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1. INTRODUCTION

Elliptical distributions include the normal, the Student t, the contaminated
normal, and many other distributions. Let X be a p-variate vector elliptically
distributed; if the density exists, it is written as

fX (x, +, V )=|V |&1�2 h((x&+)$ V &1(x&+))

where +( p_1) is the location vector and V( p_p) is a positive definite
scatter matrix. h is a function independent of + and V. Hence f depends
on x only through the quadratic form (x&+)$ V&1(x&+). Let U=(X&+)$
V&1(X&+), then it has been shown that the c.d.f of u is

fU (u)={
? p�2

1( p�2)
u p�2&1h(u) if u>0

0 otherwise.

Atkinson and Mitchell (1981) and Mitchell (1988) derived geodesic estima-
tion and testing for some classes of distributions on the basis of Rao's
metric (Rao, 1945). In particular, Mitchell (1988) investigated the manifold
of univariate elliptical distributions. Geodesic estimation and testing in the
multivariate case have not been very accessible, mainly because one has to
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face very complicated systems of differential equations characterizing the
geodesic curves. In general, no closed form solutions for these systems are
available. In this paper, we investigate the class of multivariate elliptical
distributions. We find that a change of coordinates reduces the system of
geodesic equations to a very simple form admitting an appealing solution
that is nothing but a straight line. The distance between two elliptical
distributions with equal location and different scatter matrices is then
calculated. This geodesic distance which is based on the information metric,
comes as an addition to the list of geodesic distances given by Rao (1987).
We then derive a geodesic discrepancy function for use in covariance structure
analysis. The estimator of the structure parameter is shown to have
desirable properties. A test statistic is then built upon this discrepancy function
and shown to be asymptotically distributed as /2.

2. METRIC IN THE CLASS OF MULTIVARIATE
NORMAL DISTRIBUTIONS

James (1973) derived a geodesic distance between two multivariate
normal distributions with equal mean vectors. He first used a result of
Maass showing that the metric differential form (ds)2=tr(Y &1dYY &1dY )
on the space of p_p positive definite matrices Y, which is a cone in Rp(p+1)�2,
is invariant under congruent transformation

Y � LYL$

where L is a p_p nonsingular matrix. This metric happened to coincide
with the information metric in the manifold of p-variate normal distribu-
tions with known mean vector. He then showed that the desired geodesic
distance between two multivariate normal distributions with covariances
71 and 72 is

\ :
p

i=1

(ln yi)
2+

1�2

,

where the yi are the roots of the determinental equation

det(71& y72)=0.

Suppose we have n replications of the random vector X and assume X
to be normally distributed with mean vector 0 and covariance matrix 7.
Suppose that 7 is structured by a q_1 parameter vector % (for example,

36 BERKANE, ODEN, AND BENTLER



File: DISTIL 169003 . By:DS . Date:06:10:97 . Time:11:15 LOP8M. V8.0. Page 01:01
Codes: 2591 Signs: 1825 . Length: 45 pic 0 pts, 190 mm

X results from a factor analysis model or a latent variable model). Let S
be the sample covariance matrix; then James suggests using the statistic

d 2=
n
2

:
p

i=1

(ln yi)
2,

where yi are the latent roots of the determinental equation

det(S& y7)=0,

as a test of hypothesis on the structure of 7. Swain (1975) compared several
distance functions for estimating structural parameters in covariance
structures analysis; among them was d 2 used above. He showed that the
geodesic estimation leads to the same asymptotic sampling properties as
the maximum likelihood estimation (m.l.e.) procedure. We will now consider
the class of elliptical distributions admitting a c.d.f. and derive geometric
properties of this class.

3. METRIC IN THE CLASS OF ELLIPTICAL DISTRIBUTIONS,
FIXED FUNCTIONAL FORM

We will fix the class of the elliptical distribution by fixing the functional
form of the c.d.f. For instance, assume that the density distribution of the
random vector X exists and is of the form

fX (x)=|V | 1�2 h((x&+)$ V&1(x&+))

where h is fixed, h(u)=exp &u�2 if the class is that of the normal distribu-
tions, h(u)=c(1(u�&)&( p+&)�2) if the class is that of the t distributions with
& degrees of freedom, and so on. First suppose that + is known and we
could set it to zero. Let

M=[ fX (x)=|V | 1�2 h(x$V&1x), v=vecs(V ) # Rp(p+1)�2],

where vecs(V ) is the vector of nonredundent elements of V. M is a differen-
tiable manifold of dimension p( p+1)�2. We will derive the information
metric (Rao's metric) on M. Other metrics can be found; for instance,
Burbea and Rao (1982) introduce the ``entropy differential metric'' based
on the Hessian of the ,-entropy functional, where , is some real-valued
C2-function defined on an interval in [0, �). However, the information
metric seems to be the natural metric on statistical manifolds (Amari 1984).
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Let w=(� ln h)�(�u) and y=(�2 ln h)�(�u2). The logarithm of the likelihood
function is then

L(x, +, V )=&1
2 ln |V |+ln h((x&+)$ V&1(x&+)),

and its first two differentials are

dL=&1
2 tr(V&1 dV )&w tr(V&1 dVV&1xx$)

d 2L= 1
2 tr(V&1 dVV &1 dV )+ y(tr(V&1 dVV&1xx$))2

+2w tr(V&1 dVV&1 dVV&1xx$).

