
Indag. Mathem., N.S., 16 (3-4), 631-638 December 19, 2005 

Invariant distributions on a non-isotropic pseudo-Riemannian 
symmetric space of rank one 

by Hiroyuki Ochia i  1 

Department of Mathematics, Nagoya University, Chikusa, Nagova 464-8602, Japan 

Dedicated to Gerrit van Dijk on the occasion of his 65th birthday 

Communicated by Prof. JJ. Duistermaat at the meeting of June 20, 2005 

ABSTRACT 

We investigate the structure of invariant distributions on a non-isotropic non-Riemannian symmetric 
space of rank one. Especially, the J-criterion related to the generalized Gelfand pair is shown 
for this space without imposing the condition on the eigenfuction of the Laplace-Bertrami opera- 
tor. 

1. INTRODUCTION 

In this paper, the problem [11] to understand the double coset space H \ G / H  in 
terms of  functions of  distribution class for a homogeneous space G/I-I is examined 
in one specific case study for the space G/I-I = SL(n + 1, R)/GL+(n, R). If  one 
deals with the class of  arbitrary functions, then the H x H-orbit decomposition 
on G gives enough information. This is the case for the symmetric spaces over 
the finite field (cf. [15]) and the set of  characteristic functions of  orbits forms a 
linear basis of  invariant functions. If  one deals with the regular functions on the 
algebraic group, it is enough to look at the ring of  invariants. More generally, if  one 
considers bi H-invariant continuous functions, then the lower-dimensional orbits 
can be ignored. 

We here consider distributions. The group case, the famous result of  Harish- 
Chandra tells us that every invariant eigendistribution is locally integrable and 
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that there is no singular invariant eigendistribution. For Riemannian symmetric 

spaces, every invariant eigendistribution is real analytic. However, for the case 

of  non-Riemannian symmetric spaces, the natural function space for invariant 

eigendistributions (spherical functions) is the class of  distributions (or its gener- 

alization to hyperfimctions). A lot of  works have been done for spherical functions 

and also the eigenspace representations, which imposes the eigenspace condition 

without invariance. Here we will consider invariant distributions without the 

eigenfunction condition of  (indefinite) Laplacian. In the case of  invariant eigendis- 

tributions, the space is finite-dimensional, and especially for the rank-one case we 

can write down explicitly such distributions using, e.g., hypergeometric functions. 

On the other hand, the space of  invariant distributions is infinite-dimensional, and 

has no ring structure in general. 

Our target space G/H is a symmetric space, however, we use the related 

homogeneous spaces, having a larger symmetry. In the case of  the analysis on the 

tangent space of  the symmetric space, such an enlargement of  the symmetry, which 

has been discussed in [5] (see also [7]), can be formulated on the tangent space 

itself, but on the symmetric spaces it is necessary to introduce such homogeneous 

spaces to formulate the enlargement of  the symmetry. 

Anyway, for the symmetric space or its related (spherical) homogeneous space, 

the double coset space H\G/H is not a manifold especially near the origin. It is 

neither smooth nor Hausdorff, in general. Since we are considering distributions, 

the analysis at the origin is complicated on such a space. For a non-Archimedean 

(p-adic) local field, the structure of  distributions are easier than for real numbers R, 

e.g., the extensions and decomposition of  distributions reduces some problem to the 

orbit decompositions, and the structure of  the distributions supported on a lower- 

dimensional submanifold is simpler (there is no derivative of  Dirac delta), cf. [1 ]. 

In our Lie group case, analysis around some singular locus will be more subtle, and 

it is a point of  discussion. We apply the result [7] on the tangent space of  G/H to 

prove the extra symmetry which every invariant distribution has. This enables us 

to eliminate a contribution of some singular loci on the non-isotropic symmetric 

spaces. This is given in Section 3. In Section 2, we summarize several geometric 

facts, which will be used in the later sections or help us to understand the double 
coset space. 

