo_fast 0.88 0.10 –

ARED 7.95 0.45 0.002

PIE 2.75 0.04 0.002

CoDel 6.46 0.02 0.002

SFQ – – –

fq_nocodel – – –

fq_codel – – –

RRUL cross traffic

pfifo_fast 8.54 0.20 0.032

ARED 26.33 0.61 0.019

PIE 14.03 0.44 0.016

CoDel 10.60 0.19 0.004

SFQ 0.42 – –

fq_nocodel – – –

fq_codel 0.04 – –
to put on the wire. When the queue is full and a full-sized

packet is at the front of the queue, it stays full for the en-

tire time it takes to dequeue that one packet. This means that

the smaller the packets, the shorter the average time before a

new queue space opens up, and hence the better the chance

that the SYN packet gets a space in the queue upon arrival.

Another interesting feature of the result is that any

queue management significantly improves this important

real-world application performance. The performance differ-

ences between the AQM algorithms and the fairness queue-

ing schemes are in many cases less pronounced than in the

other tests, since all the algorithms achieve sufficient latency

reduction to get the fetch time very close to the unloaded
pf
if

o_
fa

st

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el

0.0

0.5

1.0

1.5

2.0

N
or

m
al

is
ed

 m
ea

n 
fe

tc
h 

ti
m

e 
(m

s)

(a) 100/100 Mbps, 1 TCP flow.

pf
if

o_
fa

st

ar
ed pi

e

co
de

l0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

is
ed

 m
ea

n 
fe

tc
h 

ti
m

e 
(m

s)

(b) 10/10 Mbps, 1

pf
if

o_
fa

st

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

is
ed

 m
ea

n 
fe

tc
h 

ti
m

e 
(m

s)

(d) 100/100 Mbps, RRUL.

pf
if

o_
fa

st

ar
ed pi

e

co
de

l0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

N
or

m
al

is
ed

 m
ea

n 
fe

tc
h 

ti
m

e 
(m

s)

(e) 10/10 Mbps,

Fig. 4. HTTP mean fetch times for Google. The upper row shows results for the tests

tests with the RRUL test as cross traffic.
case. For those cases where the fetch time is significantly

higher than the unloaded case, the performance differences

are more pronounced. The odd case out is Huffpost at 10

Mbps with the RRUL test, where the fairness queueing algo-

rithms show worse performance than CoDel and PIE. This is

most likely because the Huffpost site consists of many objects

that need to be fetched: They are each fairly small and so will

be sent in a single burst of packets. The bursts go into the sin-

gle queues back-to-back, whereas per-flow fairness imposed

by the fairness queueing algorithms split them up causing a

longer total completion time.

5.4. Discussion

The steady state test results show that a marked improve-

ment is possible by managing the bottleneck queues. All

three AQM algorithms show consistent improvements over

FIFO queueing, although the older ARED algorithm exhibits a

tendency to drop too aggressively, as does PIE at 100 Mbps.

Together, the steady state results underscore the benefit

of deploying AQM in place of the prevalent FIFO queues of

today’s networks; this is in broad agreement with previous

studies. It is worth noting, however, that ARED does require

quite a bit of parameter tuning compared to the two other

algorithms. In particular, parameters need to be set corre-

sponding to the link bandwidth, which makes the algorithm

somewhat more complex to deploy than the others.

The analysis of the fairness queueing algorithms shows

very impressive performance. At no point are the fairness

queueing algorithms out-performed by the AQM algorithms,

and in most cases fairness queueing outperforms AQM by

a large margin. For VoIP traffic in particular, the flow isola-

tion prevents the VoIP flows from experiencing a loss rate

that, at the lowest bandwidth, would make any conversation
sf
q

fq
_n

oc
od

el

fq
_c

od
el

TCP flow.

pf
if

o_
fa

st

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el

0

5

10

15

20

25

N
or

m
al

is
ed

 m
ea

n 
fe

tc
h 

ti
m

e 
(m

s)

(c) 10/1 Mbps, 1 TCP flow.

sf
q

fq
_n

oc
od

el

fq
_c

od
el

RRUL.

pf
if

o_
fa

st

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el

0

5

10

15

20

25

N
or

m
al

is
ed

 m
ea

n 
fe

tc
h 

ti
m

e 
(m

s)

(f) 10/1 Mbps, RRUL.

with a single TCP flow as cross traffic, while the lower row shows results for



T. Høiland-Jørgensen et al. / Computer Networks 89 (2015) 90–106 99

pf
if

o_
fa

st

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
or

m
al

is
ed

 m
ea

n 
fe

tc
h 

ti
m

e 
(m

s)

(a) 100/100 Mbps, 1 TCP flow.

pf
if

o_
fa

st

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el

0.0

0.5

1.0

1.5

2.0

N
or

m
al

is
ed

 m
ea

n 
fe

tc
h 

ti
m

e 
(m

s)

(b) 10/10 Mbps, 1 TCP flow.

pf
if

o_
fa

st

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el

0

2

4

6

8

10

12

N
or

m
al

is
ed

 m
ea

n 
fe

tc
h 

ti
m

e 
(m

s)

(c) 10/1 Mbps, 1 TCP flow.

pf
if

o_
fa

st

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

is
ed

 m
ea

n 
fe

tc
h 

ti
m

e 
(m

s)

(d) 100/100 Mbps, RRUL.

pf
if

o_
fa

st

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

is
ed

 m
ea

n 
fe

tc
h 

ti
m

e 
(m

s)

(e) 10/10 Mbps, RRUL.

pf
if

o_
fa

st

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el

0

1

2

3

4

5

6

7

8

9

N
or

m
al

is
ed

 m
ea

n 
fe

tc
h 

ti
m

e 
(m

s)

(f) 10/1 Mbps, RRUL.

