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Bacterial endosymbionts gave rise to mitochondria in a process that depended on the acquisition of protein
import pathways. Modification and in some cases major re-tooling of the endosymbiont's cellular machinery
produced these pathways, establishing mitochondria as organelles common to all eukaryotic cells. The legacy
of this evolutionary tinkering can be seen in the homologies and structural similarities between
mitochondrial protein import machinery and modern day bacterial proteins. Comparative analysis of these
systems is revealing both possible routes for the evolution of the mitochondrial membrane translocases and
a greater understanding of the mechanisms behind mitochondrial protein import. This article is part of a
Special Issue entitled Protein translocation across or insertion into membranes.
otein translocation across or

(T. Lithgow).
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1. Introduction

The conversion of ancestral α-proteobacteria to mitochondria
involved the transfer of genes from the bacterial endosymbiont to the
host cell genome [1–9]. Once relocated to the nucleus the gene
products, translated in the cytosol, had to be recognized, targeted,
translocated and assembled in mitochondria. An account of the
evolution of such sophisticated molecular machinery should explain
how the components could plausibly be established in a stepwise
fashionwithmodifications to and the support of existingmechanisms.

Three main themes emerge when investigating the evolution of
the mitochondrial protein transport machinery: (i) modifications of
an existing system, wherein the ancestral function is conserved in
bacteria and mitochondria; (ii) reorganisation and modification of
bacterial proteins giving rise to machinery with new functions; (iii)
use of structural or functional homologues to provide insight into
components where sequence similarity does not illuminate the
evolutionary path. In this review we examine the evolutionary
implications of each of these cases, and the impact this has on our
understanding of how the protein import machinery functions in
mitochondria.

2. Mitochondrial protein translocation pathways

The majority of proteins targeted to mitochondria have a
presequence, a short extension of the polypeptide which forms a
positively charged amphipathic α-helix, and directs translocation
across the outer and inner mitochondrial membranes [10,11]. The
Translocase of the Outer mitochondrial Membrane (TOM complex) is
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a large multimeric machine, whose major subunit–the β-barrel
Tom40–forms a channel across the membrane. With the exception
of a few peripheral, outward-facing outer membrane proteins, all
mitochondrial proteins are imported via the TOM channel. Translo-
cation of matrix proteins is dependent on the presequence, which is
drawn through the TOM complex by sequential interaction with
negatively charged sites within the complex (acid chain hypothesis:
[12–15]). The inner membrane presequence translocase, TIM23,
receives the presequence as it exits the TOM channel and cooperates
with the ATP-driven Presequence-Associated Motor (PAM) to
complete translocation into the matrix (Fig. 1).

Alternative pathways exist to target proteins to the inner
membrane, outer membrane and intermembrane space, often
depending on as yet poorly defined targeting signals. In many
organisms, a second inner membrane translocase, TIM22, assembles
polytopic proteins into the inner membrane [16,17]. In all eukaryotes,
the outer membrane Sorting and Assembly Machinery (SAM
complex) assembles outer membrane β-barrels [18–20]. Both types
of precursor proteins require assistance from the small Tim
chaperones in the intermembrane space for delivery to TIM22 or
SAM [21–23]. These chaperones are imported by another pathway,
using the Mitochondrial Intermembrane space import and Assembly
(MIA) machinery, which couples precursor import with oxidation
[24–26]. A further translocase in the inner membrane, termed OXA
(OXidase Assembly), inserts proteins from the mitochondrial matrix
into the inner membrane [27–29]. As far as we know, the majority of
OXA substrates are encoded in the mitochondrial genome, and
inserted co-translationally.