As an application of  the main theorem in Section 3, we discuss the property called 

generalized Gelfand pair in Section 4. This notion is related to the uniqueness of  

the decomposition of  the left regular representations of  L2(G/H), see [14]. So- 

called J-criterion is one of  the well-known sufficient conditions to be a generalized 

Gelfand pair. The J-criterion for a class of  semisimple symmetric spaces of  rank 

one is examined in [13]. Here we slightly generalize the statement by dropping 

the eigenfunction condition. Note that the J-criterion holds while the geometric 

counterpart does not hold. It suggests a careful study between the orbit spaces and 

the space of  invariant distributions. 
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2. G E O M E T R I C  B A C K G R O U N D  

2.1. Enlargement of the symmetry of the space 

Let G = SL(n + 1, R), and cr be the involution of  G defined by the conjugation by 
the matrix diag(-1,  1 . . . . .  1). The fixed point subgroup is 

G a = { ( ( d e t h ) - I  0 ) h ~ G L ( n , R ) ]  
0 

which is often to be identified with GL(n, R). The identity component of  G a is 
denoted by H,  which is isomorphic to GL+(n, R). The homogeneous space G / H  
is a non-isotropic non-Riemannian symmetric space of  rank one, which is our main 
concern in this paper. We introduce H1 = SL(n, R) C H = GL+(n, R), then we 
have G ~ / H  = Z/2Z,  Ga/H1 -~ GL(1, R) = R ×, H/H1 ~- GL+(1, R), and H 
HI × GL+(1, R). Then we have G / H  = (G/H1) / (H/H1)  = (G/H1)/GL+(1, R). 
It is easy to see that the normalizer of  Hi in G is G °. 

We will describe the homogeneous space G/H~ as follows. Let X1 = {(x, y) I 
x , y  ~ R n+l, (x, y) = 1}. Here we regard x = t (x l ,x2 . . . . .  xn+l) = t(Xl,X'), y = 

t ( y l ,  Y 2  . . . . .  Yn+l) = t(Yl, Y') as column vectors. The action of  G on X1 is defined 
by 

g . ( x , y ) = ( g x ,  t g - l y ) ,  x, y 6 R  n+l, g E G .  

It is easy to see that this action is transitive. We set xl = t ( te l , te l )  with el = 
t(1,0 . . . . .  0) c R n+l. Then the isotropy subgoup of  G at xl is /-/1, and we have 
a natural isomorphism X1 = G/H1. 

We define the function Qo(x, y) = x ly l  + x2y2 + . . .  + Xn+lYn+l on R 2(n+l). 
We denote by G = SOo(Qo) ~- SOo(n + 1, n + 1) the identity component of  the 
orthogonal group O(Qo) corresponding to the quadratic form Q0. Then G also 
acts on X1 transitively. The isotropy subgroup H2 of  G at xl is isomorphic to 
SOo(n, n + 1). Then X1 -~ G/H1 ~- G/H2. The role of  this isomorphism for the 
harmonic analysis has been emphasized in [3, Example 5.2]. This isomorphism 
means that the space G/H1 has a larger symmetry G. The expression X1 = G/H1 
is not a symmetric space but a (real form of) spherical homogeneous space. The 
expression Xa = G/H2 is an isotropic symmetric space of  rank one. 

2.2. Invariants and orbits 

The function Q(x, y) = 1 - Xlyl = txty'  on X1 is H-invariant. The functions Xl 

and yl on X1 are H1-invariant. The map 

q : X1 ~ (x, y) w-> (xl, Yl) 6 R 2 

is real-analytic, surjective, and Hl-invariant. As is seen later, the map q almost 
classifies the set of  Hi-orbits on X1, and any Hi-invariant continuous function on 
X1 is a pull back by the map q of  a continuous function on R 2. For distributions, 
the question is more subtle. 
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Let / t  = SOo(Q1) be the identity component of the orthogonal group O(Q1) 
corresponding to the quadratic form Ql(x', y') = x2y2 + ... + X,+lYn+l on R 2". 
Then H is identified with a subgroup of G = SOo(Qo). The group/~ preserves the 
invariants xl and yl. Now we give several orbit decompositions. 