Fig. 5. HTTP mean fetch times for Huffpost. The upper row shows results for the tests with a single TCP flow as cross traffic, while the lower row shows results

for tests with the RRUL test as cross traffic.
completely untenable. This indicates that various forms of

fairness queueing have an important role to play in dealing

with queueing-induced latency. The sparse flow optimisation

of the fq_codel flow queueing algorithm provides a marked

additional improvement on top of regular fairness queueing,

especially at lower bandwidths.

6. The Bad: fairness and transient behaviour

Two aspects of queue management are often overlooked

when evaluating queue management algorithms: the algo-

rithms’ influence on inter-flow fairness, and the transient be-

haviour exhibited when flows start up. In this section we

present our analysis of these two aspects of the behaviour

of the tested algorithms.

6.1. Inter-flow fairness

It is well-known that fairness queueing algorithms can

improve flow fairness characteristics [35], and indeed it is

a design goal for such algorithms (hence the term fairness

queueing). However, fairness characteristics of pure AQM al-

gorithms are not well understood. In this section, we investi-

gate fairness behaviour of all the tested algorithms.

We do this by means of the RTT-fairness test, which ex-

amines the RTT fairness properties of TCP under each of the

queueing algorithms. It is well-known that the TCP goodput

is affected by the RTT [36], because the congestion control

algorithm reacts to feedback that is on an order of the RTT.

While TCP CUBIC is designed to improve RTT fairness [37],

some RTT fairness issues still remain [38]. The purpose of the

RTT-fairness test is to evaluate whether the queue manage-

ment schemes make this effect worse, or whether they help
alleviate it. The test consists of running four concurrent TCP

streams from the client to the server, each with a different

RTT value (10, 50, 200 and 500 ms respectively), and measur-

ing the aggregate TCP goodput of each stream. To minimise

the impact of transient effects from the initial TCP ramp-up

even at the long base RTT, the test length is increased to 600

s for this test. As expected, the RTT fairness characteristics of

the CUBIC and New Reno congestion controls differ. However,

this is only a difference in magnitude, and does not influence

the relative performance of the algorithms compared to each

other. We have thus omitted the Reno results for brevity.

6.1.1. RTT Fairness results

Fig. 6 shows the test results for the RTT fairness tests. The

figure shows Jain’s fairness index [39] calculated over the

goodput values of the four competing flows, as well as the to-

tal goodput of each of the four flows. For each test repetition,

the total goodput value for each flow is used; all graphs show

the mean and standard deviation over the test repetitions.

The AQM algorithms exhibit a tendency to worsen the

RTT-unfairness of TCP, compared to the FIFO queue. This can

be clearly seen by comparing the throughput of the flows

with the highest latency between the algorithms. This is due

to several factors: Firstly, the added queueing latency of the

FIFO queue serves to even out the RTT differences of the dif-

ferent flows. Furthermore, packet traces reveal that the AQM

algorithms cause the long-RTT flows to experience loss at an

even rate throughout the test, whereas FIFO queueing results

in bursty losses, from which TCP recovers better. Finally, the

AQMs tune themselves to the shorter flow RTTs to control

the queue, hurting the flows with longer RTT which share the

queue. Together, these effects combine to lower the fairness

rating of the AQM algorithms.



100 T. Høiland-Jørgensen et al. / Computer Networks 89 (2015) 90–106

pf
if

o_
fa

st

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el

pf
if

o_
fa

st

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el

pf
if

o_
fa

st

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el

0.0

0.2

0.4

0.6

0.8

1.0

1.2

F
ai

rn
es

s 
in

de
x

100Mbit 10Mbit 1Mbit

(a) Fairness index.

10
 m

s
50

 m
s

20
0 

m
s

50
0 

m
s

10
 m

s
50

 m
s

20
0 

m
s

50
0 

m
s

10
 m

s
50

 m
s

20
0 

m
s

50
0 

m
s

10
 m

s
50

 m
s

20
0 

m
s

50
0 

m
s

10
 m

s
50

 m
s

20
0 

m
s

50
0 

m
s

10
 m

s
50

 m
s

20
0 

m
s

50
0 

m
s

10
 m

s
50

 m
s

20
0 

m
s

50
0 

m
s0

10

20

30

40

50

60

M
ea

n 
ba

nd
w

id
th

 (
M

bi
ts

/s
)

pfifo_fast ared pie codel sfq fq_nocodel fq_codel

(b) 100/100 Mbps link speed.

10
 m

s
50

 m
s

20
0 

m
s

50
0 

m
s

10
 m

s
50

 m
s

20
0 

m
s

50
0 

m
s

10
 m

s
50

 m
s

20
0 

m
s

50
0 

m
s

10
 m

s
50

 m
s

20
0 

m
s

50
0 

m
s

10
 m

s
50

 m
s

20
0 

m
s

50
0 

m
s

10
 m

s
50

 m
s

20
0 

m
s

50
0 

m
s

10
 m

s
50

 m
s

20
0 

m
s

50
0 

m
s0

1

2

3

4

5

6

M
ea

n 
ba

nd
w

id
th

 (
M

bi
ts

/s
)

pfifo_fast ared pie codel sfq fq_nocodel fq_codel

(c) 10/10 Mbps link speed.

