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Summary

Hydrogenases catalyze oxidoreduction of molecular

hydrogen and have potential applications for utilizing
dihydrogen as an energy source. [NiFe] hydrogenase

has two different oxidized states, Ni-A (unready, exhib-
its a lag phase in reductive activation) and Ni-B
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phu.ac.jp (S.H.)
8These authors contributed equally to this work.
(ready). We have succeeded in converting Ni-B to
Ni-A with the use of Na2S and O2 and determining the

high-resolution crystal structures of both states. Ni-B
possesses a monatomic nonprotein bridging ligand

at the Ni-Fe active site, whereas Ni-A has a diatomic
species. The terminal atom of the bridging species of

Ni-A occupies a similar position as C of the exogenous
CO in the CO complex (inhibited state). The common

features of the enzyme structures at the unready (Ni-A)
and inhibited (CO complex) states are proposed. These

findings provide useful information on the design of
new systems of biomimetic dihydrogen production

and fuel cell devices.

Introduction

Since fossil energy resources will be exhausted in the
near future, it is an imperative issue to seek new energy
sources. Microorganisms have an effective system for
utilizing hydrogen for metabolism by using hydroge-
nases. A detailed understanding of the mechanism of
enzymatic hydrogen activation at the molecular level
can be provided by the structure of the active site in
hydrogenase. This detailed structural knowledge is re-
quired for the creation of new systems of biomimetic di-
hydrogen production and fuel cell devices for the next
generation.

Hydrogenases have very unique active sites and are
classified into several groups according to the metal
composition of the active sites: [Fe]-only, [NiFe], and
[NiFeSe] hydrogenases (Vignais and Colbeau, 2004;
Darensbourg et al., 2000). The hydrogenase previously
referred to as metal free has recently been shown to con-
tain a functional iron (Shima et al., 2004). The active site of
[NiFe] hydrogenase in the oxidized state consists of Ni
and Fe atoms coordinated to four cysteinyl sulfur and
four nonprotein ligands (Armstrong, 2004; Stein and Lu-
bitz, 2002). The nonprotein ligands are assigned as two
CN2 groups, one CO bound to the Fe atom, and a bridg-
ing O or OH between the Ni and Fe atoms for the enzyme
from Desulfovibrio gigas (Happe et al., 1997; Pierik et al.,
1999). In contrast, the bridging ligand has shown stron-
ger electron density than that corresponding to an ordi-
nary oxygen atom, and the possible presence of a sulfur
ligand has been proposed (Higuchi et al., 1997; Ogata
et al., 2002). The bridging ligand has been shown to dis-
appear upon reduction of the enzyme (Higuchi et al.,
1999; Higuchi and Yagi, 1999). We have recently dem-
onstrated that, in the CO-related structures, the Ni and
Sg(Cys546) atoms show flexibility, which suggested that
these two atoms play a key role during the initial H2 bind-
ing process (Ogata et al., 2002). [NiFe] hydrogenase
also possesses one [Fe3S4]1+/0 cluster with a relatively
high midpoint potential (270 mV) and two [Fe4S4]2+/1+

clusters with lower midpoint potentials (2290 and
2340 mV, respectively) (Higuchi et al., 1997; Teixeira
et al., 1989; Volbeda et al., 1995), and the EPR signal of
the oxidized [Fe3S4]+ cluster is detected at g = 2.01 at
low temperatures (Albracht et al., 1983; Cammack
et al., 1987).
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Two different oxidized forms of [NiFe] hydrogenase,
Ni-A and Ni-B, have been identified on the basis of
EPR signals (Albracht et al., 1983), although it is not clear
whether these states are physiologically relevant. High
O2 tensions resulted in a population of enzyme mole-
cules with a high proportion of Ni-B, whereas low O2 ten-
sions resulted primarily in Ni-A (van der Zwaan et al.,
1990). However, experimental control of the conversion
between the two states has been difficult. The Ni-A state
needs at least 1 hr of incubation at room temperature to
show activity in the presence of H2, but the Ni-B state is
readily activated with H2 (Fernandez et al., 1985). Al-
though there have been several reports on the differen-
ces between the two states (van der Zwaan et al., 1990;
Carepo et al., 2002; Trofanchuk et al., 2000; Bleijlevens
et al., 2001), the origin of these differences has not
been clearly elucidated. For example, the interaction of
O2 with the enzyme was investigated with the use of
17O, which showed that an oxygen species must be
present in close proximity to the Ni atom in both the
Ni-A and Ni-B states (van der Zwaan et al., 1990). 17O
ENDOR studies on the Ni-A state in H2

