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We study leptonic flavor and CP violating observables in supersymmetric (SUSY) models with heavy
sfermions, which is motivated by the recent results of the LHC experiments (i.e., the discovery of the
Higgs-like boson with the mass of about 126 GeV and the negative searches for the superparticles). Even
if the sfermion masses are of O (10–100 TeV), signals may be within the reach of future leptonic flavor
and CP violation experiments assuming that the off-diagonal elements of the sfermion mass matrices
are unsuppressed compared to the diagonal ones. We also consider the SUSY contribution to the K 0-K̄ 0

mixing parameters; we show that the leptonic observables can become as powerful as those in K 0-K̄ 0

mixing to constrain SUSY models.
© 2013 Elsevier B.V. All rights reserved.
Recent progresses of the searches for new particles at the LHC
have provided important information about the physics at the elec-
troweak scale and beyond. In particular, supersymmetry (SUSY),
which is one of the important candidates of the physics beyond
the standard model, has been seriously constrained by the results
of the LHC, i.e., the discovery of the Higgs-like boson with the
mass of about 126 GeV [1,2], and the negative searches for su-
perparticles [3,4]. In particular, it is notable that the Higgs mass
is preferred to close to the Z -boson mass in the minimal SUSY
standard model (MSSM) and that the lightest Higgs mass of about
126 GeV is hardly realized in the MSSM unless stops are heavier
than 10 TeV or the tri-linear scalar coupling constant of stops is
enhanced.

These facts suggest a class of supersymmetric models, i.e., mod-
els with heavy sfermions. If the SUSY is broken with the SUSY
breaking scale corresponding to m3/2 ∼ 10–100 TeV (with m3/2
being the gravitino mass), all the scalars in the MSSM sector
(except for the lightest Higgs boson) naturally have a mass of
O (10–100 TeV). Such a model is phenomenologically viable; the
lightest Higgs mass can be pushed up to 126 GeV, while all the
superparticles (in particular, sfermions) can be out of the reach
of the LHC experiments. If the gravitino mass is as heavy as
m3/2 ∼ 10–100 TeV, it also helps to avoid the serious cosmologi-
cal gravitino problem [5]. In addition, SUSY model with sfermion
masses of O (10–100 TeV) is compatible with the grand unified
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theory (GUT). Thus, the scenario with heavy sfermions has been
recently attracted attentions [6–14].

Heavy sfermions are also advantageous to avoid (or to relax)
constraints from flavor and CP violations. In SUSY models in which
the masses of superparticles are around 1 TeV, it is often the case
that too large flavor and CP violations are induced by loop di-
agrams with superparticles inside the loop. With heavy enough
sfermions, such constraints are supposed to be avoided. However,
even if the sfermion masses are around 10–100 TeV, it is non-
trivial whether the model evades all the flavor and CP constraints.
It is well known that the constraint from the CP violation in the
kaon decay (i.e., the constraint from the so-called εK parameter)
often gives the most stringent constraint and that the SUSY contri-
bution to εK may become larger than the standard-model predic-
tion even with the sfermion masses of O (10–100 TeV) [15].

The purpose of this Letter is to reconsider the flavor and CP
constraints on the SUSY model, paying particular attention to the
heavy sfermion scenario. We will see that, in some class of well-
motivated model, the constraint from εK is relaxed and that lepton
flavor violation (LFV) and CP violation may be also powerful tools
to study heavy sfermion scenario. Future experiments measuring
Br(μ → eγ ), Br(μ → 3e), μ-e conversion rate, and the electron
electric dipole moment (EDM) de will cover the parameter region
with the sfermion masses of O (10–100 TeV).

