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This paper is devoted to the mathematical analysis of a thermo-
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entropy and order structure balance law. We consider a macro-
scopic description of the phenomenon and make a presentation
of the model. Then, the initial and boundary value problem is ad-
dressed for the related PDE system, which contains some nonlinear
and singular terms with respect to the temperature variable. Exis-
tence of the solution is shown along with the boundedness of both
phase variable χ and absolute temperature ϑ . Finally, uniqueness
is proved in the framework of a source term depending Lipschitz
continuously on ϑ .
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1. Introduction

This paper deals with phenomena of phase transitions, of first and second order, in binary systems
(cf., e.g., [19,20,24]). In a first order phase transition phenomenon, as in the solid–liquid or liquid–
vapor phase change, the phase transition occurs at a critical temperature, say ϑc : if the absolute
temperature ϑ in the body is strictly greater than the critical temperature ϑc , then the minimum of
the energy potential is attained in one of the pure phases, while if ϑ < ϑc the minimum is attained
in the other phase. In the case when ϑ = ϑc the energy potential has two minima attained for the
two phases, that is phase change may occur. On the other hand, in the case of second order phase
transitions, the system behaves differently provided ϑ is greater or less than the critical tempera-
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ture ϑc . Indeed, for high temperatures the energy potential has only one minimum, while for ϑ < ϑc

two minima are attained with the same values. This second behaviour is characteristic, for instance,
of some solid–solid phase transitions, ferromagnetism, and superconductivity.

We are going to investigate a model describing these phenomena by use of phase-field theories,
in terms of temperature ϑ and a phase parameter χ, that includes the effects of micro-motions
and micro-forces responsible for the phase transition (cf. [22] and [25]). Indeed, it is known that
phase transitions are caused by changes occurring at a microscopic level in the (atomic and/or crys-
tal) structure of the system. These changes are the effects of micro-forces and motions, which have
to be included in the balance of the energy of the whole system, even if we are providing a macro-
scopic description of the phenomenon. We follow the suggestion of M. Frémond, who proposed a new
balance law for phase transitions (cf. [22] and [16]). Let us quote a fairly similar theory devised by
Gurtin [25] for Ginzburg–Landau and Cahn–Hilliard equations.

Hence, we combine this theory with a model, recently introduced, based on a reduced energy bal-
ance equation, subsequently termed as entropy equation since entropy is involved. We mainly refer
to [8] and especially [5] for the derivation of the model and related analytical results. Note that in [5]
also thermal memory effects are accounted for (according to the theory of [26]), while in the present
contribution we are neglecting them. The main advantage of the model itself is that, once the prob-
lem is solved in a suitable sense, one can obtain directly the positivity of the temperature, mainly due
to the presence of a logarithmic nonlinearity in the resulting system of partial differential equations.
This avoids the application of maximum principle arguments, which are difficult to set in a number
of interesting situations. This fact is pointed out in [5], where the model has been introduced in a
general setting and a global existence result is proved for a weak formulation. For the sake of com-
pleteness, we quote a recent contribution [9], where a more general (non-smooth) relation between
the entropy and the absolute temperature is considered. Also in this case the physical constraint on
the positivity of the absolute temperature in ensured by the model itself. In [9] the model is recov-
ered by writing the first principle in a dual formulation (in the sense of the convex analysis) using
the entropy in place of the temperature as state variable. The authors of [9] prove existence of solu-
tions (ϑ,χ) and provide a characterization of the long-time behaviour of the solution trajectories (see
also [4,10]). However, uniqueness is an open problem in both [5] and [9]: this is mainly due to the
lack of regularity on the ϑ component of the solution. In our approach, we can prove uniqueness on
the basis that a time derivative of ϑ is present in our entropy equation. Indeed, we make a different
choice for the free energy with respect to [5] and [8,9], consisting in a second order approximation
of the caloric term of the free energy in [5]. Let us also mention [6,7] where a suitable choice (far
from the present approach) of the heat flux law leads to a linear operator acting on the temperature,
which is of some help in showing existence, uniqueness, and regularity of the solution. Also the large
time behaviour and the ω-limit set are investigated in [7].

1.1. The model

In the actual contribution, we mainly proceed according to [5]. Indeed, we consider a two-phases
system, located in a smooth and bounded domain Ω ⊂ R

3, and look at its evolution during a finite
time interval (0, T ). We denote by Γ the boundary ∂Ω . The thermo-mechanical equilibrium of the
system is described in terms of state variables and governed by the free energy, while the dynamics
ensues from the presence of a pseudo-potential of dissipation (depending on dissipative variables).
Let us point out that the properties of the pseudo-potential of dissipation ensure thermodynamical
consistency of the model.

We do not consider mechanical effects, so that the variables of the system are just the absolute
temperature ϑ and a phase parameter χ , related to the proportion of one phase with respect to
the other. In general, χ attains its physical admissible values in a range [χ∗,χ∗] (e.g., χ ∈ [0,1])
and this physical constraint has to be ensured by the model itself. Hence, we derive the equations
of the system by thermo-mechanical laws. More precisely, we use the approach followed by Frémond
(yielding the evolution of the phase parameter), and the first and second principle of Thermodynamics
(from which we recover a balance equation ruling the evolution of the temperature).
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We first discuss, with some details, the derivation of the evolution equation for the phase parame-
ter χ . It is known that the phase transition can be described as a change in the order structure of the
thermo-mechanical system we are considering, so that the phase parameter χ can be interpreted also
as an “order parameter”. More precisely, below a critical temperature it is observed that the struc-
ture order of many materials is greater than above. For instance, in the solid–liquid phase transition
the solid phase has a greater order structure due to the crystal symmetry group. Analogously, we
may think to ferromagnetism where the magnetic moments are aligned below the Curie temperature.
Obviously, order change in the structure of the system occurs at a microscopic level. However, the
parameter χ is a macroscopic parameter whose evolution is governed by a balance law on the order
structure, responsible for the phase transition at a microscopic level. Thus, the evolution of the order
parameter χ can be derived from the balance conditions

B − div H = 0 in Ω × (0, T ), H · n = 0 on Γ × (0, T ) (1.1)

n being the outward normal to the boundary Γ , where the scalar quantity B can be interpreted as
an internal order structure density per units of concentration χ , and H represents an order structure
flux vector. Note that here we are assuming that no external action is provided to the system.

As far as the description of the evolution of the temperature is concerned, we use a balance law
in which higher order dissipative contributions are neglected by means of the small perturbations
assumption (cf. [23]). The resulting equation rules the evolution of the entropy s of the system in
terms of the entropy flux Q and an external source R , possibly depending on the state field, that is

st + div Q = R in Ω × (0, T ). (1.2)

Then, (1.2) is combined with boundary conditions on the entropy flux, e.g., if no flux is assumed
through the boundary, then one states that Q · n = 0 on Γ × (0, T ). Another possibility, actually fol-
lowed by us in the analysis, is to prescribe the value of the temperature on the boundary.

Referring to [5] and [9], we prefer not to detail here the derivation of the model. However, for the
sake of completeness, we just recall that (1.2) can be obtained, in the framework of small perturba-
tions assumptions, dividing by ϑ > 0 the energy balance

et + div q = r + Bχt + H · ∇χt . (1.3)

In (1.3) e denotes the internal energy of the system, q = ϑQ represents the heat flux, r stands for
an external source, while Bχt + H · ∇χt is internal and comes from the order structure. We will add
some comments below on the relation between the two equations (1.2) and (1.3).

1.2. Free energy

We specify the involved physical quantities with the help of two energy functionals: the free en-
ergy Ψ , depending on the state variables and accounting for the thermo-mechanical equilibrium of
the system, and the pseudo-potential of dissipation Φ (see [28]), defined for dissipative variables and
responsible of the evolution of the system. More precisely, we consider as state variables the abso-
lute temperature ϑ , the order parameter χ , and its gradient ∇χ . It is known from thermodynamics
that the free energy is a concave function with respect to the temperature, while there are not con-
straints concerning the dependence on the other variables. In the present contribution, we choose the
functional Ψ of the following form

Ψ (ϑ,χ,∇χ) := − c0

2
ϑ2 + F (χ)ϑc + G(χ)ϑ + ν

2
|∇χ |2 (1.4)

the constants c0, ν being positive and ϑc > 0 representing the critical value of the temperature for the
phase transition. Note that the purely caloric part in the free energy −(c0/2)ϑ2 is, in fact, concave
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with respect to the temperature. Then, the functions F and G characterize the behaviour of the phase
transition. For instance, in a first order phase transition, as vapor–liquid or liquid–solid, they can be
prescribed as follows

F (χ) = χ4

4
− χ3

3
, G(χ) = χ4

4
− 2χ3

3
+ χ2

2
(1.5)

while in a second order phase transition, as for superconductivity or ferromagnetism, F and G can be
written as

F (χ) = χ4

4
− χ2

2
, G(χ) = χ2

2
. (1.6)

Let us remark from the beginning that both the cases (1.5) and (1.6) comply with our general assump-
tions (2.3)–(2.4) provided you take χ∗ � 0 and χ∗ � 1.

1.3. Admissible values for the phase variable

The physical constraint on χ , that is χ∗ � χ � χ∗ , is not a priori guaranteed by the choice of the
free energy (1.4): in particular, the functions F and G prescribed in (1.5) and (1.6) are smooth on the
whole of R (as in [3]). A different possible choice for Ψ introduced in the literature (cf., e.g., [5,22])
and accounting for this constraint is

Ψ (ϑ,χ,∇χ) = − c0

2
ϑ2 + I[χ∗,χ∗](χ) + F (χ) + ϑ G(χ) + ν

2
|∇χ |2

where F , G are sufficiently smooth functions characterizing the phase transition. In this case the
free energy is defined for any value of χ but it is +∞ if χ /∈ [χ∗,χ∗] (while I[χ∗,χ∗](χ) = 0 if
χ ∈ [χ∗,χ∗]). In our approach, instead, we will show that the constraint on χ is ensured by the
evolution of the system, i.e., it will be proved that the equations of the system are somehow consistent
as they yield χ∗ � χ � χ∗ whenever the initial value is in the same range. The proof of this property
of our model will be detailed in the sequel and relies on a maximum principle argument.

1.4. Pseudo-potential of dissipation

Secondly, we introduce the pseudo-potential of dissipation Φ (see [28]) that depends on χt

and ∇ϑ . Let us just comment on the choice of these dissipative variables: χt is related to microscopic
transformations which are responsible for the phase transition, i.e. for the evolution of the order
structure of the system, while ∇ϑ is concerned with the heat flux. For the sake of completeness, let
us recall that the pseudo-potential of dissipation Φ is nonnegative, convex with respect to the dissi-
pative variables, and it attains its minimum 0 for a null dissipation, that is when (χt ,∇ϑ) = (0,0).
We prescribe

Φ(χt ,∇ϑ) = μ

2
|χt |2 + λ

2ϑ
|∇ϑ |2 (1.7)

with μ and λ denoting positive coefficients.

1.5. Constitutive relations

Hence, constitutive relations can be written for B,H, s,Q. They are recovered from the free energy
(for non-dissipative contributions) and the pseudo-potential of dissipation (for dissipative parts). We
have
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B = ∂Ψ

∂χ
+ ∂Φ

∂χt
= ϑc F ′(χ) + ϑG ′(χ) + μχt (1.8)

and

H = ∂Ψ

∂(∇χ)
= ν∇χ (1.9)

as well as

s = −∂Ψ

∂ϑ
= c0ϑ − G(χ) (1.10)

and

Q = − ∂Φ

∂(∇ϑ)
= − λ

ϑ
∇ϑ = −λ∇ logϑ. (1.11)

Let us point out that the choice of the free energy (1.4) leads to a linear contribution for the tempera-
ture in (1.10). This will yield sufficient regularity on the solution, from which we will be able to prove
uniqueness. We also point out that the term −(c0/2)ϑ2 could be seen as a first order approximation
of the following, well-known, form of the energy potential

Ψ (ϑ, . . .) = −c0ϑ logϑ + · · ·

used, e.g., in [5]. In this case, the entropy s would be related to the temperature ϑ through a log-
arithmic nonlinearity. Note that, on the contrary, a logarithmic nonlinearity forcing ϑ to be strictly
positive is present in our expression (1.11) for Q, analogously to the choice made, e.g., in [5].