The TOM, TIM23, TIM22, SAM and MIA molecular assemblies have
been intensively studied in yeast, and we have a remarkable
understanding of many of the mechanistic intricacies of this highly
evolved system. By combining these insights with sequence and
functional analyses of mitochondrial import systems in diverse
eukaryotes, a picture is emerging of the minimal requirements of
each import machine, and how the original, simplest versions of each
might first have come to be.
Fig. 1. An overview of mitochondrial protein import routes. Four classes of protein precursor
presequence (green) are transferred from TOM to TIM23, and imported into the matrix with
membrane by TIM22 and β-barrel proteins (purple) are inserted into the outer membrane b
the intermembrane space by the small Tims. Small, cysteine-rich proteins (red) of the inte
oxidation and folding. Oxa1 in the inner membrane inserts mitochondrially-encoded prote
3. Re-vamping bacterial protein translocases for continued
function

The Oxa1 protein is the core component of the OXA translocase
and is a direct descendant of the bacterial YidC translocase, which also
inserts inner membrane proteins (Fig. 2) [27,30,31]. Like OXA, the
mitochondrial SAM complex also has a direct counterpart in bacteria;
the BAM complex, found in the outer membrane of all Gram-negative
bacteria. The core component of the SAM complex, Sam50, is a
member of the Omp85 family of proteins that also includes BamA, the
core component of the BAM complex [4,18–20,32,33].

While Sam50 is clearly derived from BamA, and the SAM and BAM
complexes are functionally homologous, significant evolutionary
divergence is evident in the mitochondrial SAM complex (Fig. 2).
Mitochondria have lost whole aspects of envelope biogenesis
including the ability to synthesise lipoproteins, events that likely
determined the loss of the lipoprotein partners, BamD and BamE, of
the endosymbiont's BAM complex [34]. These have been replaced,
either during or subsequent to this period of lipoprotein loss, by
proteins of uncertain ancestry. From functional studies in several
organisms we know of at least three types of these proteins: the
metaxins, Mim1 and Mdm10. These “modules” of the SAM complex
are not conserved across eukaryotes [35,36] and we anticipate that a
better understanding of the precise function of these components will
give insight into how this modular system evolved.

The metaxins are proteins with a predicted glutathionine-S-
transferase type fold and are associated with the SAM complex in
fungi (Sam35andSam37; [37–41]), animals (metaxin-1 andmetaxin-2;
[42,43]) and plants (metaxin; [44,45]). Given the divergence between
these groups the metaxins may be found in other eukaryotic lineages
too, but bioinformatics alone has not been able to resolve this issue.
Work in the yeast system shows that the metaxin Sam35 is responsible
for substrate docking/entry into the SAM complex [46,47]), while
Sam37 is required for efficient release of substrates from the SAM
complex [47]. Presumably, the metaxins associated with the SAM
complex in animals and plants play similar roles.
are translocated across the TOM channel in the outer membrane (OM). Proteins with a
the help of the import motor, PAM. α-helical proteins (blue) are inserted into the inner
y SAM. Precursors of both β-barrel and α-helical membrane proteins are chaperoned in
rmembrane space are imported by the MIA/Erv machinery, which also mediates their
ins into the inner membrane (yellow).



Fig. 2. Re-vamping the BAM and YidC translocases to function inmitochondria. The bacterial BAM complex consists of the core subunit BamA, and several lipoprotein partners, two of
which (BamD and BamE) are conserved in all α-proteobacteria. BamA consists of a transmembrane β-barrel domain and five periplasmic POTRA domains. Sam50 is the core
component of the SAM complex in mitochondria, and was derived from the endosymbiont BamA but has a truncated N-terminal domain with what is perhaps a single POTRA.
However, the other components of these outer membrane complexes have been extensively remodeled. The SAM complex incorporates Sam35 and Sam37, and the modular
subunits Mim1 and Mdm10. At least some of these SAM subunits may have analogous roles to the lipoprotein subunits of the BAM complex. Oxa1 inserts proteins into the inner
membrane from the matrix, and evolved from the bacterial YidC. In mitochondria, relatively few proteins are assembled by Oxa1 (indicated by dashed arrow).
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In addition, the SAM complex can engage with two outer
membrane proteins found only in fungi: Mdm10 and Mim1. Mdm10
is a modular component of two complexes which seem to function in
distinct pathways for assembly of outer membrane proteins. A SAM-
Mdm10 complex assists in assembly of the TOM complex, while a
second complex, containing Mdm10, Mdm12 and Mmm1, appears to
function sequentially after the SAM complex in the β-barrel assembly
pathway [48–50]. This second complex has also recently been
described as ERMES (ER-Mitochondria Encounter Structure), a
molecular tether between the endoplasmic reticulum and mitochon-
dria, composed of Mdm10, Mdm12, Mmm1 and Mdm34 [51]. ERMES
impacts on various aspects of cellular physiology including mito-
chondrial morphology, phospholipid and calcium homeostasis, and
mitochondrial DNA replication [52]. This intriguing link between
protein import and mitochondria-ER tethering machinery suggests a
network of connections that might regulate mitochondrial biogenesis
in response to higher-level cellular cues.