Let us start our discussion with introducing the framework of
the model of our interest. In this Letter, we consider the case
where SUSY is dynamically broken by the condensation of a chi-
ral superfield Z . (There may exist more than one chiral superfields
responsible for the SUSY breaking, but the following discussion is
unaffected.) Allowing higher-dimensional operators suppressed by
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the Planck scale MPl � 2.4 × 1018 GeV, the Kähler potential may
contain the following term

K � κΦ,I J

M2
Pl

Z † ZΦ
†
I Φ J , (1)

where Φ denotes chiral superfields in the MSSM sector, cor-
responding to qL(3,2,1/6), uc

R(3̄,1,−2/3), dc
R(3̄,1,1/3), lL(1,2,

−1/2), and ec
R(1,1,1) (with the gauge quantum numbers for

SU(3)C , SU(2)L and U (1)Y being shown in the parenthesis), κΦ,I J

is a constant, and I and J are generation indices which run from 1
to 3. After the SUSY breaking, the F -component of Z acquires
a vacuum expectation value, and the soft SUSY breaking mass
squareds of sfermions in the MSSM sector show up. In this Let-
ter, we assume that the SUSY is broken with relatively large value
of the gravitino mass of m3/2 ∼ O (10–100 TeV). Assuming that
κΦ,I J ∼ O (0.1–1), sfermion masses (as well as the SUSY breaking
Higgs mass parameters) are of the same order. In this framework,
the Kähler potential may contain the terms like

K � c1 Hu Hd + c2

M2
Pl

Z † Z Hu Hd + h.c., (2)

where Hu and Hd are up- and down-type Higgses, respectively.
With c1 and c2 being O (0.1–1), we expect that the SUSY invariant
Higgs mass (so-called μ parameter) and the bi-linear SUSY break-
ing parameter (so-called B parameter) are both expected to be of
the same order of the gravitino mass [16,17,12].

Even if the sfermion masses are of O (10–100 TeV), the gaugino
masses are model-dependent. If the SUSY breaking sector contains
a singlet field, then the gaugino masses may arise from the di-
rect F -term interaction between the gauge multiplet and the SUSY
breaking field. In such a case, we expect that the gaugino masses
are of the order of the gravitino mass. We call such a case as heavy
gaugino case, in which we assume that the gaugino masses M A

obey the simple GUT relation:

3

5

M1

g2
1

= M2

g2
2

= M3

g2
3

, (3)

where g A denote standard model gauge coupling constants. (Here,
A = 1, 2 and 3 correspond to U (1)Y , SU(2)L and SU(3)C , respec-
tively.) On the contrary, if there is no singlet field, effect of the
anomaly-mediated SUSY breaking (AMSB) may dominate the gaug-
ino masses. In such a case, the gaugino masses are obtained as
[18,19]1

M(AMSB)
A = −bA g2

A

16π2
m3/2, (4)

where bA denote coefficients of the renormalization-group (RG)
equations for g A , i.e., bA = (−11,−1,3).2 In the following dis-
cussion, we consider both cases. We also comment here on the
tri-linear scalar couplings (i.e., so-called A parameters); in the
following discussion, their effects are not important, so are ne-
glected.

We parameterize the soft SUSY breaking terms of sfermions in
the gauge basis as

1 If the μ parameter is as large as the gravitino mass, the gaugino masses may
not obey the simple anomaly-mediation relation [19,12]. Here, we assume that such
an effect is negligible.

2 The AMSB scenario without singlet field is advantageous for cosmology because
the lightest neutralino (which may be the neutral Wino) can be a good candidate
of dark matter [19,20], and also because the cosmological problem due to the late-
time decay of the SUSY breaking field (i.e., the so-called Polonyi problem) may be
avoided [21].
Lsoft = q̃†
L,IM

2
q̃L ,I J q̃L, J + ũc

R,IM2
ũR ,I J ũc†

R, J + d̃c
R,IM2

d̃R ,I J
d̃c†

R, J

+ l̃ †
L,IM

2
l̃L ,I J

l̃L, J + ẽc
R,IM2

ẽR ,I J ẽc†
R, J , (5)

or in the flavor basis,

Lsoft = ũ†
L,iM

2
ũL ,i j ũL, j + d̃†

L,iM
2
d̃L ,i j

d̃L, j + ũc
R,iM

2
ũR ,i j ũ

c†
R, j

+ d̃c
R,iM

2
d̃R ,i j

d̃c†
R, j + ν̃

†
L,iM

2
ν̃L ,i j ν̃L, j + ẽ†

L,iM
2
ẽL ,i j ẽL, j

+ ẽc
R,iM

2
ẽR ,i j ẽ

c†
R, j . (6)

(Here and hereafter, the tilde is for superpartners of the standard-
model particles.) In Eq. (6), all the mass matrices are in the basis in
which the fermion mass matrices are diagonalized; thus, M2

ũL
and

M2
d̃L

are related by the CKM matrix. It is obvious that the non-

vanishing values of M2
f̃ ,i j

(with i �= j) become new sources of

flavor violation. In addition, the off-diagonal elements of the mass
matrices can have non-vanishing phases, and are new sources of
CP violation.