10
 m

s
50

 m
s

20
0 

m
s

50
0 

m
s

10
 m

s
50

 m
s

20
0 

m
s

50
0 

m
s

10
 m

s
50

 m
s

20
0 

m
s

50
0 

m
s

10
 m

s
50

 m
s

20
0 

m
s

50
0 

m
s

10
 m

s
50

 m
s

20
0 

m
s

50
0 

m
s

10
 m

s
50

 m
s

20
0 

m
s

50
0 

m
s

10
 m

s
50

 m
s

20
0 

m
s

50
0 

m
s0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n 
ba

nd
w

id
th

 (
M

bi
ts

/s
)

pfifo_fast ared pie codel sfq fq_nocodel fq_codel

(d) 10/1 Mbps link speed.

Fig. 6. The RTT fairness test results. (a) Jain’s fairness index as computed from the goodput values of each flow. (b–d) The mean goodput of each of the four TCP

streams for each bandwidth.
As expected, and in contrast to the AQM results, the fair-

ness queueing algorithms achieve very good fairness results.

The pure schedulers with no AQM achieve perfect fairness,

which is to be expected from their round-robin scheduling

behaviour. The fair results of fq_codel is worse than for the

other scheduling algorithms, for the same reason as stated

above: CoDel fails to tune itself to the very short and very

long RTTs in this test. This results in the bandwidth distribu-

tion of the flows getting skewed, leading to worse fairness re-

sults. At 100 Mbps, the schedulers fail to exhibit perfect fair-

ness behaviour, because at this bandwidth their total queue

space is too small for the flows with long RTTs to effectively

use the available bandwidth.

One peculiar feature of the results is that at 1 Mbps,

FIFO queueing, ARED and fq_codel all show lower aggre-

gate throughput for the 10 ms RTT flow than for the flow

with a 50 ms RTT. This has different explanations for each

of the algorithms. For FIFO queueing, this happens because

the short-RTT flow initially ramps up its congestion win-

dow, then suffers a series of consecutive congestion events

which causes it to lower its window to a level it never recov-

ers from. For ARED, the high drop rate causes the low-RTT

flow to suffer a series of consecutive retransmission time-

outs, causing throughput to drop. For fq_codel, the short

flow tends to suffer retransmission timeouts, because its

BDP is so small (312 bytes) that it rarely has enough out-

standing data to trigger fast retransmit when a packet is

dropped by CoDel in the middle of a window, but because

it has to wait its turn in the round-robin scheduler with

the other flows, each packet experiences enough queueing

latency to trigger the drops. For both ARED and fq_codel,
this also causes a drop in total throughput, with ARED

losing just over 10%, while fq_codel loses around 5%. All

other algorithms have identical total throughput for each

bandwidth.

6.2. Transient behaviour

The transient behaviour of queue management algo-

rithms is often overlooked in evaluations that all too often

focus mainly or exclusively on steady state behaviour. Ana-

lytical models of transient behaviour are almost entirely non-

existent, but also simulation-based and experimental evalu-

ations often overlook this. However, transient behaviour can

be vital for the overall perceived performance of the network:

an algorithm that keeps latency low in the steady state but

fails every time a transient event occurs makes for a quite bad

overall user experience. In this section we investigate an ex-

treme case of transient behaviour: what happens to the mea-

sured delay when the four bi-directional TCP streams of the

RRUL test start up.

6.2.1. Transient behaviour results

Fig. 7 shows the results of the transient behaviour tests.

This shows simply a time sequence graph of the measured

latency over the first 25 s of an RRUL test run. The values are

point-wise averages over the 30 iterations.

The results show that both CoDel and PIE have severe

problems keeping the delay low when the TCP flows start

up. At the lower bandwidths, PIE has the worst behaviour,

with delay sky-rocketing and even temporarily being higher

than for the FIFO queue in the 10 Mbps tests. CoDel fares



T. Høiland-Jørgensen et al. / Computer Networks 89 (2015) 90–106 101

Fig. 7. The transient behaviour of the algorithms. The plots show the delay

development over time for the first 25 s of the RRUL test. Each line is the

(point-wise) mean of the test runs for each algorithm.
somewhat better relative to PIE at the lower bandwidths, but

significantly worse at 100 Mbps. They both take from sev-

eral seconds up to more than 20 seconds to get latency back

under control, which is a significant impact on the user ex-

perience and can easily lead to an almost perpetual state of

high delays.

These delay spikes in the traffic managed by CoDel and PIE

have a common cause: The four simultaneous flows in slow

start are simply overwhelming the algorithm control mech-

anisms, which do not tune the drop rate quickly enough to

the new environment. For both algorithms, part of the rea-

son is that the algorithms do not engage at all within the first

100 ms (PIE has a burst allowance of 100 ms, and CoDel’s

interval is 100 ms), at which point the queue is already

substantial.

Additionally, for CoDel it is noticeable that the time it

takes to get the delay under control goes up with the link

bandwidth. This corresponds to the fact that the rate at which

CoDel increases its drop rate is linear, and proportional to the

inverse of the link speed [40]. So in other words, the initial

spikes in latency seen by the CoDel-controlled flows occur

because CoDel’s drop rate is increased too slowly, and at a

rate that is dependent on link bandwidth.