Mim1 is another modular subunit of the yeast SAM complex [53]
which, like Mdm10, functions in assembly of the multimeric TOM
complex [39,50,53–55]. Mim1 and Mdm10 are each required for
integration of different subunits into the TOM complex. Despite their
roles in assembling the TOM complex, neither Mdm10 nor Mim1 is
directly involved in the import of β-barrel proteins [39,49]. Several
subunits of the TOM complex evolved after the divergence of the
eukaryotic lineages [56,57], consistent with the fungal-specific
distribution of Mdm10 and Mim1. It seems highly likely that
analogous, but non-homologous, proteins function in place of
Mdm10 and Mim1 in other organisms.

4. The ultimate in evolutionary tinkering: a new machine for
protein transport

The core of the TIM23 complex is the Tim23 subunit, a multi-topic
membrane protein that forms the protein import channel [58,59]. It is
widely accepted that Tim23 and Tim22 (the core of the TIM22 complex)
are related to each other by sequence. While there is agreement that
one was derived from the other by gene duplication and modification,
which complex arose first has not been determined. By the principle of
Occam's razorwe favor the idea that theTIM23complexwasestablished
first, and that it was cobbled together from existing bacterial proteins
(Fig. 3).

Rassow et al. have suggested that the Tim23 channel was derived
from an amino-acid transporter called LivH [60]. These transporters
import large, bulky hydrophobic amino acids via an aqueous channel
and might require relatively little modification in order to transport
polymers of amino acids. Indeed, the OEP16 protein, found in the
chloroplast outer envelope, is a member of the Tim23 protein family
[60,61] and has been shown to transport amino acids when
reconstituted in liposomes [62]. Not surprisingly, given the evolu-
tionary distance and the sequence-based changes driven by interac-
tions with multiple subunits in the TIM23 complex, pair-wise
sequence conservation between LivH and Tim23 family proteins is
low. However, a signature PReprotein and Amino acid Transporters
(PRAT)motif found in the Tim23-type mitochondrial translocases and
in OEP16 is also present in the LivH protein of bacteria.

The TIM23 import motor, mtHsp70, drives protein translocation
across the inner membrane through successive rounds of ATP
hydrolysis, and is derived from an Hsp70 (DnaK) protein found in
extant species ofα-proteobacteria [63]. The importmotor is docked to
the TIM23 translocase by the Tim44 subunit [64,65] and Pam18 (also
known as Tim14) regulates motor ATPase activity [66–68]. Recent
work has shown that α-proteobacteria carry inner membrane
proteins with strong sequence similarity to the Tim44 (TimA) and
Pam18 (TimB) [69]. Studies on the α-proteobacterium Caulobacter
crescentus showed that these two proteins function distinctly, yet
both are found in the same compartment and have the same topology
as their mitochondrial counterparts. Furthermore, a single point
mutation in the J-domain of an α-proteobacterial Pam18 homologue
is sufficient to convert it to a functional TIM23 translocase subunit
[69].

It is reasonable to infer from these findings that relatively little
evolutionary tinkering would be required to derive a core TIM23