17O obtained after
one reduction/reoxidation cycle showed that a solvent-
derived oxygen is a ligand to Ni and that the bridging
ligand in the Ni-A state is an oxygenic species (O22 or
OH2) (Carepo et al., 2002). To clarify the differences be-
tween the two oxidized states, Ni-A and Ni-B, and to elu-
cidate the mechanism of the transition between them on
the basis of their three-dimensional structures, we have
succeeded in converting the enzyme from the Ni-B state
to the Ni-A state with the use of Na2S and O2. By com-
paring the high-resolution crystal structures of the
[NiFe] hydrogenase in the Ni-A, Ni-B, as-purified, H2-
reduced, and CO bound forms, we identified not only
the differences between the structures of the active
site, but also elucidated the essential structural features
of the unready state of the enzyme.

Results and Discussion

Changes in EPR Signals of the Ni-B State

by Interaction with Na2S
The as-purified [NiFe] hydrogenase from D. v. Miyazaki F
showed an EPR spectrum that was a mixture of typical
Ni-A (g = 2.01, 2.24, 2.32) and Ni-B (g = 2.01, 2.16,
2.33) peaks, with an excess of the Ni-B peaks (Figure
1A). By anaerobic addition of 50 mM Na2S to the as-
purified enzyme containing a mixture of the Ni-A and
Ni-B states, the [Fe3S4]+ EPR signal at g = 2.01 observed
at 20 K decreased rapidly and was almost undetectable
after 1 min at room temperature (Figure 1B), whereas the
EPR signal of the Ni site observed at 90 K exhibited no
significant changes, except for the disappearance of
the signal at g = 2.13 (Figure 1A, a / b). The g = 2.13
signal is often observed for the [NiFe] hydrogenase
from D. v. Miyazaki F. The reason for this anomalous g
value is currently unknown, but it may be attributed to
the structural fluctuations of the modified species found
at Sg of Cys546.

The disappearance of the [Fe3S4]+ EPR signal corre-
sponds to the reduction of the Fe3S4 cluster to the
[Fe3S4] state. An EPR signal for a thiyl radical, the elec-
tron transfer product from HS2, was not observed, prob-
ably due to the slow formation and high reactivity of this
radical. The reduction time was slowed at higher viscos-
ity by the addition of 33% (v/v) 2-methyl-2,4-pentanediol
(MPD). The absorption around 450–460 nm decreased
upon addition of Na2S to the as-purified enzyme, al-
though the absorption around 400 nm did not decrease
completely (data not shown). The results show that the
iron-sulfur clusters, or at least some part of them, remain
oxidized after interaction with Na2S.