Similarly, for PIE, the drop probability increase is capped

to two percentage points in each update cycle, in order to

protect single TCP flows in slow start from experiencing

timeouts [41]. In our case of four simultaneous flows start-

ing up, this results in a marked delay in getting latency under

control. Interestingly, PIE contains another optimisation that

will increase the drop probability rapidly when the absolute

delay exceeds 250 ms, which corresponds to the size of the

delay spike we see at 10 Mbps. At 100 Mbps, the relative lack

of a delay spike for PIE corresponds to the more aggressive

behaviour PIE exhibits at this bandwidth, as noted earlier.

The ARED algorithm fares significantly better and shows

almost no delay spike but instead jumps smoothly to the

steady state delay values. The fairness queueing algorithms

simply assign the newly started flows their own queues, and

so they do not impact the latency measurements at all, even

in the slow start phase.

6.3. Discussion

The fairness results are an example of a metric where the

AQM algorithms actually exhibit worse behaviour than FIFO

queueing. The fairness aspect is often overlooked in evalua-

tions of AQM algorithms, but can be an important factor es-

pecially when considering deploying an AQM algorithm on a

link likely to see traffic with highly varying RTT.

Likewise, the transient results reveal a potentially quite

severe limitation of the new AQM algorithms, which can take

several seconds to get delay back under control after a signif-

icant change in conditions occurs. An obvious real-world ex-

ample of such behaviour is web browsing, where a browser

initiating a large page download over several simultaneous

connections easily can result in behaviour similar to that

seen here.

Together, these two aspects highlight areas that need

more attention in future AQM research. Additionally, both are

areas where the flow isolation provided by fairness queueing

algorithms proves to be a very effective remedy. This makes



102 T. Høiland-Jørgensen et al. / Computer Networks 89 (2015) 90–106

Fig. 8. WiFi test setup.

50100150200250300350
Mean induced latency (ms)

0

10

20

30

40

50

60

M
ea

n 
T

C
P

 g
oo

dp
ut

 (
M

bi
t/

s)

pfifo_fast

pfifo_fast

ared

ared

pie

pie

codel

codel

sfq

sfq

fq_nocodel

fq_nocodel

fq_codel

fq_codel

Fig. 9. RRUL results for the WiFi setup. The top part is downstream traffic, the bottom part upstream.

4 Looking at the detailed behaviour over time, we see a small number of

delay spikes for the low-bandwidth tests, which we attribute to WiFi re-

transmissions. However, these spikes are so few in number (and so small

that they only show up on the fairness queueing results) that they do not

impact the aggregate behaviour of the algorithms.
the case for having such algorithms play an important role in

managing queueing delay.

7. The WiFi: adding a wireless link

An increasing share of traffic in the home goes via wireless

connections. This can influence the behaviour of queue man-

agement algorithms by moving the bottleneck to the WiFi

link. If this happens, then even if the queue management al-

gorithms are applied to the WiFi link, their behaviour can

differ because the characteristics of the physical link is dif-

ferent (most notably, WiFi protocols include retransmit and

packet aggregation features which can both affect latency

and queueing). To test this scenario, we have added a WiFi

link to the testbed, and run the same sets of tests in this mod-

ified scenario. The modified test setup is shown in Fig. 8.

We use an Ubiquiti Nanostation M5 access point running

OpenWrt 14.07 and using the ath9k WiFi driver. The client is

a laptop running the same Debian version and kernel as the

rest of the testbed. The laptop is equipped with an Intel WiFi

Link 5100 card using the iwlwifi driver. The test is performed

using 802.11n on an empty channel in the 5 GHz frequency

spectrum. Rather than place the laptop and access point right

next to each other, we have placed them on opposite sides

of a wall. We believe this setup approximates a residential

usage scenario reasonably well, with the exception that the

clear channel is likely to lead to better results than in, say, a
crowded apartment building with dozens of WiFi networks.

We apply the queue management algorithms to both sides of

the WiFi link as well as to the bottleneck link as before.

On this WiFi setup we have re-run all tests designed to

test a single link characteristic, i.e. everything except the fair-

ness test. However, for the lower bandwidths, the WiFi link

does not constitute a bottleneck, and so we see no mean-

ingful difference in the results.4 For this reason, we have

omitted those results and only include the results for the

100 Mbps bottleneck link. Furthermore, as can be seen in

the following, the RRUL test results show such high induced

latency that the transient spikes seen in the previous sec-

tion are absent for the WiFi results. This, too, has thus been

omitted.

In the following, we present the results of the WiFi evalu-

ation, in the same order as the previous sections.

7.1. The RRUL test

The RRUL results are shown in Fig. 9. A couple of inter-

esting features are clearly visible on this graph. Firstly, the



T. Høiland-Jørgensen et al. / Computer Networks 89 (2015) 90–106 103

pfifo_fast ared pie codel sfq fq_nocodel fq_codel

0 50 100 150 200
Induced one-way delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

pr
ob

ab
il

it
y

(a) 1 stream.

0 100 200 300 400 500
Induced one-way delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

pr
ob

ab
il

it
y

(b) RRUL.

Fig. 10. VoIP test results for WiFi.

Table 3

VoIP average packet loss over all WiFi test

runs.