For the following discussion, it is convenient to define

� f̃ ,i j ≡
M2

f̃ ,i j
− m2

f̃
δi j

m2
f̃

, (7)

where

m2
f̃
≡ M2

f̃ ,11
. (8)

The value of � f̃ ,i j is model-dependent. If all the higher-dimen-
sional operators suppressed by the Planck scale are allowed,
� f̃ ,i j ∼ O (0.1) is expected.3

Now, we discuss the rates of LFV. As we have mentioned, non-
vanishing values of �ẽL ,i j , �ẽR ,i j , and �ν̃L ,i j induce various LFV
processes. With �ẽL ,i j , �ẽR ,i j , and �ν̃L ,i j being fixed, the LFV rates
become smaller as the sleptons become heavier. To see the mass
scale of sleptons accessible with the experiments, we simply as-
sume the following structure of the slepton mass matrix:

M2
ẽR ,i j = m2

l̃
(δi j + �ẽR ,i j), (9)

M2
ẽL ,i j = m2

l̃
(δi j + �l̃L ,i j), (10)

M2
ν̃L ,i j = m2

l̃
(δi j + �l̃L ,i j), (11)

and calculate the LFV rate; the detailed formulae of the LFV rates
can be found in [22].

We first consider the μ → eγ process. The simplest possibil-
ity to induce the μ → eγ process is to introduce non-vanishing
values of �l̃L ,12 and/or �ẽR ,12. In Fig. 1, we plot Br(μ → eγ )

in such a case as a function of the slepton mass ml̃ . Here, we
take �l̃L ,12 = �l̃L ,21 = �ẽR ,12 = �ẽR ,21 = 0.1. (Other components of
� f̃ ,i j are taken to be zero; notice that, in such a case, Br(μ → eγ )

is approximately proportional to �2
l̃,12

.) In order to see how large

Br(μ → eγ ) can be, we adopt relatively large value of tanβ (which
is the ratio of up- and down-type Higgs bosons); in our numeri-
cal calculation, we take tan β = 50. (For the case of large tanβ ,
Br(μ → eγ ) is approximately proportional to tan2 β .) For the gaug-
ino mass, we consider two cases: the heavy gaugino case with GUT

3 One might think � f̃ ,i j is naturally of ∼ O (1). However, if the off-diagonal el-
ements are larger than the diagonal ones, there may exist a negative eigenvalue
of M2

f̃ ,i j
, which results in color and/or charge breaking vacuum. Thus, in order to

maintain the SU(3)C × U (1)em symmetry, we assume � f̃ ,i j ∼ O (0.1).



T. Moroi, M. Nagai / Physics Letters B 723 (2013) 107–112 109
Fig. 1. Br(μ → eγ ) as a function of the slepton mass ml̃ for tanβ = 50 and μ = ml̃ .
In addition, �l̃L ,12 = �l̃L ,21 = �ẽR ,12 = �ẽR ,21 = 0.1, while other components of
� f̃ ,i j are taken to be zero. Upper (red) and lower (green) lines are for the heavy
gaugino case with M3 = ml̃ and the AMSB case with m3/2 = 5ml̃ , respectively. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this Letter.)

relation (with M3 = ml̃) and the AMSB case (with m3/2 = 5ml̃).
4 In

addition, we take μ = ml̃ . We can see that Br(μ → eγ ) becomes
smaller in the AMSB case. This is because, in the case of large
tan β , the μ → eγ process is induced by diagrams with chirality-
flip due to the gaugino mass. Thus, the amplitude for the AMSB
case is suppressed by the factor of about M1,2/ml̃ .