Define Z and T by

Z=V&1�2(X&+), T=
Z

&Z&
,

then &Z&2=U and U and T are independent. T is uniformly distributed on
the unit sphere, with moments easily derived (see for example Mitchell,
1989). The expected value E(&d 2L) is then given by

E(&d 2L)=&1
2 tr(V&1 dVV &1dV )&E( y(tr(V&1 dVV&1xx$))2)

&2 tr(V&1 dVV&1 dVV&1E(wxx$)).

But the expectation in the third term on the right-hand side of the above
equation is

E(wxx$)=V1�2E(tt$) E(uw) V1�2=V1�2(1�p) Ip(&p�2) V1�2

because E(t2
i )=1�p and E(uw)=&p�2. Hence

&2 tr(V&1 dVV&1 dVV&1E(wxx$))=tr(V&1 dVV &1 dV )

and the second term is, after some manipulations using properties of trace
and vec operations,

E( y tr(V&1 dVV &1xx$))2)=tr((V &1�2�V&1�2)(dV�dV )(V&1�2 �V&1�2)

_E(vec(tt$)(vec(tt$))$) E(u2y)),

but

E(vec(tt$)(vec(tt$))$)=
1

p( p+2)
(2(Ip�Ip)+vec(Ip)(vec(Ip))$).
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Let bh=&E(u2w2)�p( p+2); then

E(&d 2L)=2bh tr(V&1 dVV&1 dV )+(bh& 1
4) tr((V&1�V&1)(dV�dV )).

Let H be an orthogonal p_p matrix such that H$VH=4 where 4 is a
diagonal matrix of eigenvalues of V ; then James showed (1973) that

tr(V &1 dVV &1 dV )= :
p

i=1

(d*i)
2

*2
i

+ :
p

i< j

(*i&*j)
2

*i *j
(d%ij)

2

where d%ij are the differential forms of the skew symmetric matrix H$dH.
On the other hand,

tr(V&1 dV )=tr(H$4&1H[(dH$) *H+H$(d4) H+H$4H]

=tr(H dH$+4&1(d4)+H$ dH)

=tr(4&1(d4))

= :
p

i=1

d*i

*i

since tr(H$dH+HdH$)=0 (due to the equality H$H=I ). Theorem 3.1
follows

Theorem 3.1. The information metric differential form in M is

ds2=2bh tr(V&1 dVV&1 dV )+(bh& 1
4) tr(V&1 dV ) tr(V &1 dV ).

By diagonalization of V, this metric becomes

ds2=\3bh&
1
4+ :

p

i=1

d*2
i

*2
i

+2 \bh&
1
4+ :

p

i< j

d*i d*j

*i*j

+2bh :
p

i< j

(*i&*j)
2

*i*j
(d%ij)

2.

We can use this metric differential form for computing the distance between
two elliptical distributions in the same class differing only in the scatter
matrix. This distance is identified with the distance between the two scatter
matrices. In other words, it is

d(V1 , V2)=|
V2

V1

ds.
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Theorem 3.2. Let H be a nonsingular matrix which reduces V1 to Ip and
V2 to a diagonal matrix with diagonal elements the eigenvalues of V1V &1

2 .
The distance between two elliptical distributions with mean zero and scatter
matrices V1 and V2 is

|
V2

V1

ds=
1

|H | 2p |
4

Ip
�\3bh&

1
4+ :

p

i=1

(d*i)
2

*2
i

+2 \bh&
1
4+ :

p

i< j

d*i d*j
*i*j

.

Proof. Since there is no change in H (we are using the same H to
transform both matrices H$V1H=Ip and H$V2H=4) we could compute
the distance between Ip and 4 and then divide this distance by the determinant
of the Jacobian of the transformation:

|
4

Ip

ds=|
V2

V1

|H$�H | ds.

But |H$�H |=|H |2p (Magnus and Neudecker, 1988). The shortest distance
would be along the geodesic curve *i (t)= fi (t) i=1, p for some fi , therefore
we will try to find this curve in the next section. Note that the metric is of
hyperbolic type.