(1) Hi-orbit decomposition on X1. The map q = (xl, yl) almost classifies the 
Hi-orbits on X1. Say, for (xl, yl) E R 2 with Xlyl 5 & 1, the fiber q- l (x l ,  ya) 
is an Hi-orbit if  n >/2. For x~ ¢ 0, the fiber q - l ( x l , X l  1) splits into four 
Hi-orbits {(x', y') I tx'y' = O, x' ¢ O, y' ¢ 0}, {(0, y') I Y' ¢ 0}, {(x', 0) I x' ¢ 0}, 
and {(0, 0)} i fn />  3. I fn  = 2, then the fiber q-1 (xl, x~ -1) consists of//1-orbits 
{(x', y') = (x2,x3, y2, Y3) I x' ¢ 0, Y2 = - tx3,  Y3 ~- tx2} with t 5~ 0, {(0, y') I 
y' ¢ 0}, {(x', 0) I x' ¢ 0}, and {(0, 0)}. 

(2) GL+(n, R)-orbit decomposition on X1. We consider the action of GL+(n, R) 
on X1 by 

(Xl, x', Yl, Y') ~ (xl, hx', Yl ,t h - l y )  

for h E GL+(n, R), (x, y) E X1. 

The orbit decomposition on X1 under GL+(n, R) is the same as that under//1, 
except for the case n -- 2 and the fiber q-~ (xl, Xll),  which is decomposed into 
five GL+(n, R)-orbits {(x 1, y') = (x2, x3, Y2, Y3) L x' ¢ 0, ±(xzy3 - x3y2) > 0}, 
{(0, y') b Y' v e 0}, {(x', 0) I x' ¢ 0}, and {(0, 0)}. 

(3) /4-orbit decomposition on X1. Since the map is/4-invariant, the fiber q-1 (xa, yl) 
for (Xl, Yl) E R 2 with xlYa ~ 1 is an/4-orbit i f n  1> 2. The fiber q - l ( x l , X l  l) 
consists of two/4-orbits, {0} and {(x', y') ~ 0 1 tx'y' = 0}. 

(4) H-orbit decomposition on X. This is equivalent to GL+(n, R) × GL+(1, R)- 
orbits on X1. In this case, the map Q:X1 ~ ( x , y ) ~  1 - x ~ y l  ~ R almost 
classifies orbits. In fact, for t ~ 0, 1, the fiber Q-l( t )  consists of two orbits 
{(x,y) E X1 I Xlyl = 1 - t, ±xa > 0} i f n  >/2. Q-l(1) consists of five orbits 
{(x, y) ~ XI I -4-Xl > 0, Yl = 0}, {(X, y) ~ X1 I xl = 0, -4-yl > 0}, and {(x, y) 
X1 Ix1 = Yl = 0} i fn  ~> 2. For Xl ~ 0, the fiber Q-l(0) splits into eight orbits 
{(Xl, x l, Xl 1 , y~) I -4-xl > 0, tx~y~ = O, x I ~ O, yl ~ 0}, {(Xl, 0, Xl 1 , y )  I +Xl > 0, 
y' ~ 0}, {(xl, x', x~ -1, 0) I -t-x1 > 0, x' # 0}, and {(xl, 0, x~ -1 , 0) I 4-Xl > 0} ifn >/ 
3. I fn  = 2, then the fiber q-I  (0) consists often orbits {(Xl, x2, x3, x~ 1, y2, y3) I 
+Xl > 0, x' 5~ 0, -4-(x2y3 - x3y2) > 0}, {(Xl, 0,Xl 1, y~) [ -4-Xl > 0, y~ ~ 0}, 
~xl,  x', x~ -1, 0) I +xt  > 0, x' ¢ 0}, and {(xl, 0, Xl 1, 0) I -4-Xl > 0}. 

(5) H × GL+(1, R)-orbit decomposition on Xl. For n /> 2 and t ¢ 0, the orbit 
decomposition of the fiber Q-1 (t) is the same as that of (4). The fiber Q-1 (0) 
splits into four orbits {(Xl, x ', x~ -1, y') I ±Xl > 0, txtyt = 0, (x t, yt) ~ 0}, and 
{(Xl, 0, x~ -1, 0) I -4-xl > 0} if  n ~> 3. If  n = 2, then the fiber Q-1 (0) consists of 
four orbits {(xl, x2, x3, Xl 1 , Y2, Y3) I ±Xl > 0, (X t, y') ~ 0}, and {(Xl, 0, x~ -1 , 0) I 
±Xl > 0}. 