VoIP packet loss

1 stream (%) RRUL (%)

pfifo_fast 0.34 16.66

ARED 0.13 5.30

PIE 0.18 27.52

CoDel 0.19 18.56

SFQ 0.47 1.71

fq_nocodel 0.17 1.59

fq_codel 0.22 2.64
algorithms show the same ordering of latency behaviour,

with FIFO being worst, followed by PIE and CoDel, the ARED

and the fairness queueing algorithms. However, the magni-

tude of induced latency is different, with the lower bound

being around 100 ms. We attribute this to queueing in lower

layers (i.e. in the driver and hardware) which the queue man-

agement algorithms cannot control. Linux’s Byte Queue Lim-

its [42] mechanism is designed to deal with this in Ethernet

drivers, however no such mechanism exists for WiFi, and it

is doubtful whether the same mechanism can be applied,

due to the aforementioned packet aggregation and retrans-

mit features.

The second noteworthy feature of the RRUL results is that

upstream throughput drops to almost nothing, even though

the link nominally has the same bandwidth in both direc-

tions. This is a consequence of air-time unfairness, and for

this particular combination of devices and drivers, it is hurt-

ing the upstream direction. Testing of other devices in the

bufferbloat community has shown that this can just as well

be seen in the other direction.

7.2. VoIP traffic

The VoIP WiFi results are shown in Fig. 10. They show

that when there is only a single flow as competing traffic,

the queue management schemes exhibit almost completely

identical behaviour, confirming the view that the induced de-

lay is in layers below the qdisc layer where the algorithms

cannot control it. When the RRUL test is used as cross traffic,

the delay results match those from the RRUL test itself. The

loss results (in Table 3) show a small loss ranging between

0.2% and 0.5% for one stream, and very high loss percentages

for the AQMs with the RRUL test, corresponding to the low

effective upstream bandwidth.

7.3. Web results

The web results from the WiFi tests are shown in Fig. 11.

These show that once again, for one upload stream, the
result is determined by something other than the active

queue management algorithm. The relative positions of the

different algorithms with the RRUL test as cross traffic match

those for the wired tests at 100 Mbps, except that PIE and

CoDel’s disadvantage is more pronounced.

7.4. Discussion

The WiFi results clearly show that the queue management

algorithms fail to effectively control the bandwidth on a WiFi

bottleneck link. This is most likely due to extra queueing at

lower layers in the network stack. Additionally, other issues

are apparent with WiFi traffic, most notably the poor bidi-

rectional throughput. It is doubtful that straightforward solu-

tions exist to these issues, but we believe this to be an inter-

esting avenue for further research. Moreover, in light of the

positive results of applying queue management algorithms in

general, we believe that they can play a role in solving WiFi’s

problems as well.

8. Conclusions and future work

We have compared three modern AQM algorithms, re-

vealing three aspects of the AQM behaviour: the Good, the

Bad and the WiFi.



104 T. Høiland-Jørgensen et al. / Computer Networks 89 (2015) 90–106

pf
if

o_
fa

st

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
N

or
m

al
is

ed
 m

ea
n 

fe
tc

h 
ti

m
e 

(m
s)

(a) 1 stream, Google.

pf
if

o_
fa

st

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el

0

2

4

6

8

10

12

14

16

18

N
or

m
al

is
ed

 m
ea

n 
fe

tc
h 

ti
m

e 
(m

s)

(b) RRUL, Google.

pf
if

o_
fa

st

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

is
ed

 m
ea

n 
fe

tc
h 

ti
m

e 
(m

s)

(c) 1 stream, Hu post.

pf
if

o_
fa

st

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el

0

2

4

6

8

10

12

N
or

m
al

is
ed

 m
ea

n 
fe

tc
h 

ti
m

e 
(m

s)

(d) RRUL, Hu post.

Fig. 11. Web test results for WiFi.
The Good. We show that in the steady state, the new AQM

algorithms (PIE and CoDel) show consistent improvements

over FIFO queueing, as does the older ARED algorithm. The

relative performance of the three algorithms varies with link

characteristics; although ARED exhibits a slight tendency to

drop too aggressively, hurting throughput but improving la-

tency. This matches previous evaluations well.

The Bad. The fairness results show that the AQM algorithms

exacerbate TCP unfairness compared to FIFO queueing. This

aspect is often overlooked in evaluations of AQM algorithms,

but can be an important factor especially when considering

deployment of an AQM algorithm on a link likely to see traf-

fic with highly varying RTT: unfairness can potentially cause

flows with long RTTs to suffer degraded throughput, need-

lessly hurting performance. The examination of transient be-

haviour shows that the CoDel and PIE algorithms (ARED fares

significantly better in this regard) can take several seconds

to get delay back under control after a significant load spike

occurs, such as the RRUL flow startup; in some cases even

performing worse than FIFO queueing.

The WiFi. When adding a WiFi link as the bottleneck, we

see that all the queue management schemes fail to contain
queueing latency. We attribute this to queueing in lower lay-

ers of the WiFi stack, and it is clear that more work is needed

to properly address this: due to the nature of the physical

layer (incorporating retransmissions and packet aggregation

features), it is not clear that existing solutions from other me-

dia can translate directly to WiFi.

The analysis of these three aspects is an important con-

tribution to understanding AQM behaviour. In particular, the

transient behaviour has potential to significantly impact the

perceived performance of the network, especially consider-

ing that traffic complexity and deployment of highly bursty

applications is only increasing. Hence, these types of tran-

sient events are likely to be frequent enough that dealing

with them needs to be a priority. Likewise, WiFi behaviour

is an obvious area of potential improvement.