1.6. From energy balance to our equation

The reader may be curious about the derivation of (1.2) from (1.3). Let us recall constitutive rela-
tions (1.8)–(1.11) and the well-known Helmholtz relation

e = Ψ + ϑs. (1.12)

By applying the chain rule in (1.3), some terms cancel and one can rewrite the energy balance as

ϑ(st + div Q − R) =
(

∂Φ

∂χt
,

∂Φ

∂(∇ϑ)

)
· (χt ,∇ϑ) (1.13)

letting Q = q/ϑ and R = r/ϑ . We point out that the fact that Φ is convex, l.s.c., proper, nonnegative
and it attains its minimum 0 when (χt ,∇ϑ) = (0,0) ensure that the right-hand side of (1.13) is
nonnegative. As ϑ > 0, the Clausius–Duhem inequality

st + div Q − R � 0 (1.14)

complies with (1.13). Hence, dividing (1.13) by ϑ and neglecting the nonnegative and higher order
dissipative resulting contribution on the right-hand side, Eq. (1.2) follows.
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1.7. Nonlinearity in the source term

We stress that the entropy source R in (1.2) is related to the source r appearing in (1.3) by R = r/ϑ .
Thus, it seems reasonable to include in our analysis the possibility for R to depend on the temperature
(and possibly to present some singularities). This is one of the features of our paper: we actually deal
with entropy sources (positive or negative, as sinks) depending also on the temperature ϑ . Indeed,
possible choices satisfying our assumptions are (cf. the later Remark 2.2)

R(x, t, ϑ) = R1(x, t)

ϑ2
− R2(x, t)

which would correspond to r(x, t, ϑ) = (R1(x, t)/ϑ) − R2(x, t)ϑ , or

R(x, t, ϑ) = R3(x, t)ϑ − R4(x, t)

which can be viewed as a linearization of R around some equilibrium value of ϑ . In such cases, the
possible data R1, R2 or R3, R4 are smooth enough and at least R1 should be nonnegative through-
out Ω × (0, T ).

1.8. System of PDEs and initial–boundary value problem

Now, combining constitutive relations (1.8)–(1.11) with (1.1) and (1.2) leads to the following PDE
system

c0ϑt − G ′(χ)χt − λ� log ϑ = R(x, t, ϑ), (1.15)

μχt − ν�χ + F ′(χ)ϑc + G ′(χ)ϑ = 0 (1.16)

which is addressed in Q := Ω × (0, T ). Then, concerning boundary conditions, prescribed in Γ ×
(0, T ), we fix a Dirichlet condition for the temperature and a Neumann homogeneous condition for
the phase parameter

log ϑ = logϑΓ , ∂nχ = 0. (1.17)

Finally, initial conditions are set in Ω

ϑ(0) = ϑ0, χ(0) = χ0. (1.18)

For the sake of simplicity, in the mathematical analysis performed in subsequent sections we will take
the physical constants c0, λ, μ, ν , ϑc all equal to 1. Let us just point out that Dirichlet conditions for
log ϑ are very important in our approach since they allow us to perform the basic a priori estimates
and use the Poincaré inequality.

Let us point out in our model is that we are dealing with a non-smooth entropy source R(ϑ)

in (1.15) that is assumed to be increasing with respect to ϑ ∈ (0,+∞) up to Lipschitz perturbations.
This fact turns out to be interesting both for analytical and modelling aspects. Indeed, we are able to
treat a diffusive equation for the temperature with nonlinear and singular diffusion along with a non-
smooth contribution in source term. Then, for modelling aspects, we can figure the entropy source
R directly as r(ϑ)/ϑ (compare (1.13) with (1.3)). The second aspect we notice is that the physical
property χ ∈ [χ∗,χ∗] comes as a consequence of our analysis and then it is ensured by the evolution
of the system itself and not required a priori.

Under suitable assumptions on the data and on the regularity of the involved nonlinearities, we
can prove existence of a solution in any time interval (0, T ) for a weak formulation of our system
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(1.15)–(1.18). Moreover, in a wide setting we are able to show that also the solution component ϑ is
bounded by adapting a Moser type argument. Finally, if R(x, t, ϑ) is uniformly Lipschitz continuous
with respect to ϑ , we prove uniqueness of the solution.

1.9. Phase field model with special heat flux law

What is also interesting in our contribution is that system (1.15)–(1.16) may be interpreted as a
nonlinear Caginalp phase-field model (see [13]) with special heat flux law. Indeed, take the following
energy functional

Υ (ϑ,χ) = − 1

2ϑ
+ ϑ F (χ) + G(χ) + νϑ

2
|∇χ |2. (1.19)

Hence, arguing as in the derivation of the Penrose–Fife model (cf. [12,21,29]), we recover the en-
tropy s, the internal energy e, and the phase field equation (for χ ) as

s = −∂Υ

∂ϑ
= − 1

2ϑ2
− F (χ) − ν

2
|∇χ |2, (1.20)

e = Υ + ϑs = − 1

ϑ
+ G(χ), (1.21)

μχt + δH

δχ
= 0, H =

∫
Ω

1

ϑ
Υ (1.22)

where δH/δχ denotes the variational (Fréchet) derivative of the functional H . Then, we can write the
first principle neglecting microscopic motions and forces (here r̃ represents a mere source term)

et + div q = r̃. (1.23)

We now let

q = −λ∇ logϑ (1.24)

and this special choice of the heat flux can be compared with the ones studied in the papers [14,15],
where Penrose–Fife models with special heat flux laws have been investigated. Then, combine (1.22)
and (1.23) with (1.19)–(1.21) and (1.24), so to obtain the following system

ut − G ′(χ)χt − λ� log u = −̃r, (1.25)

μχt − ν�χ + F ′(χ) + uG ′(χ) = 0 (1.26)

in which u has now the physical meaning of 1/ϑ . Note that system (1.25)–(1.26) is formally equivalent
to (1.15)–(1.16) (with c0 = ϑc = 1 and −̃r in place of R). Thus, it turns out that our analysis applies to
the Caginalp system (1.25)–(1.26) in which non-smooth heat sources depending on the temperature
are admitted.
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1.10. Plan of the paper

We conclude the Introduction by giving an outline of the paper. In Section 2 we set our problem
in a Sobolev spaces framework and make precise assumptions on the data and the involved functions,
also stating main results. In Section 3 we introduce an approximating problem and prove the existence
of solutions for it. Next, Section 4 is devoted to derive some a priori estimates and to pass to the
limit as the approximating parameter goes to 0. A maximum principle is also checked to show that
the constraint on χ is always satisfied. Boundedness of ϑ and uniqueness proofs are the subjects of
the last two Sections 5 and 6, respectively.

2. Main results

In this section, we carefully describe the problem we are going to deal with and state our results.
First of all, we introduce the notation regarding the domain in which the evolution is considered.
In the sequel, Ω is a bounded open set in R

3, whose boundary Γ is assumed to be of class C2.
Moreover, ∂n is the (say, outward) normal derivative on Γ . Given a finite final time T , we set for
convenience

Q t := Ω × (0, t) for every t ∈ (0, T ] and Q := Q T . (2.1)

Next, we describe the structure of our system. We are given four constants ϑ∗, ϑ∗,χ∗,χ∗ ∈ R

such that

0 < ϑ∗ � 1 � ϑ∗ and χ∗ < χ∗ (2.2)

and four functions F , G , β , and π

F , G : R → R, β : Q × (0,+∞) → R, and π : Q × R → R

satisfying

F , G ∈ C2(R), F is bounded from below and G is nonnegative, (2.3)

F ′, G ′ � 0 in (−∞,χ∗), and F ′, G ′ � 0 in (χ∗,+∞), (2.4)

β is Lipschitz continuous in Q × [δ,1/δ] for every δ ∈ (0,1), (2.5)

β,x, β,t , β
′, and π are Carathéodory functions, with the notation, (2.6)

β,x(x, t, r) := ∇β(x, t, r), β,t(x, t, r) := ∂tβ(x, t, r), β ′(x, t, r) := ∂rβ(x, t, r), (2.7)

0 � β ′(x, t, r) � β1(r)

for a.a. (x, t) ∈ Q , every r ∈ (0,+∞), and some β1 ∈ C0(0,+∞), (2.8)

∣∣β,x(x, t, r)
∣∣ + ∣∣β,t(x, t, r)

∣∣ � Mβ

(
1 + ∣∣β(x, t, r)

∣∣)
for a.a. (x, t) ∈ Q , every r ∈ (0,+∞), and some Mβ ∈ [0,+∞), (2.9)

β(x, t,1) = 0 for every (x, t) ∈ Q , (2.10)

∣∣π(x, t, r)
∣∣ � λ|r| + π0(x, t)

for a.a. (x, t) ∈ Q , every r ∈ R, some λ ∈ [0,+∞), and some π0 ∈ L2(Q ). (2.11)
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Furthermore, we set for convenience

β̂(x, t, r) :=
r∫

1

β(x, t, s)ds for every (x, t, r) ∈ Q × (0,+∞). (2.12)

Then, observing that (by (2.8)) β(x, t, ·) is nondecreasing, it turns out that β̂ is nonnegative and
convex with respect to the third variable.

Remark 2.1. We note that the second inequality of (2.8) and (2.10) imply that

∣∣β(x, t, r)
∣∣ � β0(r) :=

∣∣∣∣∣
r∫

1

β1(s)ds

∣∣∣∣∣ ∀(x, t, r) ∈ Q × (0,+∞). (2.13)

Therefore, we see by (2.9) that even β,x and β,t satisfy an analogous inequality and infer that (2.5)
follows from the other assumptions. We have written (2.5) in advance to give a meaning to the
pointwise values of β .

Remark 2.2. In the applications just the difference R = π − β is interesting and we observe that the
choice

R(x, t, r) = R1(x, t)

r2
+ R2(x, t) with R1 � 0 (2.14)

is included in our assumption. Indeed, we can take β(x, t, r) = R1(x, t) − R1(x, t)/r2 for r > 0 and
π(x, t, r) = R1(x, t) + R2(x, t), so that R = π − β and (2.10) hold at the same time. However, we have
to assume that R1 is Lipschitz continuous and that |∇R1| + |∂t R1| � cR1 in Q for some constant c
in order to fulfill (2.9). As R1 is bounded and nonnegative, (2.8) holds as well. Moreover, we ask that
R2 ∈ L2(Q ) in view of (2.11). A different choice for R is the following

R(x, t, r) = R3(x, t)r − R4(x, t) (2.15)

and can be obtained in our setting by simply taking β = 0 and π = R . Here, we can assume
R3 ∈ L∞(Q ) and R4 ∈ L2(Q ).

Notation 2.3. Let I be a real interval and ψ : Q × I → R be a Carathéodory function. We use the same
symbol ψ to denote the operator acting on measurable functions on Q as follows. If v : Q → R is
measurable

ψ(v) denotes the function (x, t) 
→ ψ
(
x, t, v(x, t)

)
, (x, t) ∈ Q . (2.16)

Note that ψ(v) actually is measurable due to the Carathéodory assumption on ψ . Similar definitions
and symbols are used for functions depending on the space variable. Namely, if v : Ω → R is measur-
able

ψ(t, v) denotes the function x 
→ ψ
(
x, t, v(x)

)
, x ∈ Ω, (2.17)

for a.a. t ∈ (0, T ). We obtain a time dependent operator. As a consequence, if v ∈ L2(Q ), the symbol
ψ(t, v(t)) denotes the measurable function x 
→ ψ(x, t, v(x, t)), x ∈ Ω . Notation (2.16)–(2.17) will be
used, in particular, with (some of the functions listed below will be introduced later on)

ψ = β, β̂, βε, β̂ε, β,x, β,t , β
′, βε,x, βε,t, β

′
ε,π. (2.18)
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Furthermore, we set

H := L2(Ω), V := H1(Ω), V 0 := H1
0(Ω), W := {

v ∈ H2(Ω): ∂n v = 0
}
. (2.19)

We endow H , V , and W with their usual scalar products and norms and use a self-explaining nota-
tion, like ‖ · ‖V . For the sake of simplicity, the same symbol will be used both for a space and for any
power of it. It is understood that H is embedded in V ∗

0 in the usual way, i.e., 〈u, v〉 = (u, v) for every
u ∈ H and v ∈ V 0, where 〈·,·〉 is the duality pairing between V ∗

0 and V 0 and (·,·) is the inner product
of H .

Now, we list our assumptions on the boundary and initial data. We are given three functions ϑΓ ,
ϑ0, and χ0 such that

ϑΓ ∈ L2(0, T ; H1/2(Γ )
) ∩ H1(0, T ; H−1/2(Γ )

)
, ϑ∗ � ϑΓ � ϑ∗ a.e. on Γ × (0, T ), (2.20)

ϑ0 ∈ H, ϑ∗ � ϑ0 � ϑ∗ a.e. in Ω, (2.21)

χ0 ∈ V , χ∗ � χ0 � χ∗ a.e. in Ω, (2.22)

where ϑ∗ , ϑ∗ , χ∗ , and χ∗ are introduced in (2.2).
At this point, we are ready to state our problem. We look for a triplet (ϑ,χ, ξ) satisfying the

regularity conditions and the equations listed below:

ϑ ∈ L∞(0, T ; H), ϑ > 0 a.e. in Q , and ln ϑ ∈ L2(0, T ; V ), (2.23)

χ ∈ L2(0, T ; W ) ∩ H1(0, T ; H), (2.24)

G(χ), F ′(χ), G ′(χ) ∈ L2(Q ), (2.25)

ξ ∈ L2(Q ), (2.26)

∂t
(
ϑ − G(χ)

) ∈ L2(0, T ; V )∗0, (2.27)

∂t
(
ϑ − G(χ)

) − � ln ϑ + ξ = π(ϑ) in L2(0, T ; V )∗0 and ξ = β(ϑ), (2.28)

∂tχ − �χ + F ′(χ) + G ′(χ)ϑ = 0 a.e. in Q , (2.29)

ln ϑ = ln ϑΓ a.e. on Γ × (0, T ), (2.30)(
ϑ − G(χ)

)
(0) = ϑ0 − G(χ0) and χ(0) = χ0. (2.31)

Even though ξ is a known function of ϑ , we refer to the triplet (ϑ,χ, ξ) instead of the pair (ϑ,χ)

when we speak of a solution, just for convenience. Moreover, we note that (2.23) and (2.25) yield
G ′(χ)ϑ ∈ L2(0, T ; L)1(Ω). However, we see by comparison in (2.29) that G ′(χ)ϑ ∈ L2(Q ). Next, we
observe that G(χ0) makes sense in L∞(Ω). Furthermore, we point out that the first condition in
(2.31) reduces to ϑ(0) = ϑ0 whenever one knows that G(χ) ∈ C0([0, T ]; V )∗0. Actually, some addi-
tional smoothness for G(χ) as well as for F ′(χ) and G ′(χ) surely holds if the nonlinearities satisfy
some growth conditions, thanks to (2.24). The same is trivially true whenever χ is bounded, and our
existence result stated below ensures such a property. Finally, (2.24) itself entails the homogeneous
Neumann boundary condition for χ (see (2.19)). Here is our first result.