While the [Fe3S4]+ EPR signal decreased within 1 min,
the Ni-B signals started to convert to new EPR signals
(g = 2.00, 2.14, and 2.29; Ni-B0) within 6 min, without sig-
nificant changes in the Ni-A signals (Figure 1A, b / c).
Actually, no change was observed in the Ni EPR signals
with the addition of Na2S to the purified Ni-A enzyme, al-
though the [Fe3S4]+ EPR signal disappeared (data not

Figure 1. EPR Spectra of [NiFe] Hydrogenase from D. v. Miyazaki

(A and B) (A) 90 and (B) 20 K. (a) As-purified, (b) 1 min after addi-

tion of Na2S, (c) 6 min after addition of Na2S (50 mM), and (d) after

exposure to air. Experimental conditions: frequency, 9.592 GHz;

power, (A) 2 and (B) 0.2 mW; enzyme concentration, 220 mM;

25 mM Tris-HCl (pH 7.4). Asterisks correspond to the signals of

the denatured protein, which disappears by dialysis.
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shown). By interaction of the new Ni-B0 species with O2,
the Ni-B0 EPR signals converted to the Ni-A signals (Fig-
ure 1A, c / d). The enzyme obtained after treatment
with Na2S was repurified to remove Na2S. Although the
enzyme obtained after treatment with Na2S could be ac-
tivated in the presence of methylviologen and H2, it re-
quired a prolonged incubation time longer than 40 min.
This result also supports the interpretation of the con-
version from the ready Ni-B state to the unready Ni-A
state. The Ni-A enzyme activity after activation was
comparable to that of the Ni-B enzyme. The rate of tran-
sition did not differ significantly in D2O buffer. The Ni-A
state did not convert back to the Ni-B state by dialysis
or by placing the Na2S-treated enzyme at 4ºC for 3
days. By addition of Na2S to the as-purified enzyme un-
der air, the EPR signals of the Ni-B state gradually con-
verted to those of the Ni-A state, which was accom-
plished in about an hour at room temperature.

During the interaction of the new Ni-B0 species with
oxygen, the [Fe3S4]+ EPR signal was generated to a small
extent within a few minutes, and then the signal started
to decrease again (data not shown). These results indi-
cate that decrease in the new Ni-B0 species at the active
site by a trace of molecular oxygen is coupled with intra-
molecular electron transfer from the Fe3S4 cluster to the
active site. The generated [Fe3S4]+ signal finally dis-
appeared after a few minutes, due to rereduction of
[Fe3S4]+ by Na2S. By addition of 33% (v/v) MPD, the ini-
tial increase of the [Fe3S4]+ EPR signal by reaction with
oxygen was larger because of the decrease in the rere-
duction rate of [Fe3S4] by Na2S (see text above). The
Ni-B0 state, however, should be very reactive against
O2, since Na2S functions as a strong oxygen quencher.

Crystal Structures of the Ni-A and Ni-B States

The pure Ni-A state could be obtained with the addition
of Na2S, and the resulting X-ray structures were refined
at a resolution of 1.04–1.50 Å with R values (free R values
[Brünger, 1992]) between 0.101 and 0.123 (0.123–0.167).
As a result of the SHELXL refinement, two of the intrinsic
nonprotein diatomic ligands of Fe (L2 and L3) were able
to be assigned as CN and CO, respectively, on the basis
of their atomic parameters. Even by X-ray analyses at
ultra-high resolution it was difficult to identify the atomic
species of the L1 ligand, which was suggested as CN
for some enzymes. Summaries of the data collection
and processing statistics are shown in Table 1 and Table
S1 (see the Supplemental Data available with this article
online).

Two aspects of the structure at the active site are
quite noteworthy. The first aspect is the size of the non-
protein bridging ligand, and the second one is the mod-
ification of the sulfur atoms of the cysteine ligands
(Cys84 and Cys546). The Ni-A structure shows a large
electron density peak at the site of the nonprotein bridg-
ing ligand (Figure 2A). The concave shape at the center
region and the size of the density strongly suggest that
this ligand is a diatomic species. In contrast, the corre-
sponding density peaks of the Ni-B (Figure 2B) and as-
purified states (Figure S1A, see the Supplemental Data
available with this article online) are apparently smaller
(about half) than that of the Ni-A state, suggesting that
a monatomic species is situated at the bridging ligand
site (Higuchi et al., 1997), which is in agreement with pre-
viously reported observations on the structure of the as-
purified enzyme. The sizes of the nonprotein bridging li-
gand of Ni-A and Ni-B are similar to those found in the
structures from Desulfovibrio gigas and Desulfovibrio
fructosovorans enzymes (Volbeda et al., 2005). Electron
density is not observed in the H2-reduced state between
the two metals (Figure S1B). The diatomic and mon-
atomic species are designated XA1-XA2 and XB1 for
the Ni-A and Ni-B states, respectively (XA1 and XB1
are the atoms directly coordinated to both the Ni and
Fe atoms). When oxygen atoms are assigned to these
atoms, the distance between XA1 and XA2 in the Ni-A
state in the refined structure is 1.57 Å. This OeO dis-
tance is clearly longer than that found in a dioxygen