Our accompanying analysis of the fairness queueing algo-

rithms as a possible remedy for some of the shortcomings

of the pure AQM algorithms shows very promising results.

The fairness queueing algorithms exhibit steady state good-

put and latency generally superior to the AQM algorithms,

they ensure almost perfect fairness between flows and they

prove to be an effective remedy for transient latency spikes

at flow startup. For WiFi, they still suffer from queueing in

the lower layers, but perform better than the pure AQMs.

One caveat is that the fairness queueing algorithms implicitly



T. Høiland-Jørgensen et al. / Computer Networks 89 (2015) 90–106 105
enforce sharing and prioritisation constraints between flows

that may be unsuitable for some applications and scenarios

different from those tested here. However, generally we be-

lieve there is a convincing case for fairness queueing algo-

rithms playing an important role in ensuring low latency and

high throughput in modern (access) networks.

While the use of better queue management algorithms

is proliferating,5 deployment remains a challenge. And de-

veloping comprehensive queue management solutions for

different physical layer technologies constitutes important

work, which can come with its own challenges, as we have

seen in the WiFi example. WiFi in particular remains a chal-

lenge (as does other mobile technologies), but getting queue

management deployed in places like cable and DSL head-end

equipment is also needed.

Queue management surely plays an important role in

ensuring tomorrow’s Internet provides reliable low-latency

connections everywhere, but other technologies also have a

role to play, and are developing at a rapid pace. In particu-

lar, the Linux networking stack continues to evolve, and in

the versions since the 3.14 kernel we have used for our tests,

the kernel has seen several tweaks to the TCP stack in par-

ticular, along with the inclusion of a whole new congestion

control algorithm (DataCenter TCP). Some of these improve-

ments are distinctive in themselves, and some of them have

the potential to interact with queue management algorithms

in various ways. Figuring out the details of these interactions

is also important going forward.

Finally, as we have pointed out in our experiments, the

existing queue management schemes are not without issues

in certain areas. Most notably, the transient behaviour is an

area in need of further study. Together, we consider these is-

sues to be promising potential avenues for further inquiry,

and remain optimistic that tomorrow’s Internet will provide

us with reliably low latenc at all layers.

References

[1] B. Briscoe, A. Brunstrom, A. Petlund, D. Hayes, D. Ros, I.-J. Tsang,

S. Gjessing, G. Fairhurst, C. Griwodz, M. Welzl, Reducing internet la-
tency: a survey of techniques and their merits, IEEE Commun. Surv. Tu-

torials PP (99) (2014) 1, doi:10.1109/COMST.2014.2375213.

[2] J. Gettys, K. Nichols, Bufferbloat: dark buffers in the internet, Queue 9
(11) (2011) 40:40–40:54, doi:10.1145/2063166.2071893.

[3] C. Staff, Bufferbloat: what’s wrong with the internet? Commun. ACM
55 (2) (2012) 40–47, doi:10.1145/2076450.2076464.

[4] S. Floyd, V. Jacobson, Random early detection gateways for congestion
avoidance, IEEE/ACM Trans. Networking 1 (4) (1993) 397–413.

[5] K. Nichols, V. Jacobson, Controlling queue delay, Commun. ACM 55 (7)

(2012) 42–50, doi:10.1145/2209249.2209264.
[6] R. Pan, P. Natarajan, C. Piglione, M. Prabhu, V. Subramanian, F. Baker,

B. VerSteeg, Pie: a lightweight control scheme to address the
bufferbloat problem, in: 2013 IEEE 14th International Conference on

High Performance Switching and Routing (HPSR), 2013, pp. 148–155,
doi:10.1109/HPSR.2013.6602305.

[7] S. Floyd, R. Gummadi, S. Shenker, Adaptive RED: An algorithm for in-

creasing the robustness of RED’s active queue management, Technical
report, ICSI, 2001 http://www.icir.org/floyd/papers.html.

[8] J. Gettys, Traditional aqm is not enough, Blog post, 2013.
http://goo.gl/V6vajZ.
5 For instance, fq_codel is the default in the latest versions of the Open-

Wrt, Fedora and Arch Linux distributions, and PIE will be part of the upcom-

ing DOCSIS 3.1 standard.
[9] P. McKenney, Stochastic fairness queueing, in: IEEE Proceedings of
Ninth Annual Joint Conference of the IEEE Computer and Communi-

cation Societies. ‘The Multiple Facets of Integration’ (INFOCOM’90), vol.
2, 1990, pp. 733–740, doi:10.1109/INFCOM.1990.91316.

[10] T. Høiland-Jørgensen, P. McKenney, D. Taht, J. Gettys, E. Dumazet,
FlowQueue-codel, Internet Draft (informational), 2014. http://

tools.ietf.org/html/draft-ietf-aqm-fq-codel-00.

[11] R. Adams, Active queue management: a survey, IEEE Commun. Surv.
Tutorials 15 (3) (2013) 1425–1476.

[12] F. Checconi, L. Rizzo, P. Valente, QFQ: Efficient packet scheduling with
tight guarantees, IEEE/ACM Trans. Netw. (TON) 21 (3) (2013) 802–816

http://dl.acm.org/citation.cfm?id=2525552.
[13] A. Kortebi, S. Oueslati, J.W. Roberts, Cross-protect: implicit service dif-

ferentiation and admission control, in: 2004 Workshop on High Perfor-
mance Switching and Routing, 2004 (HPSR), IEEE, 2004, pp. 56–60.