Theorem 2.4. Let (2.2)–(2.11) and (2.20)–(2.22) be fulfilled. Then, there exists a triplet (ϑ,χ, ξ) satisfying the
regularity requirements (2.23)–(2.27) and solving problem (2.28)–(2.31). Moreover, every solution (ϑ,χ, ξ)

fulfills the inequalities

χ∗ � χ � χ∗ a.e. in Q . (2.32)

In particular, χ is bounded.
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One can wonder whether the component ϑ of the solution is bounded as well. Actually, such a
property holds whenever we reinforce the assumption on the structure of our system a little, namely

π0 ∈ Lq(Q ) for some q > 5/2. (2.33)

We can state the following result.

Theorem 2.5. Assume (2.33) in addition to the hypotheses of Theorem 2.4. Then, the component ϑ of any
solution (ϑ,χ, ξ) to problem (2.28)–(2.31) is bounded.

Remark 2.6. From Theorem 2.4 it follows that G(χ), F ′(χ), and G ′(χ) are smoother, namely

G(χ), F ′(χ), G ′(χ) ∈ L∞(Q ) ∩ L2(0, T ; V ) ∩ H1(0, T ; H) (2.34)

due to (2.3) and (2.24). In particular, we deduce that

∂tϑ ∈ L2(0, T ; V )∗0 (2.35)

by comparison in (2.27). On the other hand, using the regularity conditions ln ϑ ∈ L2(0, T ; V ) and
ϑ ∈ L∞(Q ) (see (2.23) and Theorem 2.5), we see that ∇ϑm = mϑm∇ ln ϑ for every m > 0, whence

ϑm ∈ L2(0, T ; V ) for every m ∈ (0,+∞). (2.36)

Moreover, as F ′(χ) and G ′(χ) are bounded, from (2.24) and (2.29) we see that ∂tχ − �χ is bounded
too. Hence, we have

χ ∈ L p(
0, T ; W 2,p(Ω)

) ∩ W 1,p(
0, T ; L p(Ω)

)
for every p � 1 (2.37)

thanks to the general theory of linear parabolic equations.

Finally, we state our uniqueness result. As it often happens for doubly nonlinear problems, unique-
ness for solutions cannot be proved unless more restrictive assumption on the structure are made. In
particular, we cannot allow a singular β like (2.14).

Theorem 2.7. Assume that the hypotheses of Theorem 2.4 are fulfilled. Moreover, assume that R := π − β

satisfies the uniform Lipschitz condition∣∣R(x, t, r) − R(x, t, s)
∣∣ � λR |r − s| for every (x, t) ∈ Q and r, s ∈ (0,+∞) (2.38)

for some λR � 0. Then, problem (2.28)–(2.31) has at most one solution (ϑ,χ, ξ) satisfying ϑ ∈ L∞(Q ).

Corollary 2.8. If (2.33) and (2.38) are fulfilled at the same time in addition to the hypotheses of Theorem 2.4,
then problem (2.28)–(2.31) has exactly one solution (ϑ,χ, ξ) such that ϑ is bounded. Moreover, (2.32), (2.36),
and (2.37) are satisfied.

The paper is organized as follows. The next section deals with approximating problems. Theo-
rem 2.4 is proved in Section 4 and our argument relies on some a priori estimates on the approximate
solutions and on monotonicity and compactness methods. Section 5 is devoted to prove Theorem 2.5
and uses a Moser type procedure. Finally, the proof of Theorem 2.7 is given in the last section.

In our proofs, we use the well-known inequalities we are going to recall. As Ω ⊂ R
3 is bounded

and smooth, the Poincaré inequality

‖v‖V � MΩ‖∇v‖H for every v ∈ V 0 (2.39)



E. Bonetti et al. / J. Differential Equations 246 (2009) 3260–3295 3271
holds, and the space V is continuously embedded in L6(Ω), i.e.,

‖v‖L6(Ω) � MΩ‖v‖V for every v ∈ V . (2.40)

For the sake of completeness, we recall a related embedding result for parabolic spaces (see, e.g., [18,
formula (3.2), p. 8]). For m � 1, we have

L∞(
0, T ; Lm(Ω)

) ∩ L2(0, T ; V )0 ⊂ Lq(m)(Q ) where q(m) := 2

3
(m + 3)

the embedding being continuous, i.e.,

‖v‖Lq(m)(Q ) � MΩ,T ,m
(‖v‖L∞(0,T ;Lm(Ω)) + ‖∇v‖L2(Q )

)
for every v ∈ L∞(

0, T ; Lm(Ω)
) ∩ L2(0, T ; V )0. (2.41)

In particular, we observe that

L∞(0, T ; H) ∩ L2(0, T ; V )0 ⊂ L10/3(Q ), (2.42)

L∞(
0, T ; L3(Ω)

) ∩ L2(0, T ; V )0 ⊂ L4(Q ) (2.43)

and that the corresponding estimates (2.41) hold.
The above inequalities are widely used in the sequel, as well as the elementary Young inequality

ab � δap + cδ,pbp′ ∀a,b � 0, ∀δ > 0 (2.44)

where p, p′ > 1 satisfy (1/p) + (1/p′) = 1 and cδ,p := (p′)−1(δp)−p′/p .
We conclude this section by stating a general rule we use for constants, in order to avoid a boring

notation. Throughout the paper, the symbol c stands for different constants which depend only on Ω ,
on the final time T , and on the constants and the norms of the functions involved in the assumptions
of either our statements or our approximation. In particular, c is independent of the approximation
parameter ε we introduce in the next section. A notation like cδ allows the constant to depend on the
positive parameter δ, in addition. Hence, the meaning of c and cδ might change from line to line and
even in the same chain of inequalities. On the contrary, we use different symbols (see, e.g., (2.39))
to denote precise constants which we could refer to. By the way, several of such constants could be
the same (like in (2.39) and in (2.40)), since sharpness is not needed.

3. Approximating problems

This section contains a preliminary work in the direction of proving Theorem 2.4 and deals with
a suitable approximation of problem (2.28)–(2.31). Namely, we replace the strong nonlinearities that
appear in Eq. (2.28) with smooth functions depending on the parameter ε ∈ (0,1). First of all, we see
the logarithm ln as a maximal monotone operator in R with domain (0,+∞). Precisely, for r ∈ R, the
set ln r is the singleton {ln r} if r > 0, while it is empty if r � 0. Then, we can consider the function
Lnε : R → R defined as follows

Lnε r := εr + lnε r where lnε is the Yosida regularization of ln . (3.1)

We note that lnε is monotone and Lipschitz continuous with constant 1/ε (see, e.g., [11, Proposi-
tion 2.6, p. 28]). Thus, ε � Ln′

ε(r) � ε + (1/ε) for every r ∈ R. The functions lnε and Lnε act on
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L2-spaces as well and Notation 2.3 is extended to them. Moreover, we replace F and G by new func-
tions, still termed F and G , satisfying

F ′ and G ′ are bounded (3.2)

in addition to (2.3)–(2.4). Indeed, we can arbitrarily modify F and G outside [χ∗,χ∗] due to the last
part of Theorem 2.4. Finally, we replace the possibly singular function β by a C∞ function βε , in order
to justify the chain rules we have to use. We proceed by extension, truncation, and regularization. For
ε > 0, we set

Ωε := {
x ∈ Ω: dist(x,Γ ) < ε

}
and Ω ′

ε := {
x ∈ R

3 \ Ω: dist(x,Γ ) < ε
}
.

As Ω is of class C2, there exists ε0 ∈ (0,1) such that, for every x ∈ Ω ′
ε0

, there exists a unique point
x̃ ∈ Ωε0 satisfying

x′ := x + x̃

2
∈ Γ and x − x̃ is orthogonal to Γ at x′ (3.3)

the correspondence x 
→ x̃ being a bi-Lipschitz diffeomorphism of class C1 from Ω ′
ε0

onto Ωε0 . Then,
we define Ω̃ and the extension-by-reflection operator ·̃ : L∞(Ω) → L∞(Ω̃) as follows

Ω̃ := Ω ∪ Ω ′
ε0

and for v ∈ L∞(Ω) and a.a. x ∈ Ω̃ we set

ṽ(x) = v(x) if x ∈ Ω and ṽ(x) = v(x̃) if x ∈ Ω ′
ε0

. (3.4)

Next, we extend further by reflection as well. We define Q̃ and E : L∞(Q ) → L∞(Q̃ ) as follows

Q̃ := Ω̃ × (−T ,2T ) and for v ∈ L∞(Q ) and a.a. (x, t) ∈ Q̃ we set

(E v)(x, t) = ṽ(x, t) if t ∈ (0, T ), (E v)(x, t) = ṽ(x,−t) if t ∈ (−T ,0) and

(E v)(x, t) = ṽ(x,2T − t) if t ∈ (T ,2T ). (3.5)

It is clear that the extension operator E is linear and continuous. More precisely, we have

sup ess
Q̃

E v = sup ess
Q

v and inf ess
Q̃

E v = inf ess
Q

v for every v ∈ L∞(Q ). (3.6)

Moreover, one can check that for every v ∈ L∞(Q ) we have

E v � 0 a.e. in Q̃ whenever v � 0 a.e. in Q , (3.7)

‖∇E v‖L∞(Q̃ ) � M‖∇v‖L∞(Q ) if ∇v ∈ L∞(Q ), (3.8)

‖∂t E v‖L∞(Q̃ ) � M‖∂t v‖L∞(Q ) if ∂t v ∈ L∞(Q ), (3.9)

lip(E v) � M lip v if v is Lipschitz continuous (3.10)

for some constant M , where lip v is the Lipschitz constant of v . At this point, for ε ∈ (0,1) we de-
fine the operators β̃, β̃ε : Q̃ × R → R by using the extension operator E and a truncation procedure
as follows
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β̃(x, t, r) := (
E β(·, ·, r)

)
(x, t), (3.11)

β̃ε(x, t, r) := β̃(x, t, rε) where rε := max
{
ε,min{r,1/ε}} (3.12)

and observe that β̃ε is globally Lipschitz continuous. Indeed, by recalling (2.5) and setting for conve-
nience

Lδ := lip β|Q ×[δ,1/δ] for δ ∈ (0,1) (3.13)

we clearly see that MLε is a Lipschitz constant for β̃ε . Moreover, as E is linear and (3.7) holds, we
infer that both β̃(x, t, ·) and β̃ε(x, t, ·) are nondecreasing on R for every (x, t) ∈ Q̃ . Furthermore, both
β̃ and β̃ε vanish at r = 1. In particular, their values at every r ∈ R have the sign of r − 1.