So far, we have considered the case where μ → eγ is dom-
inantly induced by the 12 elements of �l̃L ,i j and �l̃R ,i j . Other
components may, however, also affect Br(μ → eγ ). In particu-
lar, Br(μ → eγ ) can be enhanced if the product �ẽR ,13�l̃L ,32 or
�l̃L ,13�ẽR ,32 are non-vanishing [23]. This is because, in such a case,

left–right mixing occurs due to the Yukawa interaction of tau-
lepton instead of that of muon. To see how large the branching
ratio can be, we also calculated Br(μ → eγ ) for the case where
the absolute values of all the off-diagonal elements of �l̃L ,i j and
�l̃R ,i j are equal. (Here, we take �l̃L ,ii

= �l̃R ,ii = 0.) In such a case,
the magnitude of the amplitude proportional to the tau Yukawa
coupling constant and that to the muon Yukawa coupling constant
become comparable when the off-diagonal elements are about 0.1.
The relative phase between those two amplitudes depends on the
phases in the off-diagonal elements. In Fig. 2, for the fixed value
of the slepton mass of ml̃ = 100 TeV, we plot Br(μ → eγ ) as a
function of �l̃ (which is the absolute value of the off-diagonal ele-
ments of �ẽR ,i j and �l̃L ,i j) for the cases where the two amplitudes
are constructive and destructive.

Our results should be compared with the experimental bounds
on the leptonic flavor and CP violations as well as with the
prospects of future experiments (see Table 1). As one can see,
the heavy sfermion scenario is already constrained by the present
bounds on Br(μ → eγ ) if slepton masses are below O (10 TeV).
In the future, experimental bound on Br(μ → eγ ) may be signif-
icantly improved by the MEG upgrade, with which μ → eγ may

4 For the AMSB case, if we naively take m3/2 = ml̃ , the gluino mass may conflict
with the LHC bounds in some parameter region of our study below. Thus, we as-
sume a slight suppression of the slepton mass relative to the gravitino mass in the
AMSB case.
Fig. 2. Br(μ → eγ ) as a function of the slepton mixing parameter �l̃ (which is
the absolute value of the off-diagonal elements of �l̃L ,i j and �l̃R ,i j ) for the heavy

gaugino scenario. We take tan β = 50 and μ = ml̃ = 100 TeV. We show the con-
structive case (�ẽR ,12 = �ẽR ,13 = �ẽR ,23 = �l̃L ,12 = �l̃L ,13 = �l̃L ,23) and destructive
case (−�ẽR ,12 = �ẽR ,13 = �ẽR ,23 = −�l̃L ,12 = �l̃L ,13 = �l̃L ,23). For comparison, we
also show the results only with �ẽR ,12 and �l̃L ,12.

Table 1
Current bounds on the leptonic flavor and CP violations (which are with “♥”), as
well as the future prospects. (D is the number of the days of operation.)

μ → eγ MEG (current) [26]♥ Br(μ → eγ ) < 5.7 × 10−13

MEG Upgrade [27] Br(μ → eγ ) � 6 × 10−14

μ → 3e SINDRUM I [28]♥ Br(μ → 3e) < 1 × 10−12

Mu3e Phase I [29] Br(μ → 3e) � 10−15

Mu3e Phase II [29] Br(μ → 3e) � 10−16

μ-e conversion SINDRUM II [30]♥ Rμe < 7 × 10−13 (with Au)
DeeMe [31] Rμe � 10−14 (with SiC)
Mu2e [32] Rμe � 2.4 × 10−17 (with Al)
COMET [33] Rμe � 10−17 (with Al)
PRISM/PRIME [33] Rμe � 2 × 10−19

Electron EDM YbF molecule [34]♥ |de | < 10.5 × 10−28e cm
ThO molecule [35] |de | � 3.7 × 10−29/

√
De cm

Fr [36] |de | � 1 × 10−29e cm
YbF molecule [37] |de | � 1 × 10−30e cm
WN ion [38] |de | � 1 × 10−30e cm

be found if the branching ratio is larger than ∼ 6 × 10−14. With
the choice of parameters used in Fig. 1, the MEG upgrade will
cover the slepton mass up to ∼ 55 TeV, 43 TeV, 25 TeV (36 TeV,
28 TeV, 16 TeV) for tanβ = 50, 30, and 10, respectively, for the
heavy gaugino case (the AMSB case).