Table 1. Summary of the X-Ray Crystallographic Data of the Ni-A

and Ni-B Structures

Crystal Ni-A Ni-B

Data Collection and Refinement Statistics

Space group: P212121

Cell constants (Å)

a 98.069 98.162

b 125.966 125.924

c 66.380 66.441

Resolution (Å)a 1.04 (1.10–1.04) 1.40 (1.48–1.40)

Completeness (%)a 98.0 (92.5) 99.4 (97.4)

Rmerge
a 0.069 (0.455) 0.069 (0.376)

R value (>s [F])a 0.108 (0.248) 0.122 (0.237)

Rfree (>s [F]) 0.140 0.164

Rms deviation from ideality

Bond length (Å) 0.016 0.010

Bond angle (º) 0.031 0.027

Mean coordination error

from Luzzati plot (Å)

0.04 0.07

Number of reflections 352,706 149,696

Number of parameters 65,493 63,591

Reflections/parameters 5.4 2.4

Water molecules 995 834

2-methyl-2,4-pentanediol 4 0

Structural Parameters of the Ni-Fe Active Site

Ni-Fe distance (Å) 2.80 2.69

Nonprotein bridging ligand

Angle (º) Ni–XA(B)1–Feb 90.6 (91.4) 88.9 (92.6)

Distance (Å)

Ni–XA(B)1b 1.70 (1.69) 1.67 (1.55)

Fe–XA(B)1b 2.20 (2.19) 2.14 (2.12)

XA1–XA2b 1.57 (1.57) —

Q

XA(B)1b 0.99 (0.49) 0.57 (0.31)

XA2b 0.59 (0.54) —

B (Å2)

XA(B)1b 12.9 (13.1) 12.5 (12.1)

XA2b 17.3 (16.7) —

Cys546

Distance (Å) Sg–X546b 1.77 1.50

Q X546b 0.39 0.94

B (Å2) X546b 11.2 23.9

Cys84

Distance (Å) Sg–X84b 1.58 —

Q X84b 0.53 —

B (Å2) X84b 11.0 —

a Values in parentheses are for the outer shell of the resolution range.
b Values for XA1, XB1, XA2, X546, and X84 are for oxygen species,

whereas those in parentheses are for sulfur species.
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Figure 2. Structures of the Ni-Fe Active Site

(A and B) Stereodiagrams of the electron density distribution (omit map) around the Ni-Fe active site with a ball-and-stick model of the (A) Ni-A

and (B) Ni-B structures.

(C) Superimposition of the structures of the Ni-A (red), Ni-B (green), and CO complex (gray, Ogata et al., 2002) states. XA2 of Ni-A occupies

a similar position as C of the exogenous CO of the CO complex. X546s of the Ni-A and CO complex structures are shifted toward the Ni atom

compared to that of the Ni-B structure (see text). L1, L2, and L3 indicate nonprotein diatomic ligands of the Fe atom, and they are tentatively

assigned as CO, CN, and CO, respectively, on the basis of the refined atomic parameters. XA1-XA2 (Ni-A) and XB1 (Ni-B) are nonprotein bridg-