Finally, we are ready to define a C∞ approximation βε : Q ×R → R of β . We regularize β̃ε by con-
volution and restrict the regularization we obtain to Q ×R. Namely, we fix a nonnegative ζ ∈ C∞(R5)

supported in the unit ball B of R
5 and normalized in L1(R5). Then, by assuming ε0 � T and ε ∈ (0, ε0)

(such restrictions are not stressed in the sequel, but it is understood that they are satisfied), we recall
(3.13) and set

δε := ε

1 + Lε
and ζε(x, t, r) := δ−5

ε ζ
(
(x, t, r)/δε

)
for (x, t, r) ∈ R

5, (3.14)

βε(x, t, r) := (β̃ε ∗ ζε)(x, t, r)

=
∫

δε B

β̃ε(x − y, t − τ , r − s)ζε(y, τ , s)dy dτ ds

=
∫
B

β̃ε(x − δε y, t − δετ , r − δεs)ζ(y, τ , s)dy dτ ds for (x, t, r) ∈ Q × R. (3.15)

The reason of the above choice of δε is that we would like to have

∣∣βε(x, t, r) − β̃ε(x, t, r)
∣∣ � Mε for every (x, t, r) ∈ Q × R (3.16)

and some constant M . Actually, (3.16) holds with the constant M that makes (3.10) true, as we show
at once. We have indeed

∣∣βε(x, t, r) − β̃ε(x, t, r)
∣∣ =

∣∣∣∣
∫
B

(
β̃ε(x − δε y, t − δετ , r − δεs) − β̃ε(x, t, r)

)
ζ(y, τ , s)dy dτ ds

∣∣∣∣
�

∫
B

MLε

∣∣(δε y, δετ , δεs)
∣∣ζ(y, τ , s)dy dτ ds � MLεδε � Mε

since MLε is a Lipschitz constant for β̃ε , as just observed. With a similar argument, we see that

βε is Lipschitz continuous with lipβε � MLε (3.17)

since such a property holds for β̃ε . In the sequel we use the following more precise facts

sup
Q ×[δ,1/δ]

|βε| � sup
Q̃ ×[δ/2,1/δ+δ/2]

|β̃| and lipβε|Q ×[δ,1/δ] � lip β̃|Q̃ ×[δ/2,1/δ+δ/2]

for δ ∈ (0,1) and ε < δ/2. (3.18)
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Indeed, we have δε � ε � δ/2. Hence, if (x, t) ∈ Q and δ � r � 1/δ, the values of β̃ε in (3.15) actually
are values of β̃ at points of the set Q̃ ×[δ/2,1/δ+δ/2], where β̃ is bounded and Lipschitz continuous.
Therefore, both the supremum and the Lipschitz constant are preserved by the convolution, since ζ is
normalized, and (3.18) follow. Finally, we point out that

βε(x, t, ·) is nondecreasing on R for every (x, t) ∈ Q (3.19)

since such a property holds for β̃ε and ζ is nonnegative. Moreover, we set for convenience

β̂ε(x, t, r) :=
r∫

1

βε(x, t, s)ds for a.a. (x, t) ∈ Q and every r ∈ R. (3.20)

Clearly, β̂ε is convex with respect to the third variable. Furthermore, as β̃ε(x, t, r) and r − 1 have the
same sign as just observed, we see that (3.16) implies

β̂ε(x, t, r) �
r∫

1

(
βε(x, t, s) − β̃ε(x, t, s)

)
ds � −Mε|r − 1| for every (x, t, r) ∈ Q × R. (3.21)

Finally, it is clear that the first of (3.18) implies the analogue for β̂ε , namely

sup
Q ×[δ,1/δ]

|β̂ε| � cδ for every δ ∈ (0,1) (3.22)

for some constant cδ .
At this point, we are ready to state the approximating problem, which consists in finding a triplet

(ϑε,χε, ξε) having the proper regularity and satisfying

∂t
(
ϑε − G(χε)

) − � Lnε ϑε + ξε = π(ϑε) in L2(0, T ; V )∗0 and ξε = βε(ϑε), (3.23)

∂tχε − �χε + F ′(χε) + G ′(χε)ϑε = 0 a.e. in Q , (3.24)

ϑε = ϑΓ a.e. on Γ × (0, T ), (3.25)

ϑε(0) = ϑ0 and χε(0) = χ0. (3.26)

The following result holds.

Theorem 3.1. Let the assumptions of Theorem 2.4 be fulfilled. Moreover, assume (3.1), (3.2), and (3.15). Then,
problem (3.23)–(3.26) has a solution satisfying

ϑε ∈ L2(0, T ; V ) ∩ H1(0, T ; V )∗0, (3.27)

χε ∈ L2(0, T ; W ) ∩ H1(0, T ; H). (3.28)

We avoid proving Theorem 3.1 in order not to make the paper too long. Indeed, the a priori esti-
mates in Section 4 suggest how to proceed. Anyway, a rigorous proof could be done by regularizing π
and using, e.g., a Galerkin procedure.

On the contrary, we prove some auxiliary results regarding the approximating nonlinearities. The
first formula we state is showed in [6, Lemma 6.1]. We repeat the short proof here, for convenience,
and include it in the following proposition.
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Proposition 3.2. We have

ln−1
ε (s) = es + εs for every s ∈ R, (3.29)

ln r

1 + ε
� lnε r � ln r for every r � 1, (3.30)

Ln′
ε(r) � 1 for every r � 1 and Ln′

ε(r) � 1

2r
for every r � 1, (3.31)

�∗ � lnε r � �∗ for every r ∈ [ϑ∗, ϑ∗] (3.32)

where we have set �∗ := min{0, ln ϑ∗} and �∗ := max{0, ln ϑ∗}. Moreover, we have

1

2ϑ∗ � ln′
ε(r) � 2

ϑ ∗
for every r ∈ [ϑ∗, ϑ∗] (3.33)

for ε small enough.

Proof. For r ∈ R, let ρε(r) > 0 be defined by the equation

ρε(r) + ε lnρε(r) = r. (3.34)

Take now any s ∈ R. Then, r := es + εs satisfies ρε(r) = es . On the other hand, we have

lnε r = r − ρε(r)

ε
(3.35)

by definition of Yosida regularization. We deduce that lnε r = s and (3.29) follows. To prove (3.30), we
observe that for s � 0 we have eεs � 1 + εs and es � 1. We infer that

e(1+ε)s � es + εs � es.

If r � 1, applying this to s := lnε r (which is nonnegative since lnε 1 = 0), we obtain

e(1+ε) lnε r � elnε r + ε lnε r � elnε r

and (3.30) follows from (3.29) by applying the logarithm. Next, we prove (3.31). To this aim, we
compute ln′

ε(r) from (3.35) and (3.34). We have

ln′
ε(r) = 1 − ρ ′

ε(r)

ε
= 1

ε

(
1 − ρε(r)

ρε(r) + ε

)
= 1

ρε(r) + ε
. (3.36)

On the other hand, we observe that (3.34) and ρε(r) > 1 imply r > ρε(r) � 1. Hence, ρε(r) � 1 for
r � 1. We conclude that

Ln′
ε(r) = ε + ln′

ε(r) � ε + 1

1 + ε
= 1 + ε + ε2

1 + ε
� 1

for every r � 1. Assume now r � 1. Then, r + ε ln r � r, whence ρε(r) � r. Accounting for (3.36), we
infer that

ln′
ε(r) � 1 � 1
r + ε 2r
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and the second of (3.31) follows. To prove (3.32), we observe that exp�∗ + ε�∗ � ϑ∗ and exp�∗ +
ε�∗ � ϑ∗ . We deduce that exp�∗ + ε�∗ � r � exp�∗ + ε�∗ for every r ∈ [ϑ∗, ϑ∗], and (3.32) follows
from (3.29). Finally, we prove (3.33). Owing to (3.36) and to the monotonicity of ρε , we see that
r ∈ [ϑ∗, ϑ∗] implies that

1

ρε(ϑ∗) + ε
� ln′

ε(r) � 1

ρε(ϑ∗) + ε
.

On the other hand, it is clear that ρε(r′) tends to r′ as ε → 0 for every r′ > 0 (see also, e.g., [11,
Proposition 2.6, p. 28]). Then, (3.33) immediately follows if ε is small enough. �

Next, we deal with the analogue of (2.9) for βε . At the same time, we prove an inequality involv-
ing β̂ε . A notation like (2.7) is extended to such functions.

Proposition 3.3. We have

∣∣βε,x(x, t, r)
∣∣ + ∣∣βε,t(x, t, r)

∣∣ � c
(
1 + ∣∣βε(x, t, r)

∣∣) and
∣∣β̂ε,t(x, t, s)

∣∣ � c
(
β̂ε(r) + |r| + 1

)
(3.37)

for every (x, t, r) ∈ Q × R, some constant c, and ε small enough.

Proof. As far as the first inequality is concerned, we deal, e.g., with βε,t , since the argument for the
space derivatives is quite similar. We first prove that

∣∣∂t β̃ε(x, t, r)
∣∣ � MMβ

(
1 + ∣∣β̃ε(x, t, r)

∣∣) (3.38)

for every (x, t) ∈ Q̃ and r ∈ R, where M and Mβ are the constants satisfying (3.8)–(3.10) and (2.9),
respectively. Assume first r ∈ [ε,1/ε]. Then, (3.38) coincides with the analogue for β̃ due to (3.12),
and this easily follows from (3.9), (3.11), and (2.9). Assume now r < ε. Then, we have

∣∣∂t β̃ε(x, t, r)
∣∣ = ∣∣∂t β̃(x, t, ε)

∣∣ � MMβ

(
1 + ∣∣β̃(x, t, ε)

∣∣) = MMβ

(
1 + ∣∣β̃ε(x, t, r)

∣∣)
just using the above with r = ε. As the argument is similar if r > 1/ε, (3.38) is established. In order
to prove the first of (3.37), we notice that

±βε,t = ±∂t(β̃ε ∗ ζε) = ±(∂t β̃ε) ∗ ζε � c
(
1 + |β̃ε|

) ∗ ζε = c + c|β̃ε| ∗ ζε

with c := MMβ , since (3.38) holds and the convolution with the nonnegative normalized kernel ζε
preserves order and constants. Therefore, we have to bound the last convolution with the right-hand
side of the inequality we want to prove. Assume first (x, t) ∈ Q and r � 1 + ε. Then, β̃ε(y, τ , s) � 0
for (y, τ ) ∈ Q̃ and |s − r| < δε (since δε � ε), and we have

(|β̃ε| ∗ ζε
)
(x, t, r) = (β̃ε ∗ ζε)(x, t, r) = βε(x, t, r) = ∣∣βε(x, t, r)

∣∣.
If r < 1 − ε the argument is similar. Finally, if |r − 1| � ε, by assuming ε � 1/4, we have δε � 1/4,
r − δε � max{ε,1/2}, and r + δε � min{1/ε,3/2}, whence

∣∣(|β̃ε| ∗ ζε
)
(x, t, r)

∣∣ = ∣∣(|β̃| ∗ ζε
)
(x, t, r)

∣∣ � sup
Q̃ ×[r−δε,r+δε]

|β̃| � sup
Q̃ ×[1/2,3/2]

|β̃|

since ζε is normalized in L1(R5), and the first of (3.37) clearly follows. Then, we easily derive the
second inequality. As βε is monotone with respect to the third variable, we have
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∣∣β̂ε,t(x, t, r)
∣∣ =

∣∣∣∣∣
r∫

1

βε,t(x, t, s)ds

∣∣∣∣∣ � c

∣∣∣∣∣
r∫

1

(
1 + ∣∣βε(x, t, s)

∣∣)ds

∣∣∣∣∣
� c|r − 1| + c

r∫
1

(
βε(x, t, s) − βε(x, t,1)

)
ds + c

∣∣∣∣∣
r∫

1

∣∣βε(x, t,1)
∣∣ds

∣∣∣∣∣
� c

(
β̂ε(x, t, r) + |r| + 1

)
since βε(x, t,1) is bounded due to (3.18) with δ = 1/2. �

The last preliminary remarks we make regard relationships between the approximating nonlinear-
ities and the boundary datum ϑΓ . In the next section, we need to consider a known smooth function
that coincides with ϑΓ on the boundary. Thus, a natural choice is the harmonic extension ϑH of ϑΓ .
Precisely, we define ϑH : Q → R by the conditions

ϑH(t) ∈ V , ϑH(t)|Γ = ϑΓ (t), and �ϑH(t) = 0 in Ω, for a.a. t ∈ (0, T ). (3.39)

Then, assumption (2.20) and the general theory of harmonic functions (in particular, the maximum
principle) ensure that ϑH ∈ L2(0, T ; V ) ∩ H1(0, T ; H) and that the following estimates hold

‖ϑH‖L2(0,T ;V )∩H1(0,T ;H) � c‖ϑΓ ‖L2(0,T ;H1/2(Γ ))∩H1(0,T ;H−1/2(Γ )) and

ϑ∗ � ϑH � ϑ∗ a.e. in Q . (3.40)

Proposition 3.4. We have

‖Lnε ϑH‖L∞(Q )∩L2(0,T ;V )∩H1(0,T ;H) � c, (3.41)∥∥βε(ϑH)
∥∥

L∞(Q )∩L2(0,T ;V )∩H1(0,T ;H)
� c (3.42)

for some constant c and ε small enough.

Proof. Estimate (3.40) and (3.32) imply that �∗ � lnε ϑH � �∗ a.e. in Q , where the notation of Propo-
sition 3.2 has been used. Owing to (3.33) as well, (3.41) immediately follows. To prove the L∞-bound
of (3.42), it suffices to recall (2.2), (2.13), and the first of (3.18). Finally, we prove the estimate regard-
ing the time derivative (the argument for space derivatives is similar). We have

∥∥∂tβε(ϑH)
∥∥

L2(Q )
�

∥∥βε,t(ϑH)
∥∥

L2(Q )
+ ∥∥β ′

ε(ϑH)∂tϑH
∥∥

L2(Q )

� c
∥∥βε,t(ϑH)

∥∥
L∞(Q )

+ sup
Q ×[ϑ∗,ϑ∗]

∣∣β ′
ε

∣∣‖∂tϑH‖L2(Q ) � c

due to (3.37), the L∞-estimate just proved, the second of (3.18), and (3.40), provided that ε is small
enough. �
4. Existence

In this section, we prove Theorem 2.4. More precisely, we first check the last part of the state-
ment, i.e., we show that every solution to problem (2.28)–(2.31) satisfies the bounds (2.32). Then, we
consider the approximating problem (3.23)–(3.26) taking the further assumption (3.2) into account,
and perform a number of a priori estimates on its solution (ϑε,χε, ξε). Finally, we let ε tend to zero
by using monotonicity and compactness methods. This leads to the proof of Theorem 2.4 under the
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additional condition (3.2). However, it is clear that such a procedure proves Theorem 2.4 in the gen-
eral case. Indeed, the triplet (ϑ,χ, ξ) we find solves anyone of the problems obtained by replacing
the original functions F and G by other ones that coincides with the given F and G on [χ∗,χ∗], due
to (2.32).