Swain (1975) suggests using the ``geodesic distance''

d(V1 , V2)=\ :
p

i=1

(ln *i)
2+

1�2

to estimate V2 , given V1 (V1 could be derived from the data) when the
distribution of the population is not known. However, it is not clear that
the quantity is even a distance, let alone a geodesic if the distribution of the
population is unknown. Geodesics are defined for smooth manifolds and
depend on the metric. If the metric is not the natural metric for the
manifold, it is not clear what the geodesic is really minimizing. The shortest
distance with respect to one metric is not necessarily the shortest distance
with respect to the natural metric. To make things clear, assume that we
have the unit sphere on R3. The geodesic distance between the north and
south poles is half the length of the great circle on the sphere (which is ?)
when we use the metric induced on the sphere, which is the proper metric
on the sphere. However, if we use the metric in R3, the geodesic distance
is 2, and the geodesics in R3 are straight lines, can one travel along straight
lines on the sphere?

The same idea applies here where we are considering the space of elliptical
distributions with fixed functional form. If we used the information metric
defined for the manifold of normal distributions, we might be changing the
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natural geometric structure of the nonnormal elliptical space and the distance
derived from this metric will not really reflect the natural length between
two points in the space.

4. DERIVATION OF THE GEODESIC CURVE

Noting by gij the elements of the information matrix, the positive definite
quadratic differential form based on the elements of this information matrix

ds2= :
p

i, j=1

gij d*i d*j ,

but we have found ds2 to be

\3bh&
1
4+ :

p

i=1

(d*i)
2

*2
i

+2 \bh&
1
4+ :

p

i< j

d*i d*j
*i*j

when we use the same orthogonal transformation to send V1 to identity
and V2 to the diagonal matrix of eigenvalues of V &1

1 V2 . Consequently,

gii (*)=
(3bh&(1�4))

*2
i

, i=1, p,

gij (*)=
2(bh&(1�4))

*i*j
, i< j,

and the geodesic is the solution of the system of differential equations

*� k(t)+ :
p

i, j=1

1 k
ij *4 i (t) *4 j (t)=0 k=1 } p,

where *4 i and *� i are the first and second derivatives of *i with respect to t
and 1k

ij are the Christoffel symbols defined by

1 k
ij=

1
2

:
l

gkl \�gjl (*)
�*i

+
�gil (*)

�*j
&

�gij (*)
�*l +

with gkl being the (k, l ) element of the inverse of the information matrix g.
But these expressions simplify, in our situation, to
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1 i
ii=&((3bh& 1

4) *&3
i + gii+2(bh& 1

4) *&2
i :

p

l{i

gil*&1
l

1 j
ii=&((3bh& 1

4) *&3
i + gij+2(bh& 1

4) *&2
i :

p

l{i

gil*&1
l

1 i
ij=0, i{ j

1 k
ij=0, i{ j, i{k.

And we obtain for the equations of the geodesic

*� k(t)+ :
p

i=1

1k
ii*4

2
i (t)=0, k=1, ..., p.

Since this system of O.D.E. is of second order and nonlinear, solving it is
a very challenging task. We will not attempt to do that; instead, we will
make the nice and convenient following change of coordinates

ri=ln *i .

The entries of the metric matrix become

gii=3bh&1�4, gij=2(bh&1�4),

and the metric becomes

ds2=(3bh&1�4) :
p

i=1

(dri)
2+2(bh&1�4) :

p

i< j

dri drj .

It is easy to check that this form is positive definite. Now we can solve the
geodesic equations in terms of the ri , i=1, ..., p, coordinates. Since the
metric does not depend on the ri 's at all, all of the Christoffel symbols
vanish and the parametric equations of the geodesic curve are

r� k(t)=0, k=1, ..., p.

The solution of this system is straightforward,

rk(t)=ak t+bk , k=1, ..., p.

and this is the parametric equation of the straight line in R p. The initial
conditions are rk(0)=0, and rk(1)=rk (since we go from the identity matrix to
the diagonal matrix 4, the transformations under ri=ln 4i changes the identity
matrix to 0 and the matrix 4 to some diagonal matrix R; hence bk=0,
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k=1, ..., p, and ak=ln *k , k=1, ..., p). The geodesic distance between V1

and V2 then becomes

|
V2

V1

ds=
1

|H | 2p |
4

Ip
\\3bh&

1
4+ :

p

i=1

(d*i)
2

*2
i

+2 \bh&
1
4+ :

p

i< j

d*i dj
*i*j +

1�2

=
1

|H | 2p |
R

0 \\3bh&
1
4+ :

p

i=1

(dri)
2+2 \bh&

1
4+ :

p

i< j

dri drj+
1�2

=
1

|H | 2p |
1

0 \\3bh&
1
4+ :

p

i=1

(ln *i)
2+2 \bh&

1
4+ :

p

i< j

(ln *i)(ln *j)+
1�2

dt

=
1

|H | 2p \\3bh&
1
4+ :

p

i=1

(ln *i)
2+2 \bh&

1
4+ :

p

i< j

(ln *i)(ln *j)+
1�2

.