We also study μ → 3e and μ-e conversion processes. Here,
we are paying particular attention to the case where tanβ is
large, with which the LFV rates are enhanced. Then, dipole-
type operators give dominant contributions to the LFV processes
because their coefficients are proportional to tanβ . In such a
case, we can use the following approximated formula to evalu-
ate Br(μ → 3e) [24]:

Br(μ → 3e)

Br(μ → eγ )
� α

3π

(
log

m2
μ

m2
e

− 11

4

)
� 6.6 × 10−3, (12)

where α is the fine structure constant. In addition, in the case of
the dipole dominance, the μ-e conversion rate, which is defined
as
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Rμe ≡ Γ (μN → eN)

Γ (μN → capture)
, (13)

is also approximately proportional to Br(μ → eγ ) as

Rμe

Br(μ → eγ )
� π D2

N

m5
μτμΓ (μN → capture)

, (14)

where τμ is the lifetime of muon, and D N is the overlap inte-
gral for the conversion process with nucleus N . Using the values
of DN (with method 2) and capture rates given in [25], the ra-
tio Rμe/Br(μ → eγ ) is given by 2.5 × 10−3 and 3.0 × 10−3, for N
being 27

13Al and 197
79Au, respectively. We can see that μ → 3e and

μ-e conversion processes may be also within the reaches of future
experiments. (See Table 1.)

Before discussing the electron EDM, we comment on LFV de-
cay processes of τ -lepton. If �l̃,23 and �l̃,12 are of the same or-
der, Br(τ → μγ ) becomes comparable to Br(μ → eγ ). Given the
fact that even the BELLE II experiment will reach Br(τ → μγ ) ∼
2.4 × 10−9 [39], it is harder to find the LFV processes of τ -lepton
in models with heavy sfermions.

Next, let us consider the SUSY contribution to the electron EDM
d(SUSY)

e . There are many sources of CP violation in the present
model; the phase in the μ parameter, those in the off-diagonal
elements of the sfermion mass matrices, and so on. With those,
the SUSY contribution to the electron EDM may become sizable as
we see below.

The SUSY contribution to the electron EDM can be generated
even without flavor violation. However, with non-vanishing values
of �ẽR ,i j and �l̃L ,i j , d(SUSY)

e may be enhanced [23,40]. This is be-
cause the left–right mixing of the smuon and/or stau, which are
larger than that of selectron, may contribute to d(SUSY)

e . In the fol-
lowing, we show results for the case with and without sizable
flavor violations. We calculate one-loop SUSY diagrams contribut-
ing to the electron EDM, with slepton and gaugino inside the
loop.5

In Fig. 3, we plot d(SUSY)
e as a function of the slepton mass ml̃ .

We consider the cases of heavy gauginos and AMSB. We adopt
two cases of off-diagonal elements of the sfermion mass matri-
ces. The first one is the case without flavor violation; we take
�ẽR ,i j = �l̃L ,i j = 0. In this case, using the fact that the phase of μ

can be arbitrary, we choose Arg(μ) which maximizes d(SUSY)
e .6 In

addition, to see the effects of muon and tau Yukawa coupling con-
stants, we consider the second case in which 13 and 31 compo-
nents of |�ẽR ,i j| and |�l̃L ,i j| are 0.1. (Other components of �ẽR ,i j

and �l̃L ,i j are taken to be zero.) In this case, we assumed that the

phase in μ is negligible, and the phases of the off-diagonal ele-
ments are chosen such that d(SUSY)

e is maximized. Notice that, in
the second case, d(SUSY)

e is proportional to |�ẽR ,13�l̃L ,31| (with the
phases of off-diagonal elements being fixed). As in the case of the
LFV, the electron EDM in the heavy gaugino case is larger than
that in the AMSB case. In addition, de is more enhanced as tanβ

becomes larger; de is approximately proportional to tan β .
So far, we have concentrated on the leptonic flavor and CP vi-

olations. However, it is well known that the SUSY models may
also affect flavor and CP violations of baryons. It is often the case
that K 0-K̄ 0 mixing parameters, in particular the εK parameter, give
very stringent constraints on the scale of the superparticle masses

5 If the μ parameter is as small as gaugino masses, two-loop diagram may dom-
inate the SUSY contribution to de [41]. In the present case, the μ parameter is as
large as sfermion masses.