The geometric J-criterion (for an involution 0) is the statement that H g - I H  = 
HO(g)H for all g 6 G. Note that for the involution O(g) = tg-1, the space G / H  
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does not satisfy the geometric J-criterion since the H-orb i t  {(Xl,0, Xl  1, f )  l 
±Xl > 0, f # 0} is mapped to {(Xl, x t, Xl 1, 0) I +Xl > 0, x' # 0}, respectively, 
by H g H  w-~ HO(g) -I  H. Nevertheless, we will prove the (original) J-criterion (for 
distributions) in Section 4. 

3. BI-INVARIANT DISTRIBUTIONS 

We denote by C -°° the set of  functions of  distribution class. We simply call a 
function of  distribution class a distribution. 

We start from a direct conclusion of  the enlargement of  the symmetry of  the space 
G/HI. 

Lemma 1. There are natural identifications between the set o f  distributions with 
the following properties. 

(i) An H-bi-invariant distribution on G. 
(ii) A left H and right H / Hl-invariant distribution on G/HI.  

(iii) A left GL+ (n, R) x GL+(1, R)-invariant distribution on X1. 

Proof. Since H normalizes HI, H acts on G/HI from the right as 

G/H1 ~ gil l  w-~ ghH1 E G/HI,  

which induces the action of  H/H1 -~ GL+(1, R) on Xt as (x, y) ~ ((deth)-lx,  
(deth)y), that is, (x, y) ~ ( t - ix ,  ty) by t > 0. On the other hand, the action of  H 
on G/HI from the left is 

(Xl, x r, yl, yl) ~ ((det h ) - lx l ,  hx t, (det h)yl ,t h - I f ) .  

Then, an H-bi-invariant function on G is identified with a function on X1 invariant 
under the action 

(x,y)~-+(tx,  t - l y ) ,  ( X l , X ' , y l , y ' ) w - ~ ( x l , h X ' , y l , t h - l f ) ,  

for all t > 0 and h ~ GL+(n, R). Then GL+(1, R) × GL+(n, R) is a subgroup 
of  G. [] 

It is somewhat mysterious that the left-right action of  H on G turns to be 
equivalent to the left action o f H  × GL+(1, R) C G. 

The next theorem shows the enlargement of  the symmetry on invariant distribu- 
tions, which has not been predicted by the geometry, e.g., orbit structures. 

Theorem 2. Let n >~ 3. Then a GL+(n, R)-invariant distribution on X1 is H-  
invariant. 

Proof. The invariance is local, so we may consider the restrictions on the open 
subset {Q < 1} and {Q > 0}. 
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(i) On the open subset Q < 1. We can take the coordinates (xl,  x r, y ' )  on the 
open subset {(x, y) 6 X1 I Q < 1, xa ¢ 0} - {(x', y ' )  E R 2n I tx'y ' < 1} x {Xl 5 k 0}. 
Actually, Yl = (1 - tx 'y')/Xl.  The action o f  f is only on the variables (x ~, y ') .  It 
has been proved in Theorem 1 o f  [7] that the D-modules  for H-invariants  equals to 
that for fla. It means that any H-invariant  distribution on this space is f - invar ian t .  

On the open set yl 7 ~ 0, we have the same argument. 
(ii) On the open subset Q > 0. We can take the coordinates {(x, y) c X1 I 

Q > 0} 9 (Xl,X t, yl ,  y') ~-+ ((x', J / ( 1  - X l y l ) ) ,  (Xl, y l ) )  E {(~, r/) E R 2n [ t ~ t / - -  

1} x {(Xl, Yl) I xlyl  < 1}. Then both the groups H and f act on the first factor 
transitively. So, the H-invariants  implies H-invariants.  [] 

Remark  3. (1) The p roof  shows that the same statement for the theorem holds if  
we replace 'distr ibution'  by 'hyperfunct ion ' .  

(2) We can regards L e m m a  7.4 o f  [4] as a special case o f  theorem; they have 
proved that an H-invariant  distribution on X supported on {(x, y) c X1 I x '  = 0 or 
y '  = 0} is supported on {(x, y) ~ X1 I x r = 0 and y~ = 0}. The p roof  uses the fact 
that distributions are o f  finite order. 