[14] W.-C. Feng, D. Kandlur, D. Saha, K. Shin, Stochastic fair blue: a queue

management algorithm for enforcing fairness, in: IEEE Proceedings (IN-
FOCOM 2001, IEEE, 2001, pp. 1520–1529.

[15] G. White, Active queue management in DOCSIS 3.X cable
modems, Technical Report, 2014 http://www.cablelabs.com/

wp-content/uploads/2014/06/DOCSIS-AQM_May2014.pdf.
[16] N. Khademi, D. Ros, M. Welzl, The new AQM kids on the block:

Much ado about nothing? Technical Report, Oslo University, 2013

https://www.duo.uio.no/handle/10852/37381.
[17] V.P. Rao, M.P. Tahiliani, U.K.K. Shenoy, Analysis of sfqCoDel for active

queue management, in: 2014 Fifth International Conference on the
Applications of Digital Information and Web Technologies (ICADIWT),

IEEE, 2014, pp. 262–267.
[18] I. Järvinen, M. Kojo, Evaluating CoDel, PIE, and HRED AQM Techniques

with Load Transients, IEEE, 2014.

[19] K. Cai, M. Blackstock, R. Lotun, M.J. Feeley, C. Krasic, J. Wang, Wire-
less unfairness: alleviate mac congestion first!, in: Proceedings of the

Second ACM International Workshop on Wireless Network Testbeds,
Experimental Evaluation and Characterization, in: (WinTECH’07, ACM,

New York, NY, USA, 2007, pp. 43–50, doi:10.1145/1287767.1287777.
[20] G. Park, H. Ko, S. Pack, Simulation study of bufferbloat problem on wifi

access point, in: 2014 IEEE 3rd Global Conference on Consumer Elec-

tronics (GCCE), 2014, pp. 729–730, doi:10.1109/GCCE.2014.7031276.
[21] M. Carbone, L. Rizzo, Dummynet revisited, ACM SIGCOMM Comput.

Commun. Rev. 40 (2) (2010) 12–20.
[22] A.N. Kuznetsov, tbf—token ben bucket filer, Linux man page, 2014.

[23] D. Taht, J. Gettys, Best practices for benchmarking codel and fq codel,
Wiki page on bufferbloat.net web site, 2014. http://goo.gl/FpSW5z.

[24] D. Taht, Implementing comprehensive queue management on home

routers, Internet Draft, 2014. http://snapon.lab.bufferbloat.net/˜d/
draft-taht-home-gateway-best-practices-00.html.

[25] R. Jones, Netperf, 2015, Open source benchmarking software.
http://www.netperf.org/.

[26] A. Botta, A. Dainotti, A. Pescapè, A tool for the generation of realistic
network workload for emerging networking scenarios, Comput. Netw.

56 (15) (2012) 3531–3547.

[27] D. Stenberg, Curl and libcurl, Project web site, 2015. http://curl.
haxx.se/.

[28] T. Høiland-Jørgensen, Flent: the FLExible network tester, Project web
site, 2015. https://flent.org.

[29] G. White, R. Pan, A PIE-based AQM for DOCSIS cable modems, Inter-
net Draft (informational), 2015. http://tools.ietf.org/html/draft-white-

aqm-docsis-pie-02.
[30] V. Misra, W.-B. Gong, D. Towsley, Fluid-based analysis of a net-

work of AQM routers supporting TCP flows with an application

to RED, SIGCOMM Comput. Commun. Rev. 30 (4) (2000) 151–160,
doi:10.1145/347057.347421.

[31] D. Taht, Realtime response under load (rrul) test, 2012. https://github.
com/dtaht/deBloat/blob/master/spec/rrule.doc?raw=true.

[32] K. Winstein, Transport architectures for an evolving Inter-
net (Ph.D. thesis), Massachusetts Institute of Technology, 2014

http://web.mit.edu/keithw/www/Winstein-PhD-Thesis.pdf.

[33] H. Balakrishnan, V.N. Padmanabhan, How network asymmetry affects
tcp, IEEE Commun. Mag. 39 (4) (2001) 60–67.

[34] T. Høiland-Jørgensen, http-getter, Source code repository, 2014.
https://github.com/tohojo/http-getter.

[35] A. Kortebi, L. Muscariello, S. Oueslati, J. Roberts, Evaluating the number
of active flows in a scheduler realizing fair statistical bandwidth shar-

ing, in: ACM SIGMETRICS Performance Evaluation Review, vol. 33, ACM,

2005, pp. 217–228.
[36] J. Padhye, V. Firoiu, D. Towsley, J. Kurose, Modeling tcp throughput: A

simple model and its empirical validation, in: ACM SIGCOMM Com-
puter Communication Review, vol. 28, ACM, 1998, pp. 303–314.