ing ligands between the Ni and Fe atoms. X84 and X546 are additional atomic species attached to Sg of Cys84 and Cys546, respectively.
species, such as O]O and H2O2 (1.2–1.4 Å). The rela-
tively long OeO distance can be attributed to a hydro-
peroxide species coordinated to two metals, since
a similar OeO distance is lengthened to 1.46 Å for
a mononuclear hydroperoxide copper complex (Wada
et al., 1998). Recently, a hydroperoxide bridge has
been suggested to be a coordination scheme at the
Ni-Fe active site in the Ni-A state by electrochemical
(Lamle et al., 2004) and crystallographic studies (Vol-
beda et al., 2005). Ni-A was formed under conditions in
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which there were not enough electrons to reduce O2 to
H2O (Lamle et al., 2004), and molecular oxygen is par-
tially reduced to hydroperoxide when two reducing
equivalents are available. Additional oxidation of
Cys(SH) to Cys(S=O), however, was observed during
the conversion from Ni-B to Ni-A. The Ni–Fe distance
in the Ni-B state (2.69 Å) is similar to that of the as-
purified enzyme. The longer Ni–Fe distance in the Ni-A
state (2.80 Å) may be caused by the larger bridging
ligand between the two metals.

The second structural difference is the modified fea-
ture of the cysteine sulfur ligands. Both Cys84 (bridging
ligand) and Cys546 (terminal ligand) show residual elec-
tron density peaks in the Ni-A state (Figure 2A), whereas
Cys546 showed a residual peak in the Ni-B (Figure 2B),
as-purified (Figure S1A), H2-reduced (Figure S1B), and
CO bound (COC crystal [Ogata et al., 2002]) states.
These residual peaks are attributed to be modifications
of the nearest atoms (Sg546 and Sg549), considering the
connection feature of the electron density distribution.
When an oxygen species was assigned to these den-
sities (named X84 and X546 for Cys84 and Cys546,
respectively), the refinements all converged normally.
The X546–Sg546 and X84–Sg84 distances ranged from
1.46 to 1.77 Å in all structures. The location of X546,
however, can be divided into two groups: Group-A
(Ni-A and CO complex) and Group-B (Ni-B, as-purified,
and H2-reduced). By comparison with Group-B, X546
in Group-A is shifted about 1.0 Å toward Sg of Cys549,
resulting in reduction of the X546–Ni distance by about
0.5 Å (Figure 2C and Figure S1C). As a result, X546,
Sg546, Sg549, and the Ni atom in the Ni-A state form
a tightly packed structure within a distance of 2.50 Å
(X546–Ni = 2.26 Å, Ni–Sg546 = 2.12 Å, Sg546–X546 =
1.77 Å, X546–Sg549 = 2.40 Å, Ni–Sg549 = 2.48 Å). X84
(Ni-A) also shows a notable feature. It is located near
the Ni atom with a distance of about 1.80 Å; thus, X84
sits at the location nearest the Ni atom (X84–Ni = 1.77
Å, Ni–Sg84 = 2.53 Å, Sg84–X84 = 1.58 Å, X84–Sg81 =
2.21 Å, Ni–Sg81 = 2.21 Å). Since X84 pushes the Sg
atom of Cys81 away from the Ni atom, it also contributes
to the larger Ni–Fe distance in the Ni-A state. Interest-
ingly, the XA2 species in the Ni-A state sits in a similar
position as that of the carbon atom of the exogenous
CO in the CO complex (Figure 2C). It should be empha-
sized that the structure around the Ni atom in the Ni-A
state surprisingly resembles that in the CO complex, al-
though the atomic species are different. The XA2 atom
may also block the pathway of dihydrogens and/or pro-
tons. In fact, it is located at the dead end of the hydro-
phobic pathways, which are connected by the cavities
from the molecular surface to the Ni atom. The modifica-
tion of the coordinated sulfur atoms only in the Ni-A
structure reported here has also been reported by Vol-
beda et al. (2005).