image of Fig.�2


Fig. 3. Amodel for the evolution of the TIM23 complex. In many organisms, the TIM23 complex is composed from eight ormore subunits and translocates all presequence-containing
proteins (right panel). The core subunits of the TIM23 complex (Tim23, Pam18, Tim44 and mHsp70) are common to all lineages of eukaryotes [35]. Tim23 forms a transmembrane
channel, and Pam18, Tim44 and mHsp70 are part of the presequence-assisted motor (PAM). Each of these components can be traced back to an ancestral protein in bacteria. The
Tim23 subunit is related to LivH-type amino acid transporters [60]. The mitochondrial Hsp70 is clearly derived fromα-proteobacterial DnaK [63] and the Tim44 and Pam18 subunits
from theα-proteobacterial proteins TimA and TimB, respectively [35,69,97]. Harnessing the mitochondrial Hsp70 to the inner membrane provided a motive force to the transporter,
providing a means to translocate proteins through the inner membrane. Initially, this would have been relatively inefficient (dashed arrow). Subsequent, lineage-specific evolution
of some components (shown in grey) has provided further efficiency and sophistication to TIM23 function.
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complex from components already present in the ancestral endo-
symbiont. With a rudimentary TIM23 translocase in place and the
continued presence of both Sec and YidC translocases [35,69], the
“proto-mitochondrion” would have had a functional system for
import of both matrix and inner membrane proteins. A primitive
system such as this would provide the basis for the evolution of the
highly specialized, and diverse, TIM translocases in extant organisms.
Fig. 4. Evolution of the TOM complex from an ancestral β-barrel. This model proposes a β-
proteins with basic, amphipathic N-termini [98]. Such a simple protein import system can be
and Tom22 are common to all lineages of eukaryotes suggesting they constitute the first pa
both in terms of efficiency and versatility, required the later addition of TOM complex subu
5. The origin of the TOM complex: cultivating the
endosymbiont–host interaction

It has been suggested that the first protein translocase system in
the proto-mitochondrionwould have involved a primitive set-up: a β-
barrel protein in the outer membrane and substrates in the host
cytosol predisposed for targeting to mitochondria [69,70] (Fig. 4).
barrel protein in the outer membrane of the endosymbiont served as a binding site for
envisaged by analogy with the simplified, core complexes seen in some parasites. Tom7
rtner proteins to have arisen in early eukaryotes [99]. Optimization of protein transfer,
nits, after the divergance of some lineages.

image of Fig.�3
image of Fig.�4
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Simple TOM complexes have recently been identified in both Giardia
and microsporidians, consisting of Tom40 and perhaps a single
partner subunit [71–73]. In the case of Giardia, as with many other
organisms, it remains possible that additional, lineage-specific
subunits of the TOM complex remain to be discovered. However,
microsporidians provide a true proof-of-principle example of a simple
TOM complex. Microsporidia are allied with fungi phylogenetically
and in the case of the protein import machinery, sequence similarity
of all TOMs and TIMs are extremely high [71,73]. Only two TOM
proteins are encoded in the complete genome of Encephilizoon
cuniculi: Tom70 and Tom40. Given the function of Tom70 as a
receptor, acting prior to the translocation reaction, this says that
Tom40 alone can form a functional protein translocase.While clearly a
result of secondary gene loss in microsporidians, it demonstrates the
feasibility of a primitive, “Tom40-only” TOM complex in the ancestral
endosymbiont.

Phylogenetic analysis does not establish the ancestry of Tom40.
Based on its β-barrel topology it is broadly accepted that Tom40 was
derived from the genome of the endosymbiont. Like all bacteria with
two membranes, the endosymbiont would have had a range of β-
barrel outer membrane proteins [4,33,74]. Initially synthesised within
the endosymbiont, a primitive TOM translocase could have been
transported to the periplasm using the bacterial export pathway.
Assembly of this β-barrel subunit into the outer membrane would
then have been mediated by the endosymbiotic BAM complex. This
primitive β-barrel would have been the founding member of the
“mitochondrial porin” family of proteins, which includes both the
protein translocation channel Tom40 and the mitochondrial outer
membrane metabolite transporter VDAC [75]. Whether the first
mitochondrial porins functioned in metabolite transport or protein
translocation is as yet unknown.