Hence, we assume (3.2) throughout the present section. As such a condition is added to our as-
sumptions, we allow the values of the different constants c to depend even on the Lipschitz constants
of F and G , following the general rule explained at the end of Section 2. Moreover, it is understood
that ε belongs to (0,1) and is even smaller as in the previous section (see, e.g., Propositions 3.3
and 3.4). Finally, δ is a positive parameter, say δ ∈ (0,1), whose value is chosen according to our
convenience.

4.1. The maximum principle argument

We prove that every solution (ϑ,χ, ξ) to problem (2.28)–(2.31) satisfies (2.32). Fix a Lipschitz
continuous function H : R → R of class C1 such that

H(r) = 0 if r ∈ [χ∗,χ∗] and H ′(r) > 0 if r /∈ [χ∗,χ∗]. (4.1)

As χ ∈ L2(0, T ; V ), it turns out that v := H(χ) is an admissible test function for (2.29). Then, we
multiply (2.29) by H(χ) and integrate over Q t , where t ∈ (0, T ] is arbitrary. After integrating by
parts, we obtain

∫
Q t

∂tχ H(χ) +
∫
Q t

∇χ · ∇H(χ) +
∫
Q t

(
F ′(χ) + G ′(χ)ϑ

)
H(χ) = 0. (4.2)

If Ĥ denotes the primitive of H vanishing at χ∗ , we have

∫
Q t

∂tχ H(χ) =
∫
Ω

Ĥ
(
χ(t)

) −
∫
Ω

Ĥ(χ0) =
∫
Ω

Ĥ
(
χ(t)

)
� 0

due to (2.22) and (4.1). The next integral of (4.2) is nonnegative, obviously, and the last one has the
same property. Indeed, its integrand is nonnegative since ϑ > 0 and the three functions F ′ , G ′ , and
H have the same sign, due to (2.4) and (4.1). Therefore, all the integrals of (4.2) vanish identically. In
particular, we deduce that Ĥ(χ(t)) = 0 a.e. in Ω , for every t ∈ [0, T ], and this clearly implies (2.32).

Now, we start proving estimates on the solution (ϑε,χε, ξε) to problem (3.23)–(3.26), as men-
tioned at the beginning of the present section. When we shortly say that we test an equation by
some function v , we mean that we test such an equation at time s by v(s), we integrate first over Ω

and then over (0, t) with respect to s, where t ∈ (0, T ) is arbitrary, and we integrate by parts, if
necessary.

4.2. First a priori estimate

We test (3.23) by v := ϑε − ϑH + δ(Lnε ϑε − Lnε ϑH). At the same time, we test (3.24) by ∂tχε .
Then, we sum the equalities we get to each other and note that two terms involving G cancel. After
rearranging a little and adding the same integral to both sides for convenience, we obtain

1

2

∫
Ω

∣∣ϑε(t) − ϑH(t)
∣∣2 +

∫
Q t

∂t G(χε)ϑH +
∫
Q t

∇ Lnε ϑε · ∇ϑε

+
∫
Q

(
βε(ϑε) − βε(ϑH)

)
(ϑε − ϑH)
t
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+ δ

∫
Q t

∂tϑε Lnε ϑε + δ

∫
Q t

∣∣∇(Lnε ϑε − Lnε ϑH)
∣∣2

+ δ

∫
Q t

(
βε(ϑε) − βε(ϑH)

)
(Lnε ϑε − Lnε ϑH)

+
∫
Q t

|∂tχε|2 + 1

2

∫
Ω

∣∣∇χε(t)
∣∣2 + 1

2

∫
Ω

∣∣χε(t)
∣∣2

= 1

2

∫
Ω

∣∣ϑ0 − ϑH(0)
∣∣2 −

∫
Q t

∂tϑH(ϑε − ϑH) +
∫
Q t

∇ Lnε ϑε · ∇ϑH

−
∫
Q t

βε(ϑH)(ϑε − ϑH) +
∫
Q t

π(ϑε)(ϑε − ϑH)

+ δ

∫
Q t

∂tϑε Lnε ϑH + δ

∫
Q t

G ′(χε)∂tχε(Lnε ϑε − Lnε ϑH)

− δ

∫
Q t

∇ Lnε ϑH · ∇(Lnε ϑε − Lnε ϑH) − δ

∫
Q t

βε(ϑH)(Lnε ϑε − Lnε ϑH)

+ 1

2

∫
Ω

|∇χ0|2 + δ

∫
Q t

π(ϑε)(Lnε ϑε − Lnε ϑH) −
∫
Q t

F ′(χε)∂tχε + 1

2

∫
Ω

∣∣χε(t)
∣∣2

. (4.3)

Now, we observe with the help of monotonicity that all terms on the left-hand side are nonnegative
but two of them. We deal with the first one that needs some treatment. Using (2.3), (3.40), and
(2.20)–(2.22), we have

∫
Q t

∂t G(χε)ϑH =
∫
Ω

G
(
χε(t)

)
ϑH(t) −

∫
Ω

G(χ0)ϑH(0) −
∫
Q t

G(χε)∂tϑH

� ϑ∗
∫
Ω

G
(
χε(t)

) − c − 1

2

∫
Q t

∣∣G(χε)
∣∣2 − 1

2

∫
Q t

|∂tϑH|2 � ϑ∗
∫
Ω

G
(
χε(t)

) − c

∫
Q t

|χε|2 − c.

The second one is the following

δ

∫
Q t

∂tϑε Lnε ϑε = δ

∫
Ω

Lε

(
ϑε(t)

) − δ

∫
Ω

Lε(ϑ0) � δ

∫
Ω

Lε

(
ϑε(t)

) − c

where we have set

Lε(r) :=
r∫

1

Lnε s ds = ε

2

(
r2 − 1

) +
r∫

1

lnε s ds for r ∈ R. (4.4)

Note that Lε is convex and bounded from below uniformly with respect to ε since lnε 1 = 0. Now, we
consider the right-hand side and deal with the non-trivial terms of it. We have (cf. (2.20) and (3.40))

−
∫
Q

∂tϑH(ϑε − ϑH) � 1

4

∫
Q

|∂tϑH|2 +
∫
Q

|ϑε − ϑH|2 �
∫
Q

|ϑε − ϑH|2 + c.
t t t t
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Next, we consider (cf. (3.40)–(3.41))

∫
Q t

∇ Lnε ϑε · ∇ϑH =
∫
Q t

∇(Lnε ϑε − Lnε ϑH) · ∇ϑH +
∫
Q t

∇ Lnε ϑH · ∇ϑH

� δ

8

∫
Q t

∣∣∇(Lnε ϑε − Lnε ϑH)
∣∣2 + 2

δ

∫
Q t

|∇ϑH|2 + c

� δ

8

∫
Q t

∣∣∇(Lnε ϑε − Lnε ϑH)
∣∣2 + cδ.

Moreover, as |ϑε| � |ϑε − ϑH| + |ϑH|, by (3.42), (2.11), and (3.40) it is easily seen that

−
∫
Q t

βε(ϑH)(ϑε − ϑH) +
∫
Q t

π(ϑε)(ϑε − ϑH) � c

∫
Q t

(
1 + |ϑε| + |π0|

)|ϑε − ϑH|

� c

∫
Q t

|ϑε − ϑH|2 + c.

We deal with the next integral of (4.3) as follows (cf. (3.41))

δ

∫
Q t

∂tϑε Lnε ϑH = δ

∫
Q t

∂t(ϑε − ϑH) Lnε ϑH + δ

∫
Q t

∂tϑH Lnε ϑH

= δ

∫
Ω

(
ϑε(t) − ϑH(t)

)
Lnε ϑH(t) − δ

∫
Ω

(
ϑ0 − ϑH(0)

)
Lnε ϑH(0)

− δ

∫
Q t

(ϑε − ϑH)∂t Lnε ϑH + δ

∫
Q t

∂tϑH Lnε ϑH

� δ

2

∫
Ω

∣∣ϑε(t) − ϑH(t)
∣∣2 +

∫
Q t

|ϑε − ϑH|2 + cδ.

Subsequently, by the Poincaré inequality (2.39) we have

δ

∫
Q t

G ′(χε)∂tχε(Lnε ϑε − Lnε ϑH) � δ

8M2
Ω

∫
Q t

| Lnε ϑε − Lnε ϑH|2 + 2δM2
Ω

∫
Q t

∣∣G ′(χε)∂tχε

∣∣2

� δ

8

∫
Q t

∣∣∇(Lnε ϑε − Lnε ϑH)
∣∣2 + 2δM2

Ω sup |G ′|2
∫
Q t

|∂tχε|2.

The next integral is easy. We have indeed (by (3.41))

−δ

∫
Q t

∇ Lnε ϑH · ∇(Lnε ϑε − Lnε ϑH) � δ

8

∫
Q t

∣∣∇(Lnε ϑε − Lnε ϑH)
∣∣2 + cδ

while the other two terms involving Lnε are estimated owing to the Poincaré inequality once more
this way (cf. (3.42) and (2.11))
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−δ

∫
Q t

βε(ϑH)(Lnε ϑε − Lnε ϑH) + δ

∫
Q t

π(ϑε)(Lnε ϑε − Lnε ϑH)

� δ

8M2
Ω

∫
Q t

| Lnε ϑε − Lnε ϑH|2 + 2δM2
Ω

∫
Q t

∣∣π(ϑε) − βε(ϑH)
∣∣2

� δ

8

∫
Q t

∣∣∇(Lnε ϑε − Lnε ϑH)
∣∣2 + c

∫
Q t

∣∣π(ϑε)
∣∣2 + c

∫
Q t

∣∣βε(ϑH)
∣∣2

� δ

8

∫
Q t

∣∣∇(Lnε ϑε − Lnε ϑH)
∣∣2 + c

∫
Q t

|ϑε − ϑH|2 + c.

Next, we treat the second last integral of (4.3). We have

−
∫
Q t

F ′(χε)∂tχε � 1

4

∫
Q t

|∂tχε|2 +
∫
Q t

∣∣F ′(χε)
∣∣2 � 1

4

∫
Q t

|∂tχε|2 + c

∫
Q t

|χε|2 + c.

Finally, we deal with the last term as follows

1

2

∫
Ω

∣∣χε(t)
∣∣2 = 1

2

∫
Ω

|χ0|2 +
∫
Q t

χε∂tχε � 1

4

∫
Q t

|∂tχε|2 +
∫
Q t

|χε|2 + |Ω|t(sup |F ′|)2
.

Hence, we can recall (4.3) and all the estimates we have derived. Forgetting some nonnegative terms
on the left-hand side we have

1 − δ

2

∫
Ω

∣∣ϑε(t) − ϑH(t)
∣∣2 +

∫
Q t

∇ Lnε ϑε · ∇ϑε + δ

2

∫
Q t

∣∣∇(Lnε ϑε − Lnε ϑH)
∣∣2

+
(

1

2
− 2δM2

Ω sup |G ′|2
)∫

Q t

|∂tχε|2 + 1

2

∫
Ω

∣∣∇χε(t)
∣∣2 + 1

2

∫
Ω

∣∣χε(t)
∣∣2

� c

∫
Q t

|ϑε − ϑH|2 +
∫
Q t

|χε|2 + cδ.

Therefore, we can choose δ small enough and apply the Gronwall lemma. By the Poincaré inequality,
we conclude that

‖ϑε − ϑH‖L∞(0,T ;H) + ∥∥(
Ln′

ε(ϑε)
)1/2∇ϑε

∥∥
L2(0,T ;H)

+ ‖ Lnε ϑε − Lnε ϑH‖L2(0,T ;V )

+ ‖∂tχε‖L2(0,T ;H) + ‖χε‖L∞(0,T ;V ) � c.

Then, thanks to (3.40) and (3.41) we obtain the basic a priori estimate

‖ϑε‖L∞(0,T ;H) + ∥∥(
Ln′

ε(ϑε)
)1/2∇ϑε

∥∥
L2(0,T ;H)

+ ‖ Lnε ϑε‖L2(0,T ;V ) + ‖χε‖L∞(0,T ;V )∩H1(0,T ;H) � c. (4.5)



3282 E. Bonetti et al. / J. Differential Equations 246 (2009) 3260–3295
4.3. First consequence

As all the terms of (3.24) but the Laplacian are bounded in L2(0, T ; H) due to (4.5) and (3.2), we
immediately derive that the Laplacian is bounded as well, whence

‖χε‖L2(0,T ;W ) � c (4.6)

by the homogeneous Neumann boundary condition satisfied by χε and the general theory of elliptic
equations.