Assignment of the atomic species of the bridging li-
gand (they were assigned as monatomic so far) has
been controversial, since the size of the electron density
peak considerably differs from one structure to another
(Higuchi et al., 1997, 1999; Volbeda et al., 1996; Matias
et al., 2001). Refinement with an oxygen species for
XB1 in the Ni-B state and XA2 in the Ni-A state con-
verged normally (XB1: Q = 0.57, averaged B [Bave] =
12.5 Å2; XA2: Q = 0.59, averaged B [Bave] = 17.3 Å2).
The occupancy factor Q of XA1 in the Ni-A state ob-
tained by the refinement with an oxygen species is rela-
tively large (Q = 0.99), whereas it converged to a normal
value (Q = 0.49) when the oxygen atom of XA1 was re-
placed with a sulfur atom. The parameters of the addi-
tional atoms (X546 and X84) attached to the Sg atom
of the cysteine ligands all converged in the normal range
by assignment of an oxygen species (Table 1 and Table
S1). This is in accordance with the previously reported
EPR experiments with 17O (O2 and H2O), which strongly
suggests that there must be an oxygen species near the
Ni atom (van der Zwaan et al., 1990; Carepo et al., 2002).
All modified features, such as XA1, XA2, XB1, X84, and
X546 (if it is also attached to the Ni atom), are candidates
for the oxygen species, which affect the electronic state
of the Ni atom at the active site. They can be assigned as
an oxygen species on the basis of the refined atomic pa-
rameters discussed above even though there are still
some anomalous features concerning the Q factors.
The enzyme, however, always liberates H2S when the
oxidized enzyme is reduced with an electron carrier
under an H2 atmosphere (Higuchi and Yagi, 1999). The
amounts of the liberated H2S in the Ni-A, as-purified,
and Ni-B states were in a molar ratio to enzyme of
0.62, 0.24, and 0.08, respectively. These results indicate
that a sulfur species exists near the active site, suggest-
ing that some of the nonprotein ligand atoms, XA1, XA2,
XB1, X84, and X546, may be a sulfur species. The elec-
tron density peaks at X84 and X546 for the CO complex
(COC crystal) (Ogata et al., 2002) and the as-purified (Hi-
guchi et al., 1997), and H2-reduced (Higuchi et al., 1999)
structures disappeared, presumably due to successive
exposure to an intense X-ray beam at the synchrotron.
Considering these results, X84 and X546 are the most
probable candidates for the source of the liberated H2S.

Mechanism for Transition of Ni-B to the Ni-A

State by Na2S
From EPR and crystallographic studies, we propose the
following reactions for the transition of the Ni-B state to
the Ni-A state by the addition of Na2S (Figure 3). The
[Fe3S4]+ cluster is reduced to [Fe3S4] by intermolecular
interaction with Na2S, whereas the species bound to
Sg of Cys546 in fluctuated conformations has settled
in a stable conformation. The Ni-B state is converted
to a newly detected state (Ni-B0) with g = 2.00, 2.14,
and 2.29 by interaction with Na2S. The magnitude of
the EPR shift by treatment with Na2S was comparable
with the differences in the signals of Ni-B and Ni-A,
where the character of the bridging ligand is different.
We, therefore, suggest a small perturbation in the li-
gands of Ni between Ni-B and Ni-B0. In the new Ni-B0