What family of bacterial proteins gave rise to the first mitochon-
drial porins? There are numerous, divergent metabolite transporters
in bacterial outer membranes that transfer charged substrates by
virtue of “chains” of charged residues lining the inner surface of the
pore. The acidic sugar-specific porin KdgM provides a beautiful
illustration of how a “basic chain” of residues in the pore channel can
lead a negatively-charged sugar through the outer membrane [76].
The transfer of a positively charged mitochondrial targeting sequence
might likewise have followed an acid chain through a β-barrel protein
in the outer membrane of the endosymbiont. The principles of the
acid chain hypothesis were established based on acidic domains on
Tom40's partner subunits [12,14,15,77,78], however a recentmodel of
the structure of Tom40 shows such an “acid chain” of residues in the
pore lining, with the net charge being greatest at the intermembrane
space exit site [74].

An alternative proposition for the ancestry of Tom40 comes from a
tantalizing observation of sequence signatures shared by the YdeK
autotransporter (SwissProt accession P32051) and the Tom40 family
of proteins [79]. Autotransporters are simple β-barrel protein
translocation channels commonly found in the outer membrane of
bacteria. The crystal structure of the β-domain of autotransporter
EspP shows that the barrel pore can accommodate a positively
charged α-helical segment, which is stabilised by complementary
charged surfaces on the inside wall of the barrel [80]. If Tom40 was
derived from such an autotransporter channel one caveat might be
the directionality of substrate translocation, as the TOM complex
imports proteins, rather than exports. However, this difference need
not matter as biochemical analysis of purified mitochondrial outer
membrane vesicles has shown that purified proteins can move in
either direction through the TOM channel [81].

While the specific ancestry of Tom40 remains to be determined, it
is reasonable to predict that with that first translocase subunit in
place, additional subunits were sequestered from other activities to
enhance the function of the primitive translocase. Both Tom7 and
Tom22 are present in each of the major eukaryotic lineages,
suggesting them to be the first partner proteins added into the
primitive TOM complex (Fig. 4). There remains some uncertainty as to
whether they are present or not in the Excavata (one of the six
supergroups of the eukaryotes); the small size of the proteins makes
their identification challenging (each protein is only ~50–70 residues
in most lineages). In addition two other smaller proteins, Tom5 and
Tom6, are present in many but not all lineages, and may have been
added to the TOM complex later. Selection for further receptor
subunits, Tom20 and Tom70, appears to have been a lineage-specific
adaptation, with the “Tom20” receptor in opisthokonts (i.e. fungi and
animals) being unrelated in sequence and ancestry to the function-
ally-analogous “Tom20” in plants [56]. These receptors would have
enabled the evolution of an increasing diversity of substrate proteins
and targeting sequences, enhancing efficiency of the import process
and overall fitness of the host organism.

6. Replacing the old order in the intermembrane space

The protein transport reactions, signalling networks, structural
peptidoglycan and redox conditions of the bacterial periplasmmake it
a radically different environment from the mitochondrial intermem-
brane space. The bacterial periplasm is a highly oxidising environ-
ment, reinforced with a thick peptidoglycan meshwork. Bacterial
networks for monitoring and responding to a fluctuating extracellular
environment have vanished from mitochondria, replaced with new
systems for signalling and quality control in an intracellular context.
Thus much of the bacterial periplasmic machinery has been replaced
with eukaryote-specific proteins as new pathways evolved. There are
now two examples where the periplasmic machinery of the
endosymbiont seems to have been superseded by protein import
apparatus: the small Tim chaperones that play a SurA-like role in
mitochondria, and the MIA/Erv disulfide relay that has replaced the
bacterial Dsb system (Fig. 5).

The assembly of β-barrel proteins into the bacterial outer
membrane requires assistance from chaperones found in the
periplasm, which fulfill three functions: precursor release from the
inner membrane, molecular chaperone activity during transit, and
targeting/hand-off to the BAM complex for outermembrane insertion.
Periplasmic chaperones such as SurA, Skp, DegP and PpiD all play a
role in this pathway in Escherichia coli [82–87] (Fig. 5, left panel).
Bioinformatic analysis of SurA and Skp distribution revealed that both
chaperones are present in diverse bacterial species, including all
proteobacterial lineages, but are not detected in eukaryotes [88] [our
unpublished data].