4.4. Second consequence

We set Q +
ε := {(x, t) ∈ Q : ϑε(x, t) � 1} and Q −

ε := {(x, t) ∈ Q : ϑε(x, t) � 1}. Then, inequalities
(3.31) yield

∫
Q

Ln′
ε(ϑε)|∇ϑε|2 �

∫
Q −

ε

Ln′
ε(ϑε)|∇ϑε|2 �

∫
Q −

ε

|∇ϑε|2,

∫
Q

Ln′
ε(ϑε)|∇ϑε|2 �

∫
Q +

ε

Ln′
ε(ϑε)|∇ϑε|2 � 1

2

∫
Q +

ε

|∇ϑε|2
ϑε

whence (4.5) implies that

∫
Q −

ε

|∇ϑε|2 � c and
∫

Q +
ε

∣∣∇ϑ
1/2
ε

∣∣2 � c. (4.7)

Now, we set Ω−
ε (t) := {x ∈ Ω: ϑε(t) � 1} and Ω+

ε (t) := {x ∈ Ω: ϑε(t) � 1} for a.a. t ∈ (0, T ) and
use (4.7) in order to estimate ∇ϑε in a suitable norm. Accounting for the first (4.7), we see that

T∫
0

∥∥∇ϑε(t)
∥∥2

L4/3(Ω−
ε (t)) dt � c

T∫
0

∥∥∇ϑε(t)
∥∥2

L2(Ω−
ε (t)) dt = c

∫
Q −

ε

|∇ϑε|2 � c. (4.8)

On the other hand, we have ∇ϑε = 2ϑ
1/2
ε ∇ϑ

1/2
ε a.e. in Q +

ε . Therefore, using the Hölder inequality, we
obtain for a.a. t ∈ (0, T )

∥∥∇ϑε(t)
∥∥

L4/3(Ω+
ε (t)) � 2

∥∥ϑ
1/2
ε (t)

∥∥
L4(Ω+

ε (t))

∥∥∇ϑ
1/2
ε (t)

∥∥
L2(Ω+

ε (t))

� 2
∥∥ϑε(t)

∥∥1/2
L2(Ω)

∥∥∇ϑ
1/2
ε (t)

∥∥
L2(Ω+

ε (t))

and squaring, integrating over (0, T ), and owing to (4.5) and to the second (4.7), we derive that

T∫
0

∥∥∇ϑε(t)
∥∥2

L4/3(Ω+
ε (t)) dt � 4‖ϑε‖L∞(0,T ;H)

∫
Q +

ε

∣∣∇ϑ
1/2
ε

∣∣2 � c. (4.9)

Finally, we observe that for a.a. t ∈ (0, T ) we have
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∥∥∇ϑε(t)
∥∥4/3

L4/3(Ω)
= ∥∥∇ϑε(t)

∥∥4/3
L4/3(Ω−

ε (t))
+ ∥∥∇ϑε(t)

∥∥4/3
L4/3(Ω+

ε (t))
whence

∥∥∇ϑε(t)
∥∥2

L4/3(Ω)
� c

(∥∥∇ϑε(t)
∥∥2

L4/3(Ω−
ε (t)) + ∥∥∇ϑε(t)

∥∥2
L4/3(Ω+

ε (t))

)
so that, using (4.8) and (4.9), we conclude that

‖∇ϑε‖L2(0,T ;L4/3(Ω)) � c. (4.10)

4.5. Second a priori estimate

We observe that

(∂tϑε)βε(ϑε) = ∂t β̂ε(ϑε) − β̂ε,t(ϑε) and ∇βε(ϑε) = βε,x(ϑε) + β ′
ε(ϑε)∇ϑε.

Therefore, if we test (3.23) by βε(ϑε) − βε(ϑH), rearrange, and add the same quantity to both sides
in order to take advantage of (3.21), we obtain

∫
Ω

(
β̂ε

(
t, ϑε(t)

) + Mε
∣∣ϑε(t) − 1

∣∣) +
∫
Q t

∇ Lnε ϑε · β ′
ε(ϑε)∇ϑε +

∫
Q t

(
βε(ϑε) − βε(ϑH)

)2

=
∫
Ω

β̂ε(0, ϑ0) +
∫
Q t

β̂ε,t(ϑε) +
∫
Q t

∂tϑεβε(ϑH) + Mε

∫
Ω

∣∣ϑε(t) − 1
∣∣

−
∫
Q t

∇ Lnε ϑε · βε,x(ϑε) +
∫
Q t

∇ Lnε ϑε · ∇βε(ϑH)

+
∫
Q t

(
∂t G(χε) − βε(ϑH) + π(ϑε)

)(
βε(ϑε) − βε(ϑH)

)
. (4.11)

All the terms on the left-hand side are nonnegative, and we estimate each integral on the right-
hand side separately. The first term is bounded due to (2.21) and (3.22). The next one is treated by
accounting for the second of (3.37) this way

∫
Q t

β̂ε,t(ϑε) � c

∫
Q t

(
β̂ε(ϑε) + |ϑε| + 1

)
� c

∫
Q t

β̂ε(ϑε) + c

� c

∫
Q t

(
β̂ε(ϑε) + Mε|ϑε − 1|) + c

since ϑε has already been estimated in L∞(0, T ; H) by (4.5). For that reason, the fourth integral of
(4.11) is bounded as well and we deal with the third one. We integrate it by parts and have

∫
Q t

∂tϑεβε(ϑH) =
∫
Ω

ϑε(t)βε

(
t, ϑH(t)

) −
∫
Ω

ϑ0βε

(
0, ϑH(0)

) −
∫
Q t

ϑε∂tβε(ϑH)

and one immediately sees that the last right-hand side is bounded, due to (4.5) and (3.42). For the
same reason, the next integral of (4.11) that involves ϑH is bounded as well. Now, we treat the
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term containing βε,x . By using the first of (3.37) and accounting for (4.5) and (3.42) once more, we
easily have

−
∫
Q t

∇ Lnε ϑε · βε,x(ϑε) � δ

∫
Q t

(∣∣βε(ϑε)
∣∣ + 1

)2 + cδ � δ

∫
Q t

(
βε(ϑε) − βε(ϑH)

)2 + cδ.

Finally, owing to (3.2), (3.42), and (2.11), we obtain∫
Q t

(
∂t G(χε) − βε(ϑH) + π(ϑε)

)(
βε(ϑε) − βε(ϑH)

)

� δ

∫
Q t

∣∣βε(ϑε) − βε(ϑH)
∣∣2 + cδ

∫
Q t

(|∂tχε|2 + |ϑε|2 + 1
)

and the last integral is bounded due to (4.5). Therefore, if we collect (4.11) and the inequalities we
have proved, choose δ small enough, and apply the Gronwall lemma, we derive that∥∥βε(ϑε)

∥∥
L2(0,T ;H)

� c. (4.12)

4.6. Consequence

Estimates (4.5) and (4.12) and our assumptions (3.2) and (2.11) on G and π ensure that

‖∂tϑε‖L2(0,T ;V )∗0 � c (4.13)

just by comparison in (3.23).

Lemma 4.1. Assume z, zn ∈ L2(Q ), z > 0 a.e. in Q , and zn → z a.e. in Q . Moreover, let {εn} be a positive real
sequence converging to 0. Then, {βεn (zn)} converges to β(z) a.e. in Q .

Proof. It suffices to show that, for every δ ∈ (0,1), we have

βεn (zn) → β(z) almost uniformly in Q δ := {
(x, t) ∈ Q : δ � z(x, t) � 1/δ

}
.

Thus, fix δ ∈ (0,1) and η > 0. We have to show that a subset Q δ
η ⊂ Q δ exists such that |Q \ Q δ

η| � η

and βεn (zn) → β(z) uniformly in Q δ
η , where | · | stands for the Lebesgue measure in R

4. By the

Severini–Egorov theorem, we find Q δ
η ⊂ Q δ such that |Q \ Q δ

η| � η and zn → z uniformly in Q δ
η , and

we can prove that βεn (zn) → β(z) uniformly in Q δ
η . Fix n̄ such that

εn � δ

2
and

δ

2
� zn � 2

δ
in Q δ

η for every n � n̄.

On the other hand, we have∥∥βεn (zn) − β(z)
∥∥

L∞(Q δ
η)

�
∥∥βεn (zn) − βεn (z)

∥∥
L∞(Q δ

η)
+ ∥∥βεn (z) − β(z)

∥∥
L∞(Q δ

η)
. (4.14)

Assume now n � n̄. Then, εn � δ, whence εn � z � 1/εn . Thus, β(z) = β̃εn (z) (by (3.11)). We infer that
the last term of (4.14) is � Mεn by (3.16). On the other hand, as εn � δ/2, we can use the second
of (3.18). Therefore, we conclude that∥∥βεn (zn) − β(z)

∥∥
L∞(Q δ

η)
� cδ‖zn − z‖L∞(Q δ

η) + Mεn

and deduce that βεn (zn) converges to β(z) uniformly in Q δ
η . �
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4.7. Conclusion of the proof

The estimates (4.5), (4.6), (4.10), (4.12), and (4.13) proved in the previous steps and classical weak
and weak star compactness results ensure that suitable limit functions exist in order that the follow-
ing convergences hold (at least for a subsequence)

ϑε → ϑ weakly star in L∞(0, T ; H) ∩ H1(0, T ; V )∗0, (4.15)

Lnε ϑε → � weakly in L2(0, T ; V ), (4.16)

χε → χ weakly star in L∞(0, T ; V ) ∩ L2(0, T ; W ) ∩ H1(0, T ; H), (4.17)

∇ϑε → ∇ϑ weakly in L2(0, T ; L4/3(Ω)
)
, (4.18)

βε(ϑε) → ξ weakly in L2(0, T ; H). (4.19)

Note that (4.15) and (4.18) imply that ϑε converges to ϑ weakly in L2(0, T ; W 1,4/3(Ω)). Now, we
observe that the Sobolev exponent (4/3)∗ of W 1,4/3(Ω) is 12/5 > 2. Hence, W 1,4/3(Ω) is compactly
embedded in H . On the other hand, even W is compactly embedded in H . Therefore, by applying [27,
Theorem 5.1, p. 58] and possibly taking another subsequence, we derive that

ϑε → ϑ and χε → χ strongly in L2(0, T ; H) and a.e. in Q . (4.20)

This allows us to identify all the limits of the nonlinear terms. As far as the logarithm is concerned,
we note that (4.15) and (4.16) imply that lnε ϑε converges to � weakly in L2(0, T ; H) (cf. (3.1)). Hence,
we can conclude that ϑ > 0 and � = ln ϑ a.e. in Q (see, e.g., [11, Proposition 2.5, p. 27] for a similar
result). From ϑ > 0 a.e. in Q and (4.20) for ϑε , we see that we can apply Lemma 4.1 and infer that
ξ = β(ϑ) a.e. in Q . Finally, the limits of the remaining nonlinear terms (i.e., those related to G , F ′ ,
G ′ , and π ) can be identified by using the convergences a.e. given by (4.20) and accounting for our
assumptions (2.3) and (2.11). This concludes the proof of Theorem 2.4.

5. Boundedness

In this section, we prove Theorem 2.5 by estimating the L p-norm of ϑ (or of a suitable function
of it) with a constant independent of p by using a Moser type technique. As usual, if z is either a
function or a real number, the symbol z+ denotes its positive part. Moreover, it is understood that n is
a positive integer and δ is a positive parameter, say δ ∈ (0,1). Furthermore, we set for convenience

u∗ := ln ϑ∗. (5.1)

Finally, we assume q � 4 (see (2.33)) without loss of generality.
In the sequel, we perform two a priori estimates. In each of them, the use of the chain rule for

time derivatives has to be justified, and the trouble is a lack of regularity for ∂tϑ , which is not known
to belong to L2(0, T ; H). The first lemma we prove overcomes such a difficulty and uses just the
regularity we actually know for ϑ , namely

ϑ ∈ L∞(0, T ; H) ∩ H1(0, T ; V )∗0, ϑ > 0 a.e. in Q , and ln ϑ ∈ L2(0, T ; V ) (5.2)

the regularity for the time derivative being a consequence of Theorem 2.4 (see Remark 2.6). Actually,
the last of (5.2) does not play a special role in the lemma, in which a general continuous increasing
function φ′ : (0,+∞) → R is considered.
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Lemma 5.1. Assume ϑ ∈ L∞(0, T ; H) ∩ H1(0, T ; V )∗0 and ϑ > 0 a.e. in Q . Moreover, let φ : (0,+∞) → R

be a convex function of class C1 and assume that φ′(ϑ) ∈ L2(0, T ; V )0 . Then, if Φ : R → (−∞,+∞] denotes
the extension

Φ(r) := φ(r) if r > 0, Φ(0) := lim
r→0+ φ(r), and Φ(r) := +∞ if r < 0 (5.3)

then the function t 
→ ∫
Ω

Φ(ϑ(t)) is absolutely continuous on [0, T ] and we have

t∫
0

〈
∂tϑ(s),φ′(ϑ(s)

)〉
ds =

∫
Ω

Φ
(
ϑ(t)

) −
∫
Ω

Φ
(
ϑ(0)

)
for every t ∈ [0, T ]. (5.4)

Proof. We first observe that Φ is convex, proper, and lower semicontinuous in R. In addition, we
notice that

φ′(u) ∈ ∂Φ(u) a.e. in Ω if u ∈ H, u > 0 a.e. in Ω, and φ′(u) ∈ H (5.5)

and the conjugate function Φ∗ of Φ satisfies ∂Φ∗ = (∂Φ)−1. For a.a. t ∈ (0, T ) we set for convenience
v(t) := φ′(ϑ(t)) and observe that both ϑ(t) and v(t) lie in H , and ϑ(t) > 0 a.e. in Ω . Thus, it turns
out that v(t) ∈ ∂Φ(ϑ(t)) a.e. in Ω by (5.5), and consequently

ϑ(t) ∈ ∂Φ∗(v(t)
)

a.e. in Ω. (5.6)

Moreover, defining the functionals J : H → (−∞,+∞] and J0 : V 0 → (−∞,+∞] as follows

J (v) :=
∫
Ω

Φ∗(v) if Φ∗(v) ∈ L1(Ω), J (v) := +∞ otherwise, and J0 := J |V 0 (5.7)

we note that (cf., e.g., [1, Proposition 2.8, p. 61]) J is convex, proper, and l.s.c., and its subdifferential
operator ∂ J : H → 2H is exactly induced by ∂Φ∗ via the almost everywhere in Ω inclusion. Then, for
a.a. t ∈ (0, T ) (5.6) entails ϑ(t) ∈ ∂ J (v(t)), that is,

J
(

v(t)
)
� J (w) + (

ϑ(t), v(t) − w
) ∀w ∈ H .