state, HS2 might bind to the metal at the active site.
For example, the sulfur atom can bind to the iron atom
of an organometallic compound (Curtis et al., 1995). Al-
though only an intensity decrease in the Ni EPR signal
has been reported during the reduction of the [Fe3S4]
cluster by lowering of the reduction potential (Teixeira
et al., 1989), the active site may change its structure by
the reduction of the [Fe3S4] cluster; thus, Ni-B0 could
also be Ni-B with a reduced [Fe3S4] cluster. The new
Ni-B0 species interacts with dioxygen to produce the
Ni-A state, which has a diatomic ligand (probably a di-
oxygen) at the bridging site with a positional shift of
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X546 at Sg546. During production of the Ni-B state, an
electron of the [Fe3S4] cluster is consumed to produce
[Fe3S4]+, and the produced [Fe3S4]+ is rereduced with
Na2S. Transition of the enzyme in the Ni-B state to the
Ni-A state occurs by (1) conversion of the Ni active site
to a new Ni-B0 species by Na2S addition and (2) reaction
of the produced Ni-B0 species with O2 by consuming an
electron at the Fe3S4 site. These results support a di-
oxygen species as the bridging ligand for the Ni-A state.

Figure 3. Proposed Scheme for the Conversion of the Ni-B State of

[NiFe] Hydrogenase to the Ni-A State by Addition of Na2S

The Ni-B state has a monatomic bridging ligand, XB1 (probably an

oxygen species), whereas the produced Ni-A state has a diatomic

ligand, XA1-XA2 (probably a dioxygen), at the bridging site. The

X546 atom (modified species of the sulfur atom of Cys546) of Ni-A

is shifted from the position of that of Ni-B toward the Ni atom. The

most probable candidates of the atomic species of XA1, XA2, XB1,

X84, and X546 are all oxygen species; however, sulfur species are

also possible for XA1, XB1, X84, and X546 (see the text for details).

The hypothetical structure of the Ni-B0 state is shown.
The unique, to our knowledge, structure of the Ni-A
state presented here, which surprisingly resembles that
of the CO-inhibited state, shows the essential features
of the unready (inhibited) state of the enzyme. In other
words, the inhibition of the catalytic reaction of [NiFe] hy-
drogenase is attributed to the XA2, X84, and X546 spe-
cies in the Ni-A state, and the spatial position of XA2
must be vacant for the reaction with the substrate. These
findings are crucially important to elucidate the activa-
tion and/or inhibition mechanism of the active site of
[NiFe] hydrogenase and may be useful to design and de-
velop model compounds of artificial hydrogenases.

Experimental Procedures

Sample Preparation

Isolation and purification of the oxidized [NiFe] hydrogenase from

D. v. Miyazaki F with an excess of the Ni-B state have been car-

ried out according to the protocol described previously (Higuchi

et al., 1987). The enzyme solution was concentrated by using a

Centricon-30 filter and was stored at 77 K for later use. The Ni-B

state was made by reduction of the enzyme with methylviologen

and hydrogen, subsequently oxidizing it with an excess amount of

O2. The Ni-A state was obtained by the addition of Na2S. Na2S

was dissolved in 25 mM Tris-HCl (pH 7.4), and the pH value and con-

centration of the Na2S solution were adjusted to 7.4 and 500 mM, re-

spectively, with concentrated HCl and the buffer solution. The 500

mM Na2S solution was added to the as-purified enzyme immediately

after the pH adjustment (final Na2S concentration, 50 mM). The as-

purified enzyme automatically converts to the Ni-A state if it is ex-

posed to air for 5 min. After the enzyme solutions of the Ni-A and

Ni-B states were prepared, the enzyme was further purified by anion

exchange chromatography with DEAE Toyopearl 650S in order to re-

move the denatured protein components.

EPR and Electrochemical Measurements

EPR spectra were measured at 20 and 90 K with a Bruker E500 spec-

trometer. The temperature was controlled by a helium flow cryostat

(Oxford Instruments Model ESR910) and a cryostat controller (Ox-

ford Instruments Model ITC500). The [Fe3S4]+ and Ni signals were

measured at 20 and 90 K, respectively. The frequencies and micro-

wave power for the measurements were 9.592 GHz and 0.2 mW

(20 K) and 2 mW (90 K), respectively. [NiFe] hydrogenase was

dissolved in 25 mM Tris-HCl buffer (pH 7.4) and was added with

pH-adjusted Na2S solution. Changes in the EPR spectra of the as-

purified enzyme in the presence of Na2S were measured under air

or under strictly prepared anaerobic conditions by using a vacuum

line and sealing the sample tube with a burner.