The following theorem follows,

Theorem 4.1. Suppose the first and second logarithmic derivatives of h
exist. The geodesic distance between two elliptical densities with equal means
and different scatter matrices V1 and V2 is, for the fixed functional form h,

d(V1 , V2)=
1

|H |2p �\3bh&
1
4+ :

p

i=1

(ln *i)
2+2 \bh&

1
4+ :

p

i< j

(ln *i)(ln *j).

Since the *'s are never 0, d(V1 , V2) is well defined. When V1=V2 ,
d(V1 , V2)=0. Note that when the elliptical class is that of the multivariate
normal distributions then H is the identity matrix (the metric is then
invariant under congruent transformations) and bh= 1

4 , therefore we obtain
the metric obtained by James (1973).

An immediate consequence of the above theorem is

Theorem 4.2. Let V� n be the m.l.e. computed from a sample of size n
drawn from the c.d.f. f (x, V, h)=|V |&1�2 h(x$V&1x). Assume the population
scatter matrix V to be structured by a q_1, q<p( p+1)�2) parameter
vector %, V=V(%). Suppose that the true value %0 is an interior point of the
parameter space 3. In addition, suppose that 3 is a compact subset of R q

and V(%) is differentiable; then this structure induces an embedding

N=[ f (x, V, h)=|V(%)|&1�2 h(x$V&1(%)x), % # R q].

Let *1 , *2 , ..., *p be the latent roots of the determinantal equation

det(V� &*V(%)),
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then the minimum geodesic distance estimator of % is consistent, asymptotically
normal and first order efficient Furthermore, the statistic

d 2
n=n

1
|H | 2p \3bh&

1
4+ :

p

i=1

(ln *i)
2+2 \bh&

1
4+ :

p

i< j

(ln *i)(ln *j)

is asymptotically distributed as a /2 variable with p( p+1)�2&q degrees of
freedom.

Proof. The proof follows from Kass (1980) or Skovgaard (1981). The
degree of freedom is Dim(M )&Dim(N ). Note that the above results can
be expressed for the covariance matrix 7 by use of the relation 7=&2�(0) V
=(E(U )�p) V, where �(t$Vt) is the characteristic function of X (with zero
location).

Remark. Let v=Vecs(V ), where Vecs refers to the vector of nonredundant
elements of V stacked columnwise. Let 1 be the asymptotic covariance
matrix of the maximum likelihood estimator of V. 1 is the inverse of the
information matrix. From Mitchell (1989) or Kano et al. (1993) the entries
of the information matrix can be derived as

2bh tr(V&1IijV&1Ikl)+ 1
4 (4bh&1) tr(V&1Iik) tr(V&1Ijl),

where

Irs={Ir, r

Ir, s+Is, r

if r=s
if r{s

.

Ir, s denotes the p_p matrix whose (r, s)th entry is 1 and 0 elsewhere. Let

Q%%$=
�2(d 2

n)
�% �%$

Q%v$=
�2(d 2

n)
�% �v$

,

where the derivatives are evaluated at the true values of v and %. If Q%%$ is
positive definite, the covariance matrix 0 of the minimum geodesic distance
estimator is easily derived by use of the implicit function theorem when
solving for

F(v̂, %)=
�d 2(v̂, %)

�%
=0,
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see for example Shapiro (1983). It is

0=Q&1
%%$ Q%v$1Q$%v$Q&1

%%$ .

Since v and the eigenvalues *i will depend on the structure parameters, the
chain rule needs to be used in Q%%$ and Q%v$ .

Remark. It is known that the geodesic distance between two multivariate
normal distributions with distinct means +1 and +2 and the same variance
7 is the Mahalanobis distance (+2&+1)$ 7&1(+2&+1). One can easily
show that the geodesic distance (based on the information metric) between
two elliptical distributions with locations +1 and +2 and the same scatter
matrix V is

d(+1 , +2)=
- 4ch

|V | 1�2 ((+2&+1)$ V&1(+2&+1))1�2,

where ch=(1�p) E(Uw2). This distance can be used to derive estimators of
model parameters related to mean structures.

5. DISCUSSION

In this paper, we have exploited the geometric properties of the manifold
of multivariate elliptical distributions equipped with Rao's metric (information
metric) to propose a geometric method for estimating the parameters of a
model on covariance matrix and testing for the fit of this model. The test
statistic based on the geodesic distance between two elliptical distributions
with identical means and different covariance matrices turned out to be a
generalization of the test proposed by James (1973). A geodesic distance
between distributions with distinct locations and scatter matrices is under
study.
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