6 We use the convention such that the gaugino masses as well as the vacuum
expectation values of the Higgs bosons are real.
Fig. 3. The SUSY contribution to the electron EDM as a function of the slepton mass
ml̃ for tanβ = 50 and |μ| = ml̃ . Upper (red) and lower (green) lines are for the
heavy gaugino case with M3 = ml̃ and the AMSB case with m3/2 = 5ml̃ , respectively.
For the dashed lines, all the elements in �ẽR ,i j and �ẽl ,i j are taken to be zero,

and the phase of μ is chosen to maximize d(SUSY)
e . For the solid lines, �ẽR ,i j =

�l̃L ,i j = 0 except for |�ẽR ,13| = |�ẽR ,31| = |�l̃L ,13| = |�l̃L ,31| = 0.1 and Arg(μ) = 0;

in this case, the phases of the off-diagonal elements are chosen to maximize d(SUSY)
e .

(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this Letter.)

[15,42–44]. To see the importance of the constraints from the SUSY
contribution to K 0-K̄ 0 mixing parameters, we parameterize the
mass matrices as7

M2
d̃R ,i j

= m2
q̃(δi j + �d̃R ,i j), (15)

M2
d̃L ,i j

= m2
q̃(δi j + �d̃L ,i j), (16)

M2
ũR ,i j = m2

q̃δi j, (17)

and calculate the SUSY contribution.
In Fig. 4, we plot the SUSY contribution ε

(SUSY)
K for the heavy

gaugino case. (We checked that the result for the AMSB case does
not change so much, and hence the following arguments are also
applicable to the AMSB case.) In the calculation of ε

(SUSY)
K , we use

the formulae given in [45]. The dashed line shows the result for
the case where there is no cancellation; here, we take |�d̃R ,i j| =
|�d̃L ,i j| = 0.1 (i �= j) and Arg(�d̃R ,12�d̃L ,12) = π/2.

Comparing the result with the bound on the possible ex-
tra contribution to εK , which we conservatively take |ε(SUSY)

K | =
9.8 × 10−4,8 the squarks are required to be heavier than 450 TeV.
(Notice that ε

(SUSY)
K is approximately proportional to |�d̃R ,12�d̃L ,12|

unless there is cancellation.) Even if the squark and slepton masses
are of the same order, the future electron EDM experiment may
have a sensitivity to such a parameter region if the bound on de is
improved by three orders of magnitude (see Fig. 3).

If the constraint from εK is relaxed, the future LFV experiments
also play important role to probe the heavy sfermion scenario. One
observation is that ε

(SUSY)
K is suppressed if the following relation

7 The right-handed up-type squarks are not important for the discussion of
K 0-K̄ 0 mixing, so we simply take �ũR ,i j = 0.

8 We take into account the large uncertainty of the standard model contribution

ε
(SM)
K = (1.81 ± 0.28) × 10−3 [46], while we use the experimental value ε

(exp)
K =

(2.228 ± 0.011) × 10−3 [47].
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Fig. 4. The SUSY contribution to the εK parameter as a function of mq̃ . Here, we
consider heavy gaugino scenario taking M3 = mq̃ . For the dashed line, we take
|�d̃R ,i j | = |�d̃L ,i j | = 0.1 (i �= j) and Arg(�d̃R ,12�d̃L ,12) = π/2. For solid lines, we

take |�d̃R ,i j | = 0.1 (i �= j) with the SO(10) relation given in Eq. (18), except for
�d̃R ,33 = 0 and �d̃L ,33 = −0.1, −0.2, and −0.3 from below; the phases of the off-

diagonal elements are chosen to maximize ε
(SUSY)
K .

(which we call the SO(10) relation because of the reason explained
below) holds:

SO(10): M2
d̃R ,i j

= M2∗
d̃L ,i j

. (18)

This is from the fact that, if we limit ourselves to the sector con-
sisting of down-type (s)quarks and gluino, which gives the dom-

inant contribution to ε
(SUSY)
K , the Lagrangian becomes invariant

under the exchange of dL and dc
R (i.e., C invariance). Thus, if the

relation (18) is exact, the SUSY contribution to εK comes from
SU(2)L and U (1)Y interactions, resulting in a significant suppres-
sion of ε

(SUSY)
K .