Hydrogenase activity was measured with a Clark-type oxygen

electrode (Central Science). The activity of 20 nM enzyme was mea-

sured in the presence of 1.6 mM methyl viologen and 0–250 mM

Na2S under an H2 atmosphere.

Crystallization, Data Collection, and Structure Refinement

Crystals of the Ni-A, Ni-B, as-purified, and H2-reduced states were

prepared by the methods described previously (Higuchi et al.,

1987, 1997, 1999). The crystals grown from the enzyme solution of

the Ni-A state were confirmed to have the typical Ni-A EPR signals

(data not shown). We have previously found that solution EPR spec-

tra are essentially the same as the single crystal EPR spectra for the

oxidized enzyme used in this study (Trofanchuk et al., 2000). X-ray

diffraction data sets for Ni-A (BL44B2), Ni-B (BL40B2), as-purified

(BL41XU), and H2-reduced (BL44B2) were collected at 100 K in the

dark at SPring-8 (Hyogo, Japan) at a wavelength of 0.7000 Å. Diffrac-

tion images were indexed with the program MOSFLM (Leslie, 1991)

and scaled with SCALA of the CCP4 package (CCP4, 1994). For crys-

tals diffracted beyond the resolution of 1.3 Å, diffraction data sets in

the low- and high-resolution ranges were collected separately. Initial

refinement was carried out by using the coordinates of the

H2-reduced structure (PDB code 1H2R) with CNS (Brünger et al.,

1998). In the final stages, alternative conformations and anisotropic

B factors were refined with SHELXL (Sheldrick and Schneider, 1997).
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The coordinated atoms at the active site were all refined without any

stereochemical restraints in order to obtain the real features of the

coordination geometry. The occupancy factors (Q) of the atoms

comprising the active site were also refined at the final stage of

the SHELXL refinement. Model building was done with XFIT (McRee,

1999), and the figures were prepared with MOLSCRIPT (Kraulis,

1991), BOBSCRIPT (Esnouf, 1997), and RASTER3D (Merritt and

Murphy, 1994).

Measurements of H2S Liberated from the Oxidized

Enzyme by H2 Reduction

As-purified, Ni-A, and Ni-B hydrogenase solutions were dialyzed for

24 hr against 25 mM Tris-HCl (pH 6.7). Pure N2 was bubbled through

the outer solution during the dialysis in order to remove the extra

H2S, which may remain in the enzyme solution after Ni-A preparation

with Na2S. Each dialyzed enzyme solution was concentrated to 0.5–

1.0 mM, transferred to a vial (1.0 ml), sealed, and kept at 4ºC until

use. The outer solution of the dialysis was also measured as a blank

solution. Measurements and calculations of the amount of the liber-

ated H2S from the activated enzyme with an electron carrier (5 mM

methylviologen) were carried out according to the protocol de-

scribed previously (Higuchi and Yagi, 1999). H2S was analyzed by

using a Shimadzu gas chromatograph with Ar as a carrier gas at

70ºC. The total amount of H2S (nmol) contained in the reaction vial

was calculated by the equation: H2Stotal = [H2S]gas(Vgas + Vliq apH

T/273), where apH, Vgas, and Vliq stand for a (1 + 10pH-pKa), the vol-

umes of the gas phase (0.8 ml), and the volumes of the liquid phase

(0.2 ml), respectively. As a result, H2Stotal was calculated by using the

equation: H2Stotal = 1.49 3 [H2S]gas (pH 6.7 at 310 K).

Supplemental Data

Supplemental Data including the structures of the Ni-Fe active site

and the summary of the X-ray crystallographic data of the as-

purified and H2-reduced structures are available at http://www.

structure.org/cgi/content/full/13/11/1635/DC1/.
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