In the case o f  the tangent spaces, such an extension o f  the symmet ry  has been 
observed in [5] with the eigenfunction condition, and is extended in [7] without the 
eigenfunction condition. These works are inspired by [12]. Compared  to the case 
o f  the tangent spaces, the geometric  setting is slightly more subtle for the case o f  
homogeneous  spaces. 

4. GENERALIZED GELFAND PAIRS 

We define an anti-involution J : G  --~ G by J(g) = tg for g c G. The map J 
induces the linear endomorphism J* on C - ~ ( G )  H×H by f ~-~ f o J .  The natural 

i somorphism i : G/H1 --+ X1 induces the i somorphism 

i* : C-°° (X1)  H×GL+(I'R) ~ C-° ° (G)  H×H. 

We now describe the map  J* on C - ~ ( G )  H×H ~ C - ~ ( X 1 )  H×GL+(I'R). We define 

j : X1 E) (Xl, X t, Yl, Y') w-> (Xl, --y', Yl, --X') ~ X1. 

L e m m a  4. For any f ~ C - ~ ( X 1 )  HxGL+(I'R), we have J*i* f = i*j* f . 

Proof .  (i) On Q < 1. Let  U = {(x, y) ~ X 1 I Xlyl > 0}, 

Xl --Y2 -- ty"/Yl  l 

ol: U × H1 ~ ((x, y), h) w-~ x 2 yl 0 

x" 0 In-1 

c G ,  

where x f = t(x2, xtt), yP = t(y2,ty") and ~0:U x H1 --+ GL+(n,R) C f by 

qg((x, y), h) = diag(yl ,  1 . . . . .  1) /yl .  The image o f  or is an open subset i - l ( {Q  > 0}) 
o f  G. We have i o J o ot = ~0 • ( j  o i o or). This proves (J*i*f)(ot((x,  y), h)) = 
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f ( i  o J ool((x, y), h))) = f(~o((x, y), h ) j  o i oot((x, y),  h))  = f ( j  o i oot((x, y), h)) = 
(i*j* f ) (ot((x ,  y), h)). 

(ii) O n  Q > 0. Let  U = {(Xl, y l )  6 R 2 I x ly l  < 1}, 

ot : U  × H × H 9 ((Xl, y l ) , h , h ' )  (. 1+.y10) 
~ h 1 Yl 0 

0 0 In-1 

h'  ~ G, 

and  ~o : U × H x H ~ GL + (n, R) C H by  ~o(h, h ' )  = de t (hh ' )  -1 t (hh ~) E GL + (n, R).  

The  image  o f  a is i - l ( { Q  < 1}). We have i o J o a  = ~0 • ( j  o i o u ) .  This  proves  

(J*i*f)(ot((Xl ,  yl ) ,  h, h ' ) )  = ( i*j*f)(ot((Xl ,  yl ) ,  h, h ' ) ) .  [] 

Theorem 5. For n >1 3, J* is the identity on C-° ° (G)  H×H. 

Proof .  It is enough  to prove that j *  is the ident i ty  o n  C - ° ° ( X l )  •xGL+(I'R). For  any  

f ~ C-°° (X1)  ~×GL+(I'R), the suppor t  o f j * f  - f is con ta ined  in  {(x, y)  6 X1 I x '  = 

yt = 0}. T h e n  the d i s t r ibu t ion  j * f  - f can  be  wr i t ten  as p( r~)8(x ' ,  y ' )  wi th  some  

po lynomia l  p o f  the indef ini te  Lap lac ian  [] x-,n+l 02/Oxi OYi on  each open  subset  z..,i=2 
{(x, y) ~ X1 I Xlyl > 0, 4-Xl > 0}. This  m e a n s  that ( j * f  - f )  is invar ian t  u n d e r  the 

act ion o f  j ,  and  that it is zero. [] 

For  the space G / H ,  the J - c r i t e r ion  that any  b i - H - i n v a r i a n t  eigendistribution on 

G is invar iant  un d e r  J*  has been  proved in  [13]. The  J - c r i t e r ion  impl ies  that the 

space G / H  is a genera l ized  Ge l f an d  pai r  [10,13]. 
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