It is notable that the relation (18) naturally arises from SO(10)

unification of the gauge groups (at least at the GUT scale). In
SO(10) model, qL,I , uc

R,I , dc
R,I , lL,I and ec

R,I (as well as right-
handed neutrino) are embedded into a single 16-representation
multiplet of SO(10), which we denote 16I . In such a model, the
MSSM Yukawa interactions responsible for the quark and lepton
masses arise from terms which are quadratic in 16-multiplets,
and the Yukawa matrices in the MSSM originate to symmetric
3 × 3 matrices.9 The down-type Yukawa matrix in this basis can
be diagonalized by a single unitary matrix, which we denote Ud .
Then, the down-type squarks in the flavor-eigenstate basis are re-
lated to d̃L,I and d̃c

R,I (which are in the same 16I -multiplet) as

d̃L,i = Ud,i J d̃L, J and d̃c∗
R,i = U∗

d,i J d̃c∗
R, J , from which we obtain the

SO(10) relation (18).
Even if the relation (18) is satisfied at the GUT scale, however,

it may not hold at the lower energy scale. In particular, the RG
effects change the relation. The most important RG effect is from
the Yukawa coupling constants of third generation quarks (i.e., top
and bottom quarks), with which the 33 components of the mass
matrices of q̃L and d̃c

R are reduced. Detailed values of �d̃L ,33 and
�d̃R ,33 depend on various parameters. To see how large the dif-

9 Here, we assume that the effects of higher-dimensional operators are sub-
dominant.
ference may become, we simply adopted the assumption of the
universal scalar masses at the GUT scale and estimated �d̃L ,33 and
�d̃R ,33 at the scale of mq̃ . Then, we found that (�d̃L ,33,�d̃R ,33) �
(0.7,1), (0.7,0.8), and (0.5,0.5), for tan β = 10, 30, and 50, re-
spectively.10 We also calculate the SUSY contribution to εK for the
case where the relation (18) holds except for 33 components; we
show the results in Fig. 4 for the cases with �d̃R ,33 �= �d̃L ,33. Off-

diagonal elements are taken as �d̃ = |�d̃R ,i j| = 0.1. (In this case,

ε
(SUSY)
K is approximately proportional to �3

d̃
with �d̃R ,33 − �d̃L ,33

being fixed.) As one can see, the bound on mq̃ is significantly re-
laxed in this case in particular when �d̃R ,33 and �d̃L ,33 are close.

In fact, in the case where ε
(SUSY)
K is suppressed, one should also

consider the constraint from the K L-K S mass difference �mK . We
have also calculated the SUSY contribution �m(SUSY)

K , and found
that mq̃ smaller than about 25 TeV is excluded with the present

choice of parameters by requiring that �m(SUSY)
K should be smaller

than the present experimental value.
In summary, we have studied the leptonic flavor and CP vio-

lations in supersymmetric models with heavy sfermions. We have
shown that the SUSY contribution to the leptonic flavor and CP vi-
olations can be so large that the future experiments may observe
the signal even if ml̃ ∼ O (10–100 TeV). The εK parameter often
gives a very stringent constraint on the mass scale of superparti-
cles if the off-diagonal elements of the sfermion mass matrices are
sizable. However, it should be noted that the SUSY contributions
to the leptonic flavor and CP violations and those to K 0-K̄ 0 mixing
parameters depend on different parameters. Thus, it is important
to look for signals of new physics using leptonic flavor and CP vi-
olation experiments. In particular, we have shown that, in some
class of model like the SO(10) unification model, suppression of
ε

(SUSY)
K may occur because of the automatic cancellation due to

the approximate C invariance. In addition, ε
(SUSY)
K may be sup-

pressed due to an accidental cancellation. In this Letter, we have
concentrated on the leptonic sector (as well as the constraints from
K 0-K̄ 0 mixing). Other possible signals of the heavy sfermion sce-
nario may be hidden in the B physics. Such a possibility, as well as
more detailed studies of the leptonic flavor and CP violations, will
be given elsewhere [48].
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