Therefore, as v(t) ∈ V 0 (and v(t) ∈ D(∂ J ) ⊆ D( J )), the functional J0 is proper and

J0
(

v(t)
)
� J0(w) + 〈

ϑ(t), v(t) − w
〉 ∀w ∈ V 0

whence the inclusion ϑ(t) ∈ ∂ J0(v(t)) holds for the subdifferential ∂ J0 : V 0 → 2V ∗
0 as well. Then,

introducing the conjugate functionals and the subdifferentials

J∗ : H → (−∞,+∞], J∗
0 : V ∗

0 → (−∞,+∞] and ∂ J∗ : H → 2H , ∂ J∗
0 : V ∗

0 → 2V 0

and recalling that ∂ J∗ = (∂ J )−1 and ∂ J∗
0 = (∂ J0)

−1, we observe that v(t) ∈ ∂ J∗(ϑ(t)) and v(t) ∈
∂ J∗

0(ϑ(t)) for a.a. t ∈ (0, T ). Therefore, being understood that ϑ denotes the V ∗
0 -valued continuous

representative, from the latter we conclude that (see, e.g., [11, Lemma 3.3, p. 73] for a similar result)
J∗

0(ϑ) is absolutely continuous in [0, T ] and

t∫ 〈
∂tϑ(s),φ′(ϑ(s)

)〉
ds =

t∫ 〈
∂tϑ(s), v(s)

〉
ds = J∗

0

(
ϑ(t)

) − J∗
0

(
ϑ(0)

) ∀t ∈ [0, T ]. (5.8)
0 0
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Moreover, the same representative ϑ is H-valued and weakly continuous from [0, T ] to H . Now, as
Φ∗∗ ≡ Φ we remind that for u, w ∈ H one has

J∗(u) :=
∫
Ω

Φ(u) if Φ(u) ∈ L1(Ω), J∗(u) := +∞ otherwise, (5.9)

w ∈ ∂ J∗(u) if and only if w ∈ ∂Φ(u) a.e. in Ω. (5.10)

We also claim that

J∗
0(u) = J∗(u) if u ∈ H . (5.11)

For u ∈ H we have indeed

J∗
0(u) = sup

w∈V 0

{〈u, w〉 − J0(w)
}

� sup
w∈H

{
(u, w) − J (w)

} = J∗(u).

On the other hand, in view of [17, Lemma 2.3] (or, also for related results, [2, Lemma 2.4 and Sec-
tion 2]), it turns out that for all w ∈ D( J ) there exists a sequence {wn} ⊂ V 0 such that wn → w in H
and J0(wn) = J (wn) → J (w) as n → ∞, whence

(u, w) − J (w) = lim
n→∞

{
(u, wn) − J (wn)

} = lim
n→∞

{〈u, wn〉 − J0(wn)
}

� J∗
0(u)

and consequently J∗(u) � J∗
0(u) as the inequality (u, w) − J (w) � J∗

0(u) holds for all w ∈ H . Then,
(5.11) is proved. By combining (5.9) and (5.11) we conclude that

J∗
0

(
ϑ(t)

) = J∗(ϑ(t)
) =

∫
Ω

Φ
(
ϑ(t)

) ∀t ∈ [0, T ].

This yields the assertion of the lemma. �
Remark 5.2. We can replace Φ by φ in the right-hand side of (5.4) in a number of cases. For instance,
if we know that (the continuous representative of) ϑ satisfies ϑ(t) > 0 a.e. in Ω for every t ∈ [0, T ],
then Φ(ϑ(t)) = φ(ϑ(t)) a.e. in Ω for every t as well. Similarly, we have the same conclusion, inde-
pendently of the strict positivity of ϑ , whenever Φ(0) = +∞.

Lemma 5.3. Set

φn(r) :=
r∫

ϑ∗

(
e2 min{n,(ln s−u∗)+} − 1

)
ds for r ∈ (0,+∞). (5.12)

Then, positive constants α∗ and C∗ exist such that

φn(r) � α∗ e3 min{n,(ln r−u∗)+} − C∗ (5.13)

for every r ∈ (0,+∞) and any positive integer n.

Proof. Assume first ϑ∗ � r � ϑ∗en . Then, we have

φn(r) =
r∫

∗

(
(s/ϑ∗)2 − 1

)
ds = ϑ∗

3

(
r

ϑ∗

)3

− r + 2ϑ∗

3
� ϑ∗

6

(
r

ϑ∗

)3

− C∗
ϑ
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for some C∗ > 0, whence α∗ := ϑ∗/6 works in (5.13) for this case. Moreover, we can assume C∗ � α∗ ,
so that (5.13) holds even for r ∈ (0, ϑ∗), since φn(r) = 0 for such values of r. Finally, if r � ϑ∗en ,
we have r � r′ := ϑ∗en and we already know that (5.13) holds with r = r′ . We deduce that

φn(r) � φn(r′) � α∗e3 min{n,(ln r′−u∗)+} − C∗ = α∗e3n − C∗ = α∗e3 min{n,(ln r−u∗)+} − C∗.

This concludes the proof. �
Lemma 5.4. Assume p ∈ [1,+∞) and set

ψn(r) :=
r∫

ϑ∗

(
min

{
n, (ln s − u∗)+

}2p−1)
ds for r ∈ (0,+∞). (5.14)

Then, we have

ψn(r) � 1

2p
min

{
n, (ln r − u∗)+

}2p
for every r ∈ (0,+∞). (5.15)

Proof. If ϑ∗ � r � ϑ∗en , we have

ψn(r) =
ln r∫

u∗
e y(y − u∗)2p−1 dy �

ln r∫
u∗

(y − u∗)2p−1 dy = 1

2p
(ln r − u∗)2p

and (5.15) follow. If instead, r � ϑ∗en , we observe that ψn(r) � ψn(r′), where r′ := ϑ∗en . On the other
hand, we already now that (5.15) holds with r = r′ . Hence, we easily conclude that the desired in-
equality is true even in this case. Finally, if r < ϑ∗ , we have ψn(r) = 0 and (5.15) trivially holds. �

Now, we start estimating.

5.1. First a priori estimate

We set

u := ln ϑ, wn := min
{
n, (u − u∗)+

}
, and vn := e2wn − 1. (5.16)

We want to use vn as a test function in (2.28) and apply Lemma 5.1 with φ = φn given by (5.12).
To this aim, we note that u ∈ L2(0, T ; V ) and that vn = φn(u), where φn is a Lipschitz continuous
function. Hence, vn ∈ L2(0, T ; V ). Moreover, vn vanishes on the boundary since ln ϑΓ � u∗ by (2.20).
Therefore, vn ∈ L2(0, T ; V )0. Furthermore, φn is a C1 convex function on (0,+∞) and vn = φ′

n(ϑ).
Hence, we are allowed both to test (2.28) by vn and to apply Lemma 5.1. Note that φn(ϑ0) = 0 since
ϑ0 � ϑ∗ by (2.21). Then, by extending φn(r) with 0 value for r = 0 (cf. (5.3)) and setting

f := −β(ϑ∗) + π(ϑ) + ∂t G(χ) (5.17)

from (5.4) we obtain

∫
Ω

φn
(
ϑ(t)

) +
∫
Q

∇u · ∇vn +
∫
Q

(
β(ϑ) − β(ϑ∗)

)
vn =

∫
Q

f vn. (5.18)
t t t
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We treat each integral, separately. For the first one, we have

∫
Ω

φn
(
ϑ(t)

)
� α∗

∫
Ω

e3wn(t) − C∗ = α∗
∥∥ewn(t)

∥∥3
L3(Ω)

− c

thanks to Lemma 5.3. The next term of (5.18) is treated this way

∫
Q t

∇u · ∇vn =
∫
Q t

∇wn · ∇vn = 2
∫
Q t

e2wn |∇wn|2 = 2
∫
Q t

|∇ewn |2

and the last term on the left-hand side is nonnegative too. Indeed, vn is nonnegative and β(ϑ) �
β(ϑ∗) where vn > 0 since β is monotone. Thus, let us consider the right-hand side. We first notice
that f ∈ L2(Q ). Therefore, using the Hölder, Sobolev, and Poincaré inequalities (see (2.40) and (2.39)),
we have

∫
Q t

f vn �
∫
Q t

| f |(∣∣ewn(s)
∣∣2 + 1

)

�
t∫

0

∥∥ f (s)
∥∥

L2(Ω)

∥∥ewn(s)
∥∥

L3(Ω)

∥∥ewn(s)
∥∥

L6(Ω)
ds + ‖ f ‖L1(Q )

� δ

t∫
0

∥∥ewn(s)
∥∥2

L6(Ω)
ds + cδ

t∫
0

∥∥ f (s)
∥∥2

H

∥∥ewn(s)
∥∥2

L3(Ω)
ds + c

� 2δ

t∫
0

∥∥ewn(s) − 1
∥∥2

L6(Ω)
ds + cδ

t∫
0

∥∥ f (s)
∥∥2

H

∥∥ewn(s)
∥∥2

L3(Ω)
ds + cδ

� 2δM4
Ω

∫
Q t

∣∣∇ewn
∣∣2 + cδ

t∫
0

∥∥ f (s)
∥∥2

H

∥∥ewn(s)
∥∥2

L3(Ω)
ds + cδ

� 2δM4
Ω

∫
Q t

∣∣∇ewn
∣∣2 + cδ

t∫
0

∥∥ f (s)
∥∥2

H

∥∥ewn(s)
∥∥3

L3(Ω)
ds + cδ. (5.19)

At this point, we collect all the above estimates, choose δ small enough, and apply the Gronwall
lemma (see, e.g., [11, Lemma A.4, p. 156]) noting that ‖ f (·)‖2

H ∈ L1(0, T ) since f ∈ L2(Q ). We obtain

∥∥ewn
∥∥3

L∞(0,T ;L3(Ω))
+

∫
Q

∣∣∇ewn
∣∣2 � c. (5.20)

5.2. Consequence

From (5.20) and (2.43), we deduce that exp(wn) is bounded in L4(Q ). Hence, we can let n tend to
infinity and infer that exp((u − u∗)+) ∈ L4(Q ). Now, we observe that

e(u−u∗)+ = e−u∗
eu = ϑ/ϑ∗ where ϑ > ϑ∗.
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As ϑ is positive, we conclude that

ϑ ∈ L4(Q ). (5.21)

Now, we rewrite Eq. (2.29) in the form

∂tχ − �χ = −F ′(χ) − G ′(χ)ϑ

and observe that the right-hand side belongs to L4(Q ) due to (5.21) and the Lipschitz continuity of
F and G . By the general theory for parabolic equations, we infer that ∂tχ ∈ L4(Q ), whence also∥∥∂t G(χ)

∥∥
Lq(Q )

� c
∥∥∂t G(χ)

∥∥
L4(Q )

< +∞ (5.22)

since q � 4, as we have assumed at the beginning of this section. On the other hand, we can estimate
the right-hand side of (2.28) in a better way owing to (4.12). Indeed, recalling (2.33), we conclude that∥∥π(ϑ)

∥∥
Lq(Q )

� c‖ϑ‖L4(Q ) + ‖π0‖Lq(Q ) < +∞. (5.23)

5.3. The Moser type procedure

Our aim is to prove an iterative estimate for

w := (ln ϑ − u∗)+ (5.24)

depending on the parameter p ∈ [1,+∞). It is understood that the values of the constant c do not
depend on p. We define

u := ln ϑ, wn := min
{
n, (u − u∗)+

}
, and vn := w2p−1

n . (5.25)

By arguing as done for the first estimate, we see that vn ∈ L2(0, T ; V )0, thus an admissible test func-
tion for (2.28), and that Lemma 5.1 can be applied with Φ = ψn given by (5.14), by noting that
vn = ψ ′

n(ϑ) and letting ψn(0) = 0. Therefore, as ψn(ϑ0) = 0 by (2.21), we obtain∫
Ω

ψn
(
ϑ(t)

) +
∫
Q t

∇u · ∇vn +
∫
Q t

(
β(ϑ) − β(ϑ∗)

)
vn =

∫
Q t

f vn (5.26)

where f is still given by (5.17). Thanks to Lemma 5.4, we immediately derive that∫
Ω

ψn
(
ϑ(t)

)
� 1

2p

∫
Ω

(
wn(t)

)2p
.