http://dx.doi.org/10.1109/COMST.2014.2375213
http://dx.doi.org/10.1145/2063166.2071893
http://dx.doi.org/10.1145/2076450.2076464
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0004
http://dx.doi.org/10.1145/2209249.2209264
http://dx.doi.org/10.1109/HPSR.2013.6602305
http://www.icir.org/floyd/papers.html
http://goo.gl/V6vajZ
http://dx.doi.org/10.1109/INFCOM.1990.91316
http://tools.ietf.org/html/draft-ietf-aqm-fq-codel-00
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0008
http://dl.acm.org/citation.cfm?id=2525552
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0011
http://www.cablelabs.com/wp-content/uploads/2014/06/DOCSIS-AQM_May2014.pdf
https://www.duo.uio.no/handle/10852/37381
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0015
http://dx.doi.org/10.1145/1287767.1287777
http://dx.doi.org/10.1109/GCCE.2014.7031276
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0018
http://goo.gl/FpSW5z
http://snapon.lab.bufferbloat.net/~d/draft-taht-home-gateway-best-practices-00.html
http://www.netperf.org/
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0019
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0019
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0019
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0019
http://curl.haxx.se/
https://flent.org
http://tools.ietf.org/html/draft-white-aqm-docsis-pie-02
http://dx.doi.org/10.1145/347057.347421
https://github.com/dtaht/deBloat/blob/master/spec/rrule.doc?raw=true
http://web.mit.edu/keithw/www/Winstein-PhD-Thesis.pdf
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0022
https://github.com/tohojo/http-getter
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0024


106 T. Høiland-Jørgensen et al. / Computer Networks 89 (2015) 90–106
[37] S. Ha, I. Rhee, L. Xu, Cubic: a new tcp-friendly high-speed
tcp variant, SIGOPS Oper. Syst. Rev. 42 (5) (2008) 64–74,

doi:10.1145/1400097.1400105.
[38] T. Kozu, Y. Akiyama, S. Yamaguchi, Improving rtt fairness on cubic tcp,

in: 2013 First International Symposium on Computing and Networking
(CANDAR), 2013, pp. 162–167, doi:10.1109/CANDAR.2013.30.

[39] R. Jain, D.-M. Chiu, W.R. Hawe, A Quantitative Measure of Fairness and

Discrimination for Resource Allocation in Shared Computer System,
Eastern Research Laboratory, Digital Equipment Corporation, 1984.

[40] B. Briscoe, [aqm] codel’s control law that determines drop frequency,
IETF AQM mailing list message, 2013. https://www.ietf.org/mail-

archive/web/aqm/current/msg00376.html.
[41] R. Pan, Re: [aqm] draft-ietf-aqm-pie-01: review, IETF AQM mail-

ing list message, 2015. https://www.ietf.org/mail-archive/web/aqm/
current/msg01216.html.

[42] T. Herbert, bql: Byte queue limits, Patch posted to the Linux ker-

nel network development mailing list, 2011. http://article.gmane.org/
gmane.linux.network/213308/.

Toke Høiland-Jørgensen received his M.Sc.
in Mathematics and Computer Science from

Roskilde University, Denmark, in 2013 and is cur-
rent a Ph.D. student at Karlstad University in

Värmland, Sweden. His research interests include

computer networking, with a special focus on re-
ducing latency by controlling queues in the net-

work. He has been involved in the bufferbloat
community for more than two years and is the

author of the Flent testing tool widely used in
the community, as well as a contributor to the

CeroWrt router firmware.
Per Hurtig received his Ph.D. in Computer Sci-

ence in 2012 from Karlstad University, Sweden.
In his thesis, he focused on low-latency trans-

port for short-lived flows, a work that resulted

in several mechanisms to reduce transport-level
latency, some now available by default in the

Linux kernel. Currently, he is assistant professor
at the Department of Computer Science, Karlstad

University where he mainly conducts research
within the areas of transport-layer issues, con-

gestion control, and network emulation. Per Hur-

tig has participated in a number of international
EU-projects as well as national projects. He is also

involved in Internet standardisation within the IETF.

Anna Brunstrom received a B.Sc. in Computer

Science and Mathematics from Pepperdine Uni-

versity, CA, in 1991, and a M.Sc. and Ph.D. in Com-
puter Science from College of William & Mary,

VA, in 1993 and 1996, respectively. She joined
the Department of Computer Science at Karl-

stad University, Sweden, in 1996, where she is
currently a Full Professor and Research Manager

for the Distributed Systems and Communications

Group. Her research interests include transport
protocol design, techniques for low latency In-

ternet communication, cross-layer interactions,
wireless communication and network security.

She has authored/coauthored ten book chapters and over 100 international
journal and conference papers.

http://dx.doi.org/10.1145/1400097.1400105
http://dx.doi.org/10.1109/CANDAR.2013.30
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00247-9/sbref0027
https://www.ietf.org/mail-archive/web/aqm/current/msg00376.html
https://www.ietf.org/mail-archive/web/aqm/current/msg01216.html
http://article.gmane.org/gmane.linux.network/213308/

	The Good, the Bad and the WiFi: Modern AQMs in a residential setting
	1 Introduction
	2 Related work
	3 Experimental methodology
	4 Tested algorithms
	4.1 pfifo_fast
	4.2 ARED
	4.3 PIE
	4.4 CoDel
	4.5 SFQ
	4.6 fq_codel
	4.7 fq_nocodel

	5 The Good: steady-state behaviour
	5.1 The real-time response under load test
	5.1.1 RRUL results

	5.2 VoIP test
	5.2.1 VoIP results

	5.3 Web test
	5.3.1 Web results

	5.4 Discussion

	6 The Bad: fairness and transient behaviour
	6.1 Inter-flow fairness
	6.1.1 RTT Fairness results

	6.2 Transient behaviour
	6.2.1 Transient behaviour results

	6.3 Discussion

	7 The WiFi: adding a wireless link
	7.1 The RRUL test
	7.2 VoIP traffic
	7.3 Web results
	7.4 Discussion

	8 Conclusions and future work
	 References