The small Tim chaperones are found only in eukaryotes [89],
where they transfer precursors of both inner and outer mitochondrial
membrane proteins from the TOM complex to the appropriate
downstream machinery [21–23,90,91]. Comparative analysis of SurA
with the small Tims shows that while both chaperones can bind
similar substrates, SurA cannot transfer mitochondrial inner mem-
brane proteins to the TIM translocase for insertion [88]. The small Tim
family may therefore have arisen to enhance transport of inner
membrane proteins, and also proved competent in transfer of outer
membrane precursors, leaving bacterial chaperones like SurA
redundant.

The bacterial Dsb proteins, which catalyse formation and isomer-
isation of disulfide bonds in the periplasm, are absent from
mitochondria. The only redox proteins identified to date in the
mitochondrial intermembrane space constitute the MIA disulfide
relay machinery, which mediates the import of small, cysteine-rich
proteins into the mitochondrial intermembrane space [24–26]. In
yeast, substrates translocated through the TOM complex are bound by
the oxidoreductase Mia40. Substrate and Mia40 together form a
complex with the thiol oxidase Erv1, and electron flow from substrate
via Mia40 to Erv1 is followed by release of the oxidised substrate
[25,92–94].



Fig. 5. Evolution of an intermembrane space in mitochondria. Molecular chaperones which translocate proteins across the periplasm (Skp, DegP, PpiD and SurA) also function in
cellular stress responses. The Dsb redox system acts as a folding catalyst for several hundred predicted disulphide-containing periplasmic proteins [99]. These systems may have
provided chaperone activity essential for the foundation of new protein import pathways, however it is likely that their inefficiency in these pathways meant they were replaced
early in eukaryotic evolution. In mitochondria the small TIM chaperones fulfill a molecular chaperone function and transfer membrane protein precursors from the TOM complex to
the TIM22 and SAM complexes. The MIA/Erv machinery couples a Dsb-like redox activity with import of precursors into the intermembrane space.

952 V. Hewitt et al. / Biochimica et Biophysica Acta 1808 (2011) 947–954
No homologue of either Mia40 or Erv1 has been identified in any
prokaryotic genome, so it is difficult to determine the origin of this
pathway. While some unicellular eukaryotes appear to lack both MIA
pathway substrates and machinery, there are organisms, including
the protozoan trypanosomatids, which do contain both classic MIA
substrates and an Erv1 homologue, but seem to lack Mia40 itself [95].
Allen and colleagues suggest this minimalistic set-up reflects the
ancestral pathway, where the redox cascade comprised only the
substrate, Erv1 and molecular oxygen. This system would have used
Erv1 to create disulfide bonds but might also have relied on the
bacterial protein disulfide isomerase dsbC, homologues of which have
been reported in α-proteobacteria. Mia40 could then have been
added to the evolving eukaryote at a later date, making the bacterial
isomerase dispensable and improving the efficiency and accuracy of
the system.

7. Concluding remarks

Species of α-proteobacteria have conquered diverse environ-
ments, and show great breadth in the complexity of their genomes
and proteomes [96]. We can assume that the endosymbiont that gave
rise to mitochondria had a robust protein transport system for the
assembly of proteins into both its outer and inner membranes. The
existing bacterial protein folding and translocation pathways played a
dual role in supporting the stepwise evolution of the mitochondrial
machinery, providing both a source of building blocks for the
evolution of new import systems and functional support to the
fledgling translocases.

The mitochondrial SAM complex provides a prime example of the
adaptation of a bacterial system to perform an equivalent role in
mitochondria. The TIM23 complex appears to have been cobbled
together from existing components to produce a sophisticated and
versatile translocase, but is still assisted by the ancient inner
membrane translocase Oxa1. Bacterial SurA-type chaperones, al-
though unable to dock with newly established TOM and TIM
machinery, might have provided chaperone activity essential for the
passage of imported membrane proteins, until the later invention of
the small Tim chaperones. Similarly, a rudimentary intermembrane
space import pathway might have initially relied on the bacterial
disulfide isomerase, DsbC [95]. With the current available evidence
pointing towards proteins from the endosymbiont as progenitors for
many of the translocase components, we suggest that these proteins
played a central role in driving the evolution of the new protein
transport pathways. The evolution of these import pathways
eventually produced the mutually beneficial arrangement that
became the first eukaryote.
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