The next term on the left-hand side of (5.26) is easily treated as follows∫
Q t

∇u · ∇vn = (2p − 1)

∫
Q t

w2p−2
n |∇wn|2 = 2p − 1

p2

∫
Q t

∣∣∇w p
n

∣∣2 � 1

p

∫
Q t

∣∣∇w p
n

∣∣2

and the last one is nonnegative, since vn � 0 and β(ϑ) � β(ϑ∗) where vn > 0. In order to deal
with the right-hand side, let us observe that f belongs to Lq(Q ) thanks to (5.22)–(5.23) and (2.13).
Therefore, if q′ denotes the conjugate exponent of q, we have∫

Q

f vn � ‖ f ‖Lq(Q )‖vn‖Lq′
(Q )

� c
∥∥w2p−1

n

∥∥
Lq′

(Q )
= c

∥∥w p
n

∥∥(2p−1)/p

Lq′(2p−1)/p(Q )
.

t
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Collecting the above estimates, we obtain

∥∥(
wn(t)

)p∥∥2
H +

∫
Q t

∣∣∇w p
n

∣∣2 � cp
∥∥w p

n

∥∥(2p−1)/p

Lq′(2p−1)/p(Q )
for every t ∈ [0, T ].

As both terms on the left-hand side are nonnegative, each of them satisfies the same bound. Therefore,
owing to (2.42), we derive that

∥∥w p
n

∥∥2
L10/3(Q )

� c
(∥∥w p

n

∥∥2
L∞(0,T ;H)

+ ∥∥∇w p
n

∥∥2
L2(0,T ;H)

)
� cp

∥∥w p
n

∥∥(2p−1)/p

Lq′(2p−1)/p(Q )
.

At this point, we note that (5.24) and ϑ ∈ L2(Q ) trivially imply that w ∈ Lr(Q ) for every r ∈ [1,+∞).
So we let n tend to infinity and conclude that

∥∥w p
∥∥2

L10/3(Q )
� cp

∥∥w p
∥∥(2p−1)/p

Lq′(2p−1)/p(Q )

where w is given by (5.24). In other words, we have

‖w‖L10p/3(Q ) � (cp)1/(2p)‖w‖(2p−1)/(2p)

Lq′(2p−1)(Q )
.

Finally, using the Hölder inequality and terming |Q | the Lebesgue measure of Q , we infer that

‖w‖L10p/3(Q ) � (cp)1/(2p)|Q |1/(4p2q′)‖w‖(2p−1)/(2p)

L2pq′
(Q )

�
(
c|Q |1/(2pq′))1/(2p)

p1/(2p)‖w‖(2p−1)/(2p)

L2pq′
(Q )

� (cp)1/(2p)‖w‖(2p−1)/(2p)

L2pq′
(Q )

since |Q |1/(2pq′) is bounded with respect to p � 1. As we can assume the last constant c to be � 1,
we conclude that

‖w‖L10p/3(Q ) � (cp)1/(2p)‖w‖(2p−1)/(2p)

L2pq′
(Q )

(5.27)

with c � 1.

5.4. Conclusion of the proof

We rewrite (5.27) in the form

‖w‖Lσ ·2pq′
(Q )

� (cp)1/(2p)‖w‖(2p−1)/(2p)

L2pq′
(Q )

where σ := 5

3q′ (5.28)

and observe that σ > 1 since q′ < 5/3 by (2.33). Now, we apply (5.28) to the divergent sequence {pk}
defined by pk := σ k and obtain

‖w‖
L2pk+1q′

(Q )
� (cpk)

1/(2pk)‖w‖(2pk−1)/(2pk)

L2pkq′
(Q )

. (5.29)

Setting for convenience

�k := ln+ ‖w‖ 2pkq′

L (Q )
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and taking the positive part of the logarithm of both sides of (5.29), we derive that

�k+1 � 1

2pk
ln(cpk) + 2pk − 1

2pk
�k � 1

2pk
ln(cpk) + �k

the logarithms being nonnegative since c � 1. As this holds for every k � 0, we have that

ln+ ‖w‖
L2pkq′

(Q )
= �k � C := �0 +

∞∑
i=0

1

2pi
ln(cpi), whence ‖w‖

L2pkq′
(Q )

� eC (5.30)

by noting that the series actually converges since pi = σ i with σ > 1.
At this point, we can easily conclude the proof. Indeed, from (5.30), we immediately deduce that

w ∈ L∞(Q ). Hence, coming back to (5.24), we derive that ϑ is bounded from above.

6. Uniqueness

In this section, we prove Theorem 2.7. The tool we use is the operator R : V ∗
0 → V 0 given by the

Riesz representation theorem, namely

for v∗ ∈ V ∗
0 and v ∈ V 0, v = Rv∗ means v∗ = −�v. (6.1)

We note that

〈−�u, Rv〉 =
∫
Ω

uv for every u ∈ V 0 and v ∈ H, (6.2)

〈u∗, Rv∗〉 = (u∗, v∗)∗ for every u∗, v∗ ∈ V ∗
0 , (6.3)

t∫
0

〈
∂t u(s), Ru(s)

〉
ds = 1

2

∥∥u(t)
∥∥2

∗ − 1

2

∥∥u(0)
∥∥2

∗

for every u ∈ H1(0, T ; V )∗0 and for a.a. t ∈ (0, T ). (6.4)

In (6.4), ‖ · ‖∗ is the norm in V ∗
0 dual to the norm v 
→ ‖∇v‖H in V 0, and the symbol on the right-

hand side of (6.3) is the corresponding inner product. By the Poincaré inequality, such norm and
product in V ∗

0 are equivalent to the standard ones and we mainly use them for convenience. Moreover,
we recall that R = π − β satisfies assumption (2.38). Finally, despite of the general rule explained at
the end of Section 2, we decide to compute all the constants we use in our estimates with care. In
particular, we denote by MΩ a constant that makes the following relations true

‖v‖H−1(Ω) � MΩ‖v‖∗ for every v ∈ V ∗
0 and ‖v‖∗ � MΩ‖v‖H for every v ∈ H (6.5)

as well as the analogous of (2.40) for L4(Ω). In (6.5), the first norm is the standard one
in V ∗

0 = H−1(Ω).
To prove our uniqueness result, we have to show that any pair of solutions (ϑ1,χ1, ξ1) and

(ϑ2,χ2, ξ2) to problem (2.28)–(2.31) satisfying the regularity requirements (2.23)–(2.27) and such that

ϑ1, ϑ2,χ1,χ2 ∈ L∞(Q )

coincide, i.e. ϑ1 = ϑ2 and χ1 = χ2. So, pick such solutions and observe that both of them satisfy the
boundary condition (2.30) and the initial conditions (2.31) with the same boundary and initial data.
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In particular, we can define M to be the maximum of the L∞-norms of the four functions ϑ1, ϑ2,
χ1, and χ2. We note that G , F ′ , and G ′ are Lipschitz continuous on [−M, M], since they are smooth
by (2.3). In the sequel, L is the maximum of their Lipschitz constants on such an interval. Moreover,
we can apply Remark 2.6 to (χ1 and) χ2 since ϑ2 is bounded, and deduce that (2.37) holds for χ2.

Now, we write Eqs. (2.28) for both solutions and test their difference by R(ϑ1 − ϑ2). At the same
time, we write Eqs. (2.29) for both solutions and test their difference by μ∂t(χ1 − χ2), where μ ∈
(0,1) is a parameter whose value will be chosen later on. Finally, we sum the equalities we get to
each other, rearrange, and add the same integral to both sides, for convenience. If we use the notation
ϑ := ϑ1 − ϑ2 and χ := χ1 − χ2, owing to (6.2)–(6.4) we obtain

1

2

∥∥ϑ(t)
∥∥2

∗ +
∫
Q t

(ln ϑ1 − ln ϑ2)ϑ + μ

∫
Q t

|∂tχ |2 + μ

2

∫
Ω

∣∣∇χ(t)
∣∣2 + μ

2

∫
Ω

∣∣χ(t)
∣∣2

=
t∫

0

(
∂t G

(
χ1(s)

) − ∂t G
(
χ2(s)

)
, ϑ(s)

)
∗ ds +

t∫
0

((
R(ϑ1) − R(ϑ2)

)
(s),ϑ(s)

)
∗ ds

+ μ

∫
Q t

(
F ′(χ2) − F ′(χ1)

)
∂tχ + μ

∫
Q t

(
G ′(χ2)ϑ2 − G ′(χ1)ϑ1

)
∂tχ + μ

2

∫
Ω

∣∣χ(t)
∣∣2

. (6.6)

The only term on the left-hand side that needs some treatment is the second one. We have∫
Q t

(ln ϑ1 − ln ϑ2)ϑ � 1

M

∫
Q t

|ϑ |2

since 0 < ϑi � M for i = 1,2. We deal with the first term on the right-hand side and use (2.37) for
χ2 as mentioned above. We get

t∫
0

(
∂t G

(
χ1(s)

) − ∂t G
(
χ2(s)

)
, ϑ(s)

)
∗ ds

=
t∫

0

(
G ′(χ1(s)

)
∂tχ(s) + (

G ′(χ1(s)
) − G ′(χ2(s)

))
∂tχ2(s),ϑ(s)

)
∗ ds

� MΩ

t∫
0

∥∥G ′(χ1(s)
)
∂tχ(s)

∥∥
H

∥∥ϑ(s)
∥∥∗ ds

+ MΩ

t∫
0

∥∥G ′(χ1(s)
) − G ′(χ2(s)

)∥∥
L4(Ω)

∥∥∂tχ2(s)
∥∥

L4(Ω)

∥∥ϑ(s)
∥∥∗ ds

� MΩ L

t∫
0

∥∥∂tχ(s)
∥∥

H

∥∥ϑ(s)
∥∥∗ ds + MΩ L

t∫
0

∥∥χ(s)
∥∥

L4(Ω)

∥∥∂tχ2(s)
∥∥

L4(Ω)

∥∥ϑ(s)
∥∥∗ ds

� μ

8

∫
Q t

|∂tχ |2 + 2M2
Ω L2

μ

t∫
0

∥∥ϑ(s)
∥∥2

∗ ds

+
t∫

0

∥∥χ(s)
∥∥2

L4(Ω)
ds + M2

Ω L2

4

t∫
0

∥∥∂tχ2(s)
∥∥2

L4(Ω)

∥∥ϑ(s)
∥∥2

∗ ds



3294 E. Bonetti et al. / J. Differential Equations 246 (2009) 3260–3295
� μ

8

∫
Q t

|∂tχ |2 + 2M2
Ω L2

μ

t∫
0

∥∥ϑ(s)
∥∥2

∗ ds

+ M2
Ω

∫
Q t

|∇χ |2 + M2
Ω

∫
Q t

|χ |2 + M2
Ω L2

4

t∫
0

∥∥∂tχ2(s)
∥∥2

L4(Ω)

∥∥ϑ(s)
∥∥2

∗ ds.

Moreover, we have

t∫
0

((
R(ϑ1) − R(ϑ2)

)
(s),ϑ(s)

)
∗ ds � MΩλR

t∫
0

∥∥ϑ(s)
∥∥

H

∥∥ϑ(s)
∥∥∗ ds

� 1

2M

∫
Q t

|ϑ |2 + MM2
Ωλ2

R

t∫
0

∥∥ϑ(s)
∥∥2

∗ ds,

μ

∫
Q t

(
F ′(χ2) − F ′(χ1)

)
∂tχ � μ

8

∫
Q t

|∂tχ |2 + 2μL2
∫
Q t

|χ |2,

μ

∫
Q t

(
G ′(χ2)ϑ2 − G ′(χ1)ϑ1

)
∂tχ = μ

∫
Q t

(
G ′(χ2) − G ′(χ1)

)
ϑ1∂tχ − μ

∫
Q t

G ′(χ2)ϑ∂tχ

� μLM

∫
Q t

|χ ||∂tχ | + μL

∫
Q t

|ϑ ||∂tχ |

� μ

4

∫
Q t

|∂tχ |2 + 2μL2M2
∫
Q t

|χ |2 + 2μL2
∫
Q t

|ϑ |2.

Finally, we treat the last term of (6.6) this way

μ

2

∫
Ω

∣∣χ(t)
∣∣2 = μ

∫
Q t

χ∂tχ � μ

8

∫
Q t

|∂tχ |2 + μ

∫
Q t

|χ |2.

At this point, we observe that s 
→ ‖∂tχ2(s)‖2
L4(Ω)

belongs to L1(0, T ) by (2.37). Hence, if we choose

μ in order that 2μL2 = 1/(4M), we see that (6.6) and all the estimates we have performed allow us
to apply the Gronwall lemma. This yields ϑ = 0 and χ = 0 a.e. in Q , whence the solutions coincide
and the proof is